
ON DEVELOPMENTAL VARIATION IN HIERARCHICAL
SYMBIOTIC POLICY SEARCH

by

Stephen Kelly

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2012

c© Copyright by Stephen Kelly, 2012

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty

of Graduate Studies for acceptance a thesis entitled “ON DEVELOPMENTAL

VARIATION IN HIERARCHICAL SYMBIOTIC POLICY SEARCH” by

Stephen Kelly in partial fulfillment of the requirements for the degree of

Master of Computer Science.

Dated: August 16, 2012

Supervisor:
Dr. Malcolm I. Heywood

Readers:
Dr. Denis Riordan

Dr. Nur Zincir-Heywood

ii

DALHOUSIE UNIVERSITY

DATE: August 16, 2012

AUTHOR: Stephen Kelly

TITLE: ON DEVELOPMENTAL VARIATION IN HIERARCHICAL
SYMBIOTIC POLICY SEARCH

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: M.C.Sc. CONVOCATION: November YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available
to the public.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . xii

Chapter 1 Introduction . 1

Chapter 2 Background . 5

2.1 Symbiotic Coevolution . 5

2.2 Hierarchical Models . 6

2.3 On External Sources of Developmental Diversity 8

2.4 Discussion . 9

Chapter 3 Hierarchical Symbiotic Policy Search and Cycles of Evo-
lution . 12

3.1 Development Within Cycles of Evolution 12
3.1.1 Symbiont Population . 12
3.1.2 Host Population . 14
3.1.3 Point Population . 14

3.2 Selection and Replacement . 15
3.2.1 Point Population . 15
3.2.2 Host Population . 15

3.3 Variation Operators . 15

3.4 Cycles of Evolution and Hierarchical Development 16

Chapter 4 Task Domains . 18

4.1 Pinball . 18
4.1.1 Task Domain . 18
4.1.2 Previous Results . 19
4.1.3 Atomic Action and State Variables 19
4.1.4 Point Population Routines . 20
4.1.5 Reward Function . 20
4.1.6 Summary . 21

iv

4.2 Truck Reversal . 22
4.2.1 Task Domain . 22
4.2.2 Previous Results . 23
4.2.3 Atomic Action and State Variables 23
4.2.4 Point Population Routines . 24
4.2.5 Reward Function . 24
4.2.6 Summary . 25

4.3 Parameterization . 25
4.3.1 SBB Parameterization . 25
4.3.2 SARSA Value Function Approximation 26

Chapter 5 Empirical Evaluation . 28

5.1 Standard Evaluation Practices . 28

5.2 Pinball Domain . 28
5.2.1 Evaluation Methodology . 28
5.2.2 Generalization Tests . 29
5.2.3 Specialization and Generalization in Hierarchical SBB 32
5.2.4 Hierarchical Policy Deployment 33
5.2.5 Learning and Organizing Meta Actions 36
5.2.6 Solution Complexity . 40
5.2.7 Efficiency . 42
5.2.8 Alternate Pinball Worlds . 44

5.3 Truck Reversal Domain . 44
5.3.1 Evaluation Methodology . 44
5.3.2 Generalization Tests . 47
5.3.3 Sarsa Base Case . 49
5.3.4 Solution Complexity . 50
5.3.5 Efficiency . 50

5.4 Levels of Selection . 57

Chapter 6 Conclusion and Future Work 60

Appendix A Truck Reversal with Automatically Defined Functions 62

A.0.1 Parameterization . 62
A.0.2 Results . 64
A.0.3 Summary . 67

Bibliography . 68

v

List of Tables

Table 4.1 Task Domain Parameterizations. 22

Table 4.2 Parameterization of Host and Symbiont populations. tmax re-
flects the generation limit per layer. As per Linear GP, a fixed
number of general purpose registers are assumed (numRegisters)
and variable length programs subject to a max. instruction
count (maxProgSize). 27

Table 4.3 Parameterization for SARSA value function approximation. . . 27

Table 5.1 Pinball Task: p-value for pairwise Mann-Whitney non-parametric
hypothesis tests. 32

Table 5.2 Truck Reversal Task: p-value for pairwise Mann-Whitney non-
parametric hypothesis test. 49

Table 5.3 Truck reversal task: Number of trials in which champion host
assumed ’symmetric’ behaviour. 57

vi

List of Figures

Figure 3.1 Hierarchical symbiosis through cycles of evolution. A cycle of
evolution begins at level-0 with the ecology defining an interac-
tion between point population and host population, where fit-
ness is evaluated. Hosts identify a group of symbionts defined
in the symbiont population. Symbionts in level-0 are limited to
the atomic actions of the task domain. During the next cycle
of evolution (level-1) the process repeats under a new point–
host–symbiont partnership. This time symbionts assume ac-
tions defined by previously evolved hosts. For simplicity, host–
symbionts developed during previous cycles of evolution remain
fixed. 13

Figure 4.1 Pinball task domain. Large black circle (top centre) represents
the single (global) exit location. Smaller grey circles represent
the set of 500 initial start conditions over which post training
generalization is evaluated. 19

Figure 4.2 Truck reversal state variables. The controller is supplied with
cartesian coordinates denoting the end of the semi, (x, y), the
angle of the cab, θc, and the semi, θs. Not shown is the global
‘field’ in which the semi–cab may begin or the obstacle in the
middle of the field (see Figure 4.3). 24

Figure 4.3 Truck Reversal Task: Summary of the 1 000 initial conditions
for post training testing evaluation of solutions from the Truck
Reversal domain. The goal is to return the truck to the origin
(0, 0) without triggering a fault condition. The rectangle at the
centre of the world represents the wall obstacle. The ‘pinhead’
location denotes the end of the semi. 26

Figure 5.1 Pinball Task: Generalization performance or count of number
of test points solved by the champion host (y-axis) at each level.
500 test points in total. x -axis labels correspond to 4 different
styles of SBB evolution. Distributions labeled ’X(meta)’ de-
scribe the cumulative number of test cases solved by all meta
actions when evaluated individually as oppose collaboratively
within hosts of distribution X, see Section 5.4. SARSA is the
baseline Fourier Basis value function approximator. Vertical
line in x-axis marks split between level 0 and 1. 30

vii

Figure 5.2 Pinball Task: Performance of Case 4 SBB (Layered evolution)
hosts over 500 test points. ’Pop’ identifies columns with cumu-
lative solution count performance as estimated across the entire
final population whereas the other columns denote performance
of the single best individual from a run. champ+ is the col-
lective performance of meta actions as identified by champion
policy trees. Vertical line in x-axis marks split between level 0
and 1. 33

Figure 5.3 Pinball Task: Structure of a hierarchical SBB solution solv-
ing 492 of 500 test cases. Top-centre circle represents level
1 host. Black squares represent level 1 symbionts indexed by
this host. Each level 1 symbiont assumes one level 0 host as
its meta-action, represented here by the black/ white circle/
square. Each level 0 host indexes multiple level 0 symbionts.
The shape of each level 0 symbiont denotes which atomic action
is assumed (see legend at the bottom of the figure). 34

Figure 5.4 Pinball Task: Sample trajectory in terms of meta-action deploy-
ment w.r.t. hierarchical policy of Figure 5.3. Large grey circle
represents start location for this specific test case. Large black
circle represents the global target. Shapes correspond to level
0 hosts (meta-actions) deployed at each location/time-step in
trajectory, as mapped to specific hosts in Figure 5.3. 36

Figure 5.5 Pinball Task: Distribution of winning bids across all test con-
ditions w.r.t. level 1 symbionts of Figure 5.3. Subsampling ap-
plied equally to each sub-plot limit total figure size to 600KB
from 6MB. 37

Figure 5.6 Pinball Task: Sample trajectory in terms of atomic actions de-
ployment w.r.t. hierarchical policy of Figure 5.3. Large grey
circle represents start location for this specific test case. Large
black circle represents the global target. Shapes correspond to
atomic actions deployed at each location/time-step in trajec-
tory, as mapped to domain-specific actions in Figure 5.3. . . . 38

Figure 5.7 Pinball Task: Set of training points (pairs of start and goal
locations) that the black circle level 0 host from Figure 5.3
was able to solve. Ball start locations are represented by cir-
cles while goal locations are represented by translucent squares.
Each ball/goal has a hairline line protruding toward its corre-
sponding goal/ball. The length of the hairline line is relative to
the length between the ball and target. 39

viii

Figure 5.8 Pinball Task: Set of level-0 training points solved by one meta
action later deployed w.r.t the alternate global goal. Ball start
locations are represented by circles while goal locations are rep-
resented by translucent squares. Each ball/goal has a hairline
line protruding toward its corresponding goal/ball. The length
of the hairline line is relative to the length between the ball and
target. 40

Figure 5.9 Pinball Task: Symbiont Counts per Champion Host. x-axis
labels distinguish between experimental cases. Vertical line in
x-axis marks split between level 0 and 1. 41

Figure 5.10 Pinball Task: Average Instruction Counts per Symbiont. x-axis
labels distinguish between experimental cases. Vertical line in
x-axis marks split between level 0 and 1. 42

Figure 5.11 Pinball Task: Median number of time steps used by champion
over all successful episodes. x-axis labels distinguish between
experimental cases. Vertical line in x-axis marks split between
level 0 and 1. 43

Figure 5.12 Pinball Task: Training Curves for Incremental and Layered Ex-
periments. (a) and (b) depict the maximum individual host fit-
ness over 210 generations for each experiment where box plots
summarize the distribution w.r.t. 60 independent trials. (c)
plots the median from each of the above distributions where
the dashed line represents Incremental and solid line is Lay-
ered. Gap in x axis marks the point at which developmental
variation and hierarchical transition (Layered only) take place. 45

Figure 5.13 Truck Reversal Task: Generalization performance or count of
number of test points solved by the champion host (y-axis)
at each level. 1000 test points in total. X axis labels cor-
respond to 4 different styles of SBB evolution. Distributions
labeled ’X(meta)’ describe the cumulative number of test cases
solved by all meta actions when evaluated individually as op-
pose collaboratively within hosts of distribution X, see Section
5.4.Vertical line in x-axis marks split between level 0 and 1. . . 48

ix

Figure 5.14 Truck Reversal Task: Typical SARSA policy behaviour during
evaluation of truck reversal task under 1 000 test cases. (a) Most
failure configurations lie within the y-axis interval of [−25,+50].
Some reach the 600 step interaction limit, with the balance
hitting the wall object or y-axis at more distant locations. (b)
Location of semi–cab relative to all 1 000 test configurations for
ts = 100. Compare to Figure 5.21 for the SBB policy tree at
the same time step. Note the increase to axis scale. 51

Figure 5.15 Truck Reversal Task: SARSA training reward over 50000 episodes.
y-axis denotes median over 60 independent trials. 51

Figure 5.16 Truck Reversal Task: Symbiont Counts per Champion Host.
x-axis labels distinguish between experimental cases. Vertical
line in x-axis marks split between level 0 and 1. 52

Figure 5.17 Truck Reversal Task: Average Instruction Counts per Sym-
biont. x-axis labels distinguish between experimental cases.
Vertical line in x-axis marks split between level 0 and 1. 53

Figure 5.18 Truck Reversal Task: Median number of time steps used by
champion host on solved test points. Vertical line in x -axis
differentiates between level 0 and 1 distributions. 54

Figure 5.19 Truck Reversal Task: Training Curves for Incremental and Lay-
ered Experiments. (a) and (b) depict the maximum individual
host fitness over 2000 generations for each experiment where
box plots summarize the distribution w.r.t. 60 independent tri-
als. (c) plots the median from each of the above distributions
where the dashed line represents Incremental and solid line is
Layered. Gap in x axis marks the point at which developmental
variation and hierarchical transition (Layered only) take place. 56

Figure 5.20 Truck Reversal Task: Example trajectories for solved test cases
from the same SBB policy tree. Subplot (a) and (b) are relative
to one and two specific initial semi–cab configurations respec-
tively. Symbols distinguish between the selection of different
(level 0) meta actions by the root (level 1) switching policy. . . 57

Figure 5.21 Truck Reversal Task: Snapshot of the location of all 1,000 test
initializations for ts = 100. (a) is SBB policy tree from Figure
5.20. (b) is example asymmetric behaviour. The head of the
pin denotes the end of the semi–cab. 58

x

Figure A.1 Truck Reversal with ADFs: Generalization performance or count
of number of test points solved by the champion individual (y-
axis) from each experiment. 1000 test points in total. X axis
labels correspond to 6 different experiments, each with a partic-
ular number of 2-argument ADFs. ’no wall’ denotes the absence
of the wall obstacle. 65

Figure A.2 Truck Reversal with ADFs: Median adjusted fitness (60 in-
dependent trials) over 75 generations. Each line represents a
separate experiment with a particular number of 2-argument
ADFs. 66

xi

Abstract

A hierarchical symbiotic framework for policy search with genetic programming (GP)

is evaluated in two control-style temporal sequence learning domains. The symbiotic

formulation assumes each policy takes the form of a cooperative team between mul-

tiple symbiont programs. An initial cycle of evolution establishes a diverse range of

host behaviours with limited capability. The second cycle uses these initial policies

as meta actions for reuse by symbiont programs. The relationship between develop-

ment and ecology is explored by explicitly altering the interaction between learning

agent and environment at fixed points throughout evolution. In both task domains,

this developmental diversity significantly improves performance. Specifically, ecolo-

gies designed to promote good specialists in the first developmental phase and then

good generalists result in much stronger organisms from the perspective of general-

ization ability and efficiency. Conversely, when there is no diversity in the interaction

between task environment and policy learner, the resulting hierarchy is not as robust

or general.

The relative contribution from each cycle of evolution in the resulting hierarchical

policies is measured from the perspective of multi-level selection. These multi-level

policies are shown to be significantly better than the sum of contributing meta actions.

xii

Chapter 1

Introduction

Cooperation between multiple specialized learners is increasingly recognized to be

a key factor in scaling evolutionary robotics to complex control tasks. Symbiosis

represents a biologically-inspired mechanism under which genetic programming (GP)

approaches are able to support cooperation and problem decomposition with minimal

a priori information or manual intervention [31]. This work explores the role of ecology

[16] in symbiotic evolutionary policy search as applied to temporal sequence learning

tasks.

Temporal sequence learning problems commonly require an agent, or decision

maker, to take sequential actions within an environment in order to achieve a pre-

determined objective or to maximize some notion of reward relative to the task at

hand. During an episode, each action taken by the agent results in a corresponding

reward or penalty as defined by the environment, as well as an update to the current

environmental state. The learning process generally takes the form of a series of trial-

and-error episodes over which the agent attempts to develop an optimal strategy [55].

Thus, reward quantifies performance over the episode in proportion to the sequence

of interactions between agent and environment. Evolutionary policy search (EPS)

algorithms, unlike the more well known value function approaches to these tasks, do

not attempt to adapt solutions during a training episode by adjusting their strategy

based on the reward received from each action. Instead, a policy is evaluated only

after the goal state is reached or the episode ends for another reason, such as a time

constraint [38]. Consequently, policy search algorithms require training over a diverse

set of problem scenarios as sampled from the task domain in order to produce solu-

tions that generalize well and maintain engagement [28]. By presenting the agents

with a diverse set of problem configurations, some easier than others, a gradient in

the resulting solution quality can be observed and used to evaluate the agent’s pol-

icy. More generally, the interaction between configurations of the environment and

1

2

capability of the policies can be explicitly varied and tuned throughout evolution or

even coevolved. Likewise, assuming a combination of fitness functions which reward

the satisfaction of a sequence of goals can also mitigate the significance of assuming

an initial population of stochastically configured policies. Without such incremental

fitness functions, it is very likely that outright disengagement between the capability

of agents and the task will take place, thus reducing policy search to a random walk

[18].

Hierarchical approaches are increasingly being used to scale decision making agents

to more complex tasks [2]. Layered learning, which represents a promising approach

in domains such as robot soccer, relies heavily on employing a priori information in

decomposing the problem into appropriate subgoals [54, 59]. For example, the game of

robot soccer may be manually decomposed into appropriate subgoals such as getting

near the ball, getting open, kicking the ball, passing, etc. These behaviours are first

learned separately and later deployed within an a priori decision tree. The agent in

this scenario is thus able to reason at different levels of abstraction. In this research

we take a different approach in that no a priori problem decomposition is necessary.

Defining appropriate subgoals is treated as a secondary problem to be addressed by

adopting a process of developmental variation within the symbiotic coevolutionary

framework.

Evolutionary Computation potentially covers a wide range of model building

paradigms appropriate for conducting policy search. To date a lot of emphasis has

been placed on schemes for evolving neural networks [13, 62]. Indeed, several very

successful approaches exist for evolving both topology, connectivity and weights, as

in the NEAT family of algorithms [51, 59, 52]. However, in this research we instead

target the Genetic Programming (GP) paradigm [26, 27]. This paradigm has not

received the same interest as neural representations for policy search, thus has yet

unknown or little understood capabilities. The specific form of GP assumed for this

study is the hierarchical Symbiotic Bid-Based (SBB) framework for GP [31, 14]. SBB

supports both lateral and hierarchical task decomposition. The former occurs as a

result of cooperative symbiotic coevolution within GP-based organisms as well as

competitive coevolution between multiple organisms, detailed in Chapter 3, while the

later is achieved by dividing the evolutionary process into independent, hierarchical

3

cycles. An initial cycle results in diverse policies that lack the capability to solve the

entire task. The next cycle reuses policies developed during the first cycle as ’meta

actions’, combining these previously learned behaviours into much stronger solutions

that ultimately outperform the sum of their parts. The SBB framework also main-

tains distinct populations of diverse task domain configurations, hereafter referred to

as points. The combination of task configuration and fitness function represent the

environmental component of the ecology.

Our central focus in this thesis is to explore the relationship between ecology and

development, while the main contribution is to measure the utility of developmental

diversity in providing the basis for a learned, rather than a manually formulated

hierarchy. To achieve this, we make two modifications to the SBB framework:

• Introduce goal diversity in the point population such that different evolutionary

cycles (levels of the hierarchy) are evolved relative to different physical proper-

ties of the task.

• Vary the fitness function such that different evolutionary cycles are evolved

under different objectives.

In summary, adopting multiple cycles of evolution to incrementally construct hi-

erarchical policies allows for the interaction between point population and policy

learners to be varied during each cycle. At least two sources of variation could ap-

pear. Either the (task specific) routine for initializing points and / or the reward

function might differ as different levels of the hierarchy are evolved. The underlying

design philosophy assumed here is that more specific, specialized behaviours evolve

at the initial level (identifying meta actions) whereas level 1 (the second cycle of evo-

lution) will establish how to combine meta actions into a hierarchical policy to solve

some more general task. We will investigate this hypothesis empirically in Sections

5.2 and 5.3.

The remainder of this thesis is organized as follows. Chapter 2 discusses previ-

ous work directly related to the research reported on here. Chapter 3 outlines the

SBB algorithm in detail. Chapter 4 describes the two task domains, Pinball and

Truck Reversal, in which our experiments are conducted. In Chapter 5 we outline

our methodology and discuss results from a variety of experiments in each domain.

4

Chapter 6 presents our conclusions and looks ahead to future work stemming from

this research.

Chapter 2

Background

In this chapter we review previous work relating to the major components of our own

study; symbiotic coevolution, hierarchical architectures, the role of diversity in GP,

and the role of developmental diversity in the construction of meta actions.

2.1 Symbiotic Coevolution

The synthesis of new organisms from a collective of originally independent behaviours

is increasingly being associated with the concept of major transitions in evolution

[56, 37, 44, 7]. The resulting synthesis represents a new organism that successfully

integrates properties from individuals existing in an earlier / current population. The

advantages that this confers on the new organism amount to capabilities that exceed a

mere sum of the composite parts. From an evolutionary stand point, such advantages

might be reflected in an ability to reach new food sources or exist in environments

different from the original organisms. Moreover, a key component in developing such

higher level organisms is the ecological interaction that organisms face during their

lifetime [16].

Naturally, there are many specific mechanisms that might provide the basis for

such transitions. In this work we will adopt that of (endo)symbiosis [35]. Symbiosis

represents an evolutionary process in which it is viable to inherit entire ‘components’

of previously evolved material across multiple species. As such, symbiosis has been

credited as the principle mechanism for the transition in evolution from prokaryotes

to eukaryotes or the Serial Endosymbiosis Theorem [35]. The two basic components of

such a symbiotic model are the host (organism/ compartment) and the symbiont(s).

The relationship between host and symbiont is explicitly multi-level. From a devel-

opmental perspective we assume that the higher-level host is constructed through the

aggregation of different lower-level symbionts [36]. Implicit in this process is recog-

nition that the ecology of the environment promotes useful diversity in symbionts to

5

6

warrant their utility as (complementary) building blocks.

In distinguishing explicitly between a higher-level (host) and lower-level (sym-

biont) entities we also recognize that selection is now a multi-level concept. [41]

distinguishes between two forms for multi-level selection (MLS) that are applicable

to symbiotic models of inheritance. MLS1 defines fitness of a host as the average of

the symbiont membership. Conversely, MLS2 measures fitness as that defined by the

host behaviour alone. Okasha goes on to make the case for assuming MLS1 during a

developmental phase prior to the appearance of symbiotic (group) relationships, but

adopts MLS2 once hosts (cf., groups) exist. In this work we explicitly adopt MLS2

from the outset as our interest lies in evolving hierarchies of programs for increas-

ingly abstract decision making, where host policies at every stage of the hierarchy are

defined by the group behaviour of contributing symbionts.

From the perspective of evolutionary computation symbionts define the minimum

inheritable ‘building block’ and hosts identify subsets of symbionts for possible co-

existence [19]. Specifically, with reference to the Symbiotic Bid-Based architecture

for GP adopted in this work [31], symbionts explicitly separate context and action.

Actions are discrete, with each symbiont associated with a single (scalar) action. As

such, the set of candidate actions can be defined by the task domain or in terms of

previously evolved hosts (meta actions). Such a property has potential utility in a

wide range of temporal sequence learning tasks in which it is very difficult to construct

policies efficiently when limited to (atomic) actions of the task alone.

The purview of this work is to relate the SBB framework for constructing modular

organisms under GP to incremental evolution. Specifically, the hierarchical formula-

tion of SBB enables meta actions learned in one ecology to be explicitly redeployed

under the next, but developmental variation between cycles of evolution has not yet

been explored. The developmental diversity employed here synchronizes variation of

the ecology with complexification of the SBB organism.

2.2 Hierarchical Models

Various generic architectures have been suggested for composing explicitly hierarchi-

cal solutions. The subsumption architecture of Rodney Brooks is one of the most

widely acknowledged [5]. Such an architecture begins with general policies at the

7

‘lowest level’ after which additional levels add corrections / exceptions to the lower

level policies. In addition, Brooks made explicit the requirement for a policy to be

developed through a process of direct ’interaction’ with the target environment. Do-

main knowledge is typically utilized to provide the necessary decomposition of the task

into an appropriate hierarchy of controllers. For example, a recent neuro-evolutionary

approach for helicopter control assumed three controllers (guidance, pitch and roll),

with each controller receiving specific combinations of state variables and the guidance

controller feeding the pitch and roll controllers [12].

Layered learning frameworks, as mentioned in the introduction, take a similar

approach in that prior knowledge is employed to decompose a task into a series of

sub-tasks or independent training scenarios [54]. In our research we refer to any

previously learned policy as a meta action. Providing the capability to describe a

new policy in terms of a series of references to (previously identified) meta actions

represents one avenue to scaling (value function) reinforcement algorithms to more

challenging tasks [2] i.e., the decision maker only needs to determine the sequence of

meta action deployment as opposed to atomic action deployment.

In the specific case of Genetic Programming the metaphor that results in solutions

taking an explicitly hierarchical structure is that of run-time libraries. The concept

of run-time libraries (RTL) recognizes that although a particular parameterization

of a GP run might be unsuccessful, the content of the population may contain sub-

routines of utility to a new run of GP. Thus, as opposed to just ignoring material

from the unsuccessful run and starting from scratch, it is retained as a ‘library’. The

new run is augmented with an instruction set that supports references to individuals

from the library. No further adaptation takes place in the RTL. Moreover, various

authors have recognized that heuristics are often necessary to force the code under

evolution to reference that in the RTL [45, 21, 30]; where such heuristics might have

a negative impact on the resulting solutions. Conversely, modularity / code reuse as

introduced by Automatically Defined Functions (ADF) attempt to evolve sub- rou-

tines and calling code at the same time [27]. As a consequence the search space is

potentially that much larger; whereas the RTL approach first evolves the library, then

attempts to integrate the library into the calling code. A recent development assumes

a coevolutionary methodology in which tagging – sets of scalar references – are used

8

to identify candidate code modules dynamically [49]. Unlike ADFs, tagging results

in a behavioural approach to code reuse, the number of code modules is therefore a

dynamic property of evolution. However, it is also clear that tagging itself is sensitive

to the specific GP representation employed. Thus much like ADFs, depending on the

task, tagging may or may not result in an improvement [50]. Conversely, the origi-

nal study employed an advanced form of GP based on a linear representation [49].

This meant that it was much easier to deal with exceptions caused by, for example,

calls to modules that do not exist or provide more elegant schemes for dealing with

non-existent return variables.

In the case of the proposed approach we evolve hierarchical policies layer-by-layer.

Only the highest layer undergoes adaptation, all previous layers remain fixed, thus

a previous layer (of meta actions) represents a RTL. However, the number of meta

actions utilized by each host policy is a function of evolution. The resulting framework

therefore builds on the RTL metaphor rather than that of ADFs or subroutines [22].

2.3 On External Sources of Developmental Diversity

In the following we will assume that coevolutionary frameworks are capable of ben-

efiting from at least three basic external – that is environmental – sources of devel-

opmental diversity: goal diversity, behavioural diversity, and task diversity. This is

in addition to the diversity that is implicit in assuming a population based approach

to machine learning [43]. Thus, diversity in evolutionary computation can be viewed

from at least three perspectives: 1) as maintained from a genotypic perspective, 2)

as occurs during the mapping from genotype to phenotype, or; 3) by external sources

of variation acting on the phenotype. This research concentrates on the utility of

the latter ’external’ developmental sources of variation. Conversely, only very specific

forms of GP support variation of the geno–phenotypic mapping (e.g., [61, 42])

In the following we recognize three forms of (external) diversity: goal diversity,

behavioural diversity, and task diversity. Goal diversity might include variation

in what fitness rewards during evolution as in incremental evolution (e.g., scaffolding

[63], shaping [13] or chaining [3]). A suitable schedule (priori knowledge) for adapting

(specifying) the fitness function would be typically necessary. This thesis will begin by

assuming a single goal for each task and then introduce goal diversity for emphasizing

9

the contribution of policy specialists. Behavioural diversity characterizes to what

extent a population is able to maintain a diverse set of measurably different behaviours

for the same state of the task. [9] noted two mechanisms in support of behavioural

diversity: direct or indirect. Direct schemes might include variation operators (e.g.,

higher rates of mutation), selection operators (e.g., changed fitness selection [48])

or novelty as an objective [29]. Indirect schemes might include fitness sharing [46,

51], tournaments [10] or Pareto archiving [11]. The SBB framework utilized for this

research assumes fitness sharing as the default approach to maintaining behavioural

diversity between candidate solutions. Task diversity recognizes that if performance

is evaluated under a single initialization of the environment, then the resulting policies

are not likely to see a sufficiently rich set of contexts from the task domain to provide

‘robust’ solutions [28]. In this work we assume a tabula rasa sampling of initial

states from the task environment in order to concentrate on the contribution from

hierarchical policies. However, several forms of competitive coevolution also lend

themselves to the sampling of ‘good’ initial configurations of training scenarios in

order to minimize the impact of factors such as disengagement [8]. We note, however,

that when real-valued performance functions are employed (as in the work reported

here), then competitive coevolutionary mechanisms might not be beneficial or may

even be detrimental, e.g. Chapter 6 of [31].

2.4 Discussion

As task domains become more difficult, both value function and policy search paradigms

make use of some form of a priori task decomposition. Thus, a priori sub-goals are

frequently utilized in value function methods against which meta actions are first

independently developed [2]. Assuming success in solving each sub-task, then an a

priori scheme for deploying solutions to each sub-task, such as a decision tree, might

be adopted for solving a more generic task [60] . The drawback is that a specific task

decomposition has to be assumed, whereas the SBB framework has the potential to

directly build a ’decision tree’ through multiple cycles of evolution. In this work we

demonstrate the advantages of developmental diversity when developing meta actions

in hierarchical symbiotic policy search.

In order to make this case, we compare hierarchical and non-hierarchical SBB both

10

with and without developmental diversity. This represents a reasonable scope for

four alternate configurations having similar complexity and computational overhead.

Julian Togelius [57] makes a similar comparison with regard to an evolved neural

network controller. In the process he outlines a naming scheme which we adopt for

this study.

Monolithic evolution will refer to configurations where a single-cycle of evolu-

tion (no hierarchy) is performed with the same developmental conditions throughout

evolution. Thus, there is no goal diversity, support for behavioural diversity remains

unchanged (the fitness sharing assumption of SBB) and task diversity assumes a tab-

ula rasa sampling (Section 2.3). This is also sometimes referred to as ’direct’ evolution,

and mirrors the classical formulation for genetic programming in which a population

of individuals is evolved relative to a single, common objective. ’Monolithic’ does

not describe the structure of the SBB framework, which is inherently modular in ev-

ery configuration, as multiple distinct components (symbionts and hosts) are always

present.

Incremental evolution again refers to single-cycle experiments (no hierarchical

transitions) but now goal diversity is introduced at a fixed point during the course of

evolution. Incremental evolution is commonly used to slowly, or incrementally, scale

learning agents towards increasingly complex tasks as in [58, 18, 3, 12]. This process

usually begins by presenting agents with a simple learning task and then increasing

complexity and/or difficulty over time as the learners become proficient enough at

each stage.

Modularized evolution in this work refers to SBB with hierarchical model build-

ing enabled, but without goal diversity. Thus, the developmental conditions remain

as in the case of the Monolithic experiments. This is similar in principal to work

involving robot controllers comprised of multiple neural networks [40, 6] and, from a

genetic programming perspective, to subtree encapsulation [45] and ADFs [27].

Finally, Layered evolution is the the term we use when each cycle of evolution in

hierarchical SBB is associated with a different goal. Thus, the developmental condi-

tions remain as in the case of the Incremental experiments. This has been explored

widely from the perspective of neuroevolution in an attempt to scale temporal se-

quence learning to increasingly complex tasks. [57] used layered (neuro)evolution to

11

develop a controller for a simulated robot that learns which light source to approach in

an environment with obstacles. It was shown that evolving layers one at a time while

incrementally introducing new obstacles significantly improved learning as compared

to other models of evolution. As mentioned in the introduction, layered evolution has

also been used to scale neuroevolution towards more complex tasks such as keepaway

soccer [60, 54], requiring a significant amount of human intervention.

This research takes inspiration from the works mentioned in this section and makes

a comparison of various evolutionary models within the context of symbiotic policy

search with GP. The symbiotic bid-based (SBB) framework for GP represents the

starting point for policy search adopted in this work (Chapter 3 summarizes SBB).

Hierarchical model building represents a central component of SBB. The process by

which policies are constructed with an explicitly hierarchical structure is through

conducting independent cycles of evolution. Thus, from the perspective of previous

GP research this is closer to the reuse of previously evolved solutions than code mod-

ularity, as in Koza’s ADFs or tagging. The general question asked by this research

is to what extent developmental diversity plays a role in constructing better policies

under temporal sequence learning tasks. However, of the three forms of developmen-

tal diversity, SBB already assumes a specific mechanism for enforcing behavioural

diversity, care of competitive fitness sharing. Likewise, as reviewed in Section 2.3 a

tabula rasa approach to task diversity will also be assumed. The specific focus of this

thesis will therefore lie in the role of goal diversity in facilitating the construction of

better SBB policies of an explicitly hierarchical structure. Unlike related research in

Layered Learning, a specific prior task decomposition is not assumed, although there

is no reason why such information could not be utilized. The natural trade off would

be that constraints imposed by a prior task decomposition may preclude the identi-

fication of more optimal solutions; a result recently identified relative to constraints

applied to A* under the Acrobot handstand task [14]. Conversely, not enforcing a

prior task decomposition (constraints) may render it impossible to identify solutions

solely through machine learning alone.

Chapter 3

Hierarchical Symbiotic Policy Search and Cycles of Evolution

In this section we review the generic architecture for SBB and highlight the key struc-

tural components that provide the basis for a simple ecology. SBB explicitly enforces

symbiosis by separating host and symbiont into independent populations, Figure 3.1.

Within a cycle of evolution (conducted over a fixed number of generations), each

host represents a candidate solution in the form of a group of symbionts existing

independently in the symbiont population. Performance is measured relative to the

interaction between a subset of initializations from the task domain (points) and host.

A breeder model of evolution is assumed, thus a fixed number of hosts and points

are deleted/ introduced at each generation. Different cycles of point–host–symbiont

development build new levels of complexity to the overall organism.

3.1 Development Within Cycles of Evolution

3.1.1 Symbiont Population

Members of the symbiont population assume a Bid-Based GP representation [33].

As such, each symbiont, sym, is represented as a tuple 〈a, p〉; where a is an action

as selected from the set of atomic actions associated with the task domain and p is

the corresponding symbiont’s program. The program defines a context for deploying

its action. Execution of a symbiont’s program results in a corresponding real-valued

outcome in the output register, R[0], or the ‘bid’. The linear representation [4] leads

to programs being defined by a simple register addressing language of the form: 1)

Two argument instructions, or R[x] ← R[x] < op2 > R[y]; op2 ∈ {+,−,÷,×}; 2)

Single argument instructions, or R[x] ←< op1 > (R[y]); op1 ∈ {cos, ln, exp}; 3) A

conditional statement of the form “IF (R[x] < R[y]) THEN (R[x] ← −R[x]). In

addition, R[y] can be either a register reference or index a state variable.

12

13

!"#$%&"&'()*"+% ,-./0"+$%&"&'()*"+%1"0+$%&"&'()*"+%

23"("403)(%
5+$67)3*"+%

,-./0"*3%
8"69"('*"+%

!"#"$%&'(
:#$%8-3(6%";%
29"('*"+%

!"#"$%)'(
<+=%8-3(6%";%%
29"('*"+%

!<%

!:%

>:%

><%

,-./0"+$#%
)##'.6%*+,-./(

)3*"+#%

,-./0"+$#%
)##'.6%-"+*(

)3*"+#%?!:@%!<A%

29"('*"+)7-%B7)+#0*"+%

Figure 3.1: Hierarchical symbiosis through cycles of evolution. A cycle of evolution
begins at level-0 with the ecology defining an interaction between point population
and host population, where fitness is evaluated. Hosts identify a group of symbionts
defined in the symbiont population. Symbionts in level-0 are limited to the atomic
actions of the task domain. During the next cycle of evolution (level-1) the process
repeats under a new point–host–symbiont partnership. This time symbionts assume
actions defined by previously evolved hosts. For simplicity, host–symbionts developed
during previous cycles of evolution remain fixed.

14

3.1.2 Host Population

Symbionts are explicitly limited to deploying a single action. Thus a host needs to

identify relevant subsets of symbionts that are capable of collaborating. To do so,

each host indexes a subset [2, ..., ω] of the symbionts currently existing in the symbiont

population. Relative to a single host, hi, fitness evaluation is conducted against a set

of initial configurations of the task domain, as defined by individuals from the point

population, pj. Such a process has the following form:

1. Present the state variables describing the current state of the task domain, or

~s(ts);

2. ∀sym ∈ hi, identify the corresponding symbiont bid, or sym(bid(~s(ts)));

3. Identify the ‘winning’ symbiont as that with the maximum bid from host hi or

sym∗ = argsym∈hi
max[sym(bid(~s(ts)))];

4. Apply the action from the winning symbiont to the task ecology and update

the state variables accordingly.

Symbionts therefore use bidding to establish the context for deploying their re-

spective action. The number of symbionts per host and ‘mix’ of actions appearing

in a host are both an artifact of the evolutionary cycle. We assume episodic style

reinforcement learning tasks, thus at some point a terminal condition is encountered.

The relative uniqueness of each hosts’s performance across training cases will be dis-

counted under competitive fitness sharing (Section 3.2.2). This diversity maintenance

is a key requirement in supporting symbiotic complexification through resampling of

previously evolved traits ([36, 44, 53]).

3.1.3 Point Population

The role of the point population is to sample initial conditions from the task with suf-

ficient diversity to provide variation in the behaviours of hosts as measured through

the reward function. A tabula rasa approach is assumed, where this is generally

taken to imply minimal information regarding the sampling of an initial task config-

uration, ~s(t = 0). The combination of point population and reward function define

the environmental component of the ecology.

15

3.2 Selection and Replacement

3.2.1 Point Population

At each generation Pgap points are removed with uniform probability and a corre-

sponding number of new points introduced. The process for generating points is

naturally a function of the task domains and will be detailed once these have been

defined (Sections 4.1.4 and 4.2.4).

3.2.2 Host Population

As per the point population, a fixed number of hosts, Hgap are removed at each gen-

eration. Host removal is applied deterministically with the worst Hgap hosts targeted

for removal at each generation. A competitive fitness sharing formulation [46] main-

tains diversity in the host population. Thus shared fitness, si of host hi takes the

form:

si =
∑
k

(
G(hi, pk)∑
j G(hj, pk)

)3

(3.1)

where G(hi, pk) is the task dependent reward defining the quality of policy hi on test

point pk (see Equations 4.1, 4.2, and 5.1).

Naturally, deleting the worst Hgap hosts may result in some symbionts no longer

appearing in a host. This is taken to imply that such symbionts are noncompetitive,

thus they are also deleted. The size of the symbiont population will therefore vary

while the host population size remains fixed.

3.3 Variation Operators

Symbiosis is an explicitly hierarchical coevolutionary process. From a exploration/

exploitation perspective it is important not to disrupt ‘good’ symbiont combinations

while simultaneously continuing to search for better hosts. Moreover, variation needs

to be maintained at the symbiont level without disrupting symbionts that are already

effective. The process for maintaining exploration (diversity) without unduly disrupt-

ing the better host–symbiont relationships therefore follows an explicitly hierarchical

formulation. Following the removal of Hgap hosts, the remaining Hsize−Hgap hosts are

16

sampled for cloning with uniform probability. The resulting clones have both their

host and symbiont content modified. As such, it is ensured that new symbionts are

only associated with new hosts and therefore no disruption of previous host behaviour

takes place. For a detailed presentation of this process see [31, 32].

3.4 Cycles of Evolution and Hierarchical Development

The above description summarizes the process as applied to a single ‘level’ of symbio-

sis, or lower point–host–symbiont interaction (level 0 of Figure 3.1). The division of

labour is therefore purely lateral, both with respect to host content (symbiont com-

plement) and across the host population (cf, fitness sharing). However, after evolving

for a fixed number of generations, the content of the host–symbiont population pair

might not provide any outright solutions. Rather than begin evolution afresh from

a completely new host–symbiont parameterization/ initialization, the current host

population is considered to represent a set of candidate behaviours (meta actions)

for constructing more complex organisms or a hierarchical division of labour. At this

point the populations of meta actions are functionally diverse care of the competi-

tive effect of fitness sharing, thus recombination of the current behaviours under new

contexts has the potential to lead to new capabilities.

To do so, hosts previously evolved at level ‘l’ represent the spectrum of actions that

a new symbiont population at level ‘l + 1’ may index. Thus, at level l = 0 symbiont

actions are always defined by the task domain, or ‘atomic actions.’ Thereafter, for

symbionts at level l > 0 the action set is the set of all hosts from level l−1 or a ∈ {H l}.
Naturally, the subset of actions utilized by each host is a function of policy search.

For simplicity we assume that evolution at each level is an independent process or

cycle. The evaluation of host i at level l or (hli) now has the following hierarchical

form:

1. Present the state variables describing the current state of the task domain, or

~s(ts);

2. ∀syml ∈ hli, identify the corresponding level l symbiont bid, or syml(bid(~s(ts));

3. Identify the ‘winning’ symbiont for host hli, or sym∗ = argsyml∈hl
i
max[syml(bid(~s(ts)))];

17

4. IF l == 0 THEN Step (5) ELSE

(a) Descend a host–symbiont level: l = l − 1

(b) Look up the new current host as identified by the action of the ‘winning’

symbiont sym∗ as returned by Step 3: hli ← sym∗(a);

(c) RETURN to Step (2);

5. Apply the atomic action from the winning symbiont to the task domain and

update any state variables accordingly: ~s(ts + 1)← ecology(ts + 1)← sym∗(a).

Evaluation of a policy is thus top-down while construction of hierarchical policies

is a bottom-up process. Each level in the hierarchy is the product of a distinct

cycle of evolution in which a diverse collection of behaviours is developed. Only

the lowest level hosts retain symbionts with actions specified in terms of the task

domain’s atomic actions. After this cycle of evolution, the set of candidate actions

for new symbionts is defined in terms of indexes to the host–symbionts evolved at the

previous cycle of evolution (cf., meta actions). Variation operators only act on the

point–host–symbiont populations in the new cycle of evolution, or level-1 in Figure 3.

Given this capability, it is natural to ask whether, by varying the ecological reward

at each level (specifically goal diversity, Section 2.3), can we improve the resulting

generalization of the overall policy?

Chapter 4

Task Domains

Two control style task domains are considered for benchmarking purposes: pinball

and truck reversal. In both cases it is necessary to develop policies for maneuvering

in a non-linear state space using orientation and spatial control, establishing which

to prioritize when. Agents are required to make multiple decisions, potentially in

the hundreds, before the final outcome is known. In the following we summarize the

properties of each task domain, introduce findings from previous research, as well as

define reward function and the routines used for initializing the point population.

4.1 Pinball

4.1.1 Task Domain

The pinball domain was recently proposed as a more demanding benchmark than the

Acrobot (height) or mountain car tasks frequently employed in the evaluation of RL

algorithms [23]. Specifically, the pinball domain assumes continuous state variables

and possesses multiple discontinuities and extended dynamic control characteristics.

The goal is to provide a policy for navigating a maze. However, it is actually useful to

collide with walls; in this case in order to change direction. The atomic actions either

add or subtract energy to a ball (or make no change) whereas the ball is subject to a

drag coefficient (0.995). Unlike the original formulation of the task we are interested in

solving for a uniform distribution of start points – thus demonstrating generalization

– relative to a difficult maze configuration from the original study, Figure 4.1. The

task domain itself is available as a Java distribution.1

1http://www-all.cs.umass.edu/˜gdk/pinball/

18

19

Figure 4.1: Pinball task domain. Large black circle (top centre) represents the sin-
gle (global) exit location. Smaller grey circles represent the set of 500 initial start
conditions over which post training generalization is evaluated.

4.1.2 Previous Results

Konidaris et al. has employed the pinball task in multiple demonstrations of skill-

chaining (a form of task decomposition) for value function approximation [23, 24].

In short, the task is known to benefit from being able to apply different policies for

different regions of the state–action space, hence a potentially informative benchmark

for the modularized symbiotic framework explored in this work.

4.1.3 Atomic Action and State Variables

Cartesian co-ordinates provide the basis for a four dimensional state space describing

both position and velocity or {x, y, ẋ, ẏ}, Table 4.1. Atomic actions add, decrement,

or make no change to the velocity of the pinball or a ∈ {0,±ẋ,±ẏ}, Table 4.1.

Developmental Diversity

During the construction of host–symbiont policies it will be possible to vary the prop-

erties of the environment at different points of evolution (see the concluding paragraph

20

of Section 2.3) cf., goal diversity. Thus, rather than always evaluate against the sin-

gle ‘global’ exit we let the point population define pairs of pinball locations during

the first cycle of evolution i.e., both initial and exit locations. The insight guiding

this is that strong specialists that learn how to transition between different local

regions might develop during the initial evolutionary phase (first part of Incremental

evolution, first cycle of Layered evolution). However, policies are ultimately built

against the single exit location alone in the final phase of evolution. No knowledge

is necessary to establish what the best locations are for (local) pinball start or finish

locations during the first cycle; this is merely a function of the stochastic process for

point initialization below, section 4.1.4.

4.1.4 Point Population Routines

The point population specifies the set of initial conditions for the pinball. Fitness

evaluation is conducted against the entire content of the point population. Generating

Pgap new points and creating the initial point population will assume the following

routine:

1. Select x and y defining the initial location for the ball (and when applicable the

exit location) with uniform probability over the range of the task domain [0, 1];

2. Test the validity of the point(s) i.e., must not be within a wall object or within

the global goal, Figure 4.1. Return to Step (1) if this test fails;

3. When applicable, test the candidate exit location to verify that it is not already

touching the ball or corresponds to the global goal location.

4. Initial ball velocity is zero or ẋ = ẏ = 0.

4.1.5 Reward Function

Fitness evaluation applies a competitive fitness sharing function (Equation 3.1, Sec-

tion 3.2.2) to characterize the overall utility of each host. Specifically, each host, hi,

is evaluated against each point, pk. A domain specific characterization of the reward

collected over an episode G(hi, pk) is now required. The pinball domain defines an

instantaneous reward, r(ts), of −1(−5) for each use of the no change (any other)

21

action respectively and a ‘goal’ reward τ of 10, 000 ([23]). The latter is used here to

represent the exploratory ‘budget’ for the evaluation of each host over each point in

the pinball domain. A raw episodic reward, g(hi, pk), is therefore defined in terms of

the accumulated instantaneous reward:
∑
ts=0 r(ts); thus, g(hi, pk) < 0.

However, we also apply a dynamic limit on the amount of time a host spends on

any one episode. Let us assume that after completing each episode a corresponding

accumulated reward is estimated and normalized relative to τ . Thus, relative to

point evaluation k : τ̂(hi, k) = τ + 1
k

∑
j=0,...,k−1 g(hi, pk) i.e., τ̂(·) is always positive.

Thus as long as the difference between the remaining evaluation budget and episode

specific reward is positive, the evaluation of host hi against point pk continues. Hosts

that perform well on some subset of points will thus be allowed incrementally more

time to explore in each episode. The reward collected over an episode can now be

characterized as follows:

IF (τ̂(hi, k) + g(hi, pk)) > 0

THEN G(hi, pk)← 1 + g(hi,pk)
τ

ELSE G(hi, pk)← 0

(4.1)

where the assumption is made that the budget for the first episode of host hi as-

sumes a value of τ̂(hi, 0) = 500, thereafter the estimated values from each completed

episode(s) are employed. The motivation for this exploratory budget stems from

the relatively long compute times required when, without the dynamic budget, each

episode potentially consists of up to 10, 000 time steps.

4.1.6 Summary

The pinball environment follows that established by [23]. State variables and atomic

actions are summarized in Table 4.1. [23] conducted training relative to two start

locations for the pinball and measured performance relative to progress made on

these two configurations during training only. They did not report performance w.r.t.

independent test configurations. We conduct post training evaluation against 500

initial pinball locations and the single common goal location, Figure 4.1. Naturally,

there is no guarantee that the test point initializations will be encountered during

training.

22

Table 4.1: Task Domain Parameterizations.
Pinball domain

Total host evaluation budget (τ) 10, 000
State variables {x, y, ẋ, ẏ}

Atomic actions (a) {0,±ẋ,±ẏ}
Truck Reversal domain

Distance traveled per time step 1.0m
Length of Cab 6.0m
Length of Semi 14.0m

Max episodic simulation steps (Dmax) 600
State variables {x, y, θc, θs}

Atomic actions (a) {0◦,±30◦}

4.2 Truck Reversal

4.2.1 Task Domain

Truck Reversal is a complex, non-linear control task in which the agent must back

a semi-cab up to a loading dock. The semi–cab is reversed at a fixed velocity thus

only the policy for steering needs to be defined [1]. An additional wall obstacle

is introduced in this work as per [31]. The introduction of the wall makes the task

significantly more difficult than without as there are no sensors for obstacle detection.

Thus, relative to the original formulation of the problem the following additional

properties exist:

1. A wall obstacle is present with upper-right corner at (45, 50) and lower-right

corner at (55,−50). Thus, steering strategies that are effective on one side of

the wall will not generalize to the other side of the wall. In addition to the initial

direction of the semi–cab, the wall therefore renders the problem deceptive;

2. Constraints are enforced on illegal behaviours such as jackknifing and colliding

with obstacles and;

3. Training configurations are defined stochastically by the content of the point

population (c.f., the tabula rasa assumption).

23

4.2.2 Previous Results

[31] demonstrated that SBB is capable of building effective policies for the ’difficult’

configuration of truck reversal task under Monolithic and Modular evolution with the

standard reward function derived from [26]. Modular evolution, specifically 2-level

hierarchical SBB, proved beneficial for this task. Earlier results are limited to the

original (obstacle free) formulation of the truck reversal problem [39]. An emphasis

was placed on demonstrating the potential for problem decomposition [17, 20], albeit

with hand designed task decompositions. Koza evolved solutions relative to 8 hand

crafted semi–cab configurations and did not report performance under an independent

set of test conditions [26]. We verify that the solution from Koza was sufficient for

solving the task without the wall, but failed entirely when the object was included.

Even ADFs, as reported on in (A) fail to provide solutions to anything but the

simplest of test points under the ’difficult’ configuration. Evolving neural networks

has also been considered, although again this appears to have taken place relative to

hand designed training scenarios [47]. In this work we introduce a new, specialized

fitness function for the truck reversal domain and explore the role of developmental

diversity within SBB.

4.2.3 Atomic Action and State Variables

During evolution the point population specifies starting configurations of the semi–

cab; whereas the host–symbionts assume responsibility for providing the steering

behaviour to return the semi–cab back to the origin i.e., a single goal state under a

constant rate of reverse [1]. The state variables take the form of cartesian coordinates

identifying the end of the semi, (x, y), the angle of the cab, θc, and the semi, θs (Figure

4.2). As such, this is similar to the information provided by a GPS; where the goal

is to reverse the semi–cab back to within some tolerance of the origin, but without

any local information. The single atomic action a that each symbiont at level 0 may

assume were selected from the set {0◦,±30◦}, and a training episode was terminated

when: (1) the back of the semi crossed the y-axis, (2) the semi–cab jackknifed, (3)

the semi–cab could not return to the origin within some maximum number of time

24

a

!C

!S

+x

+y

(x, y)

(0, 0)

Figure 4.2: Truck reversal state variables. The controller is supplied with cartesian
coordinates denoting the end of the semi, (x, y), the angle of the cab, θc, and the semi,
θs. Not shown is the global ‘field’ in which the semi–cab may begin or the obstacle
in the middle of the field (see Figure 4.3).

steps 2, or (4) the back of the semi collided with the wall.

4.2.4 Point Population Routines

The process for point initialization and generation takes the form of a simple stochas-

tic model, as follows:

1. Select x and y-coordinates denoting the end of the semi with uniform p.d.f.

under the corresponding range limits of (0, 100) and (−100, 100);

2. Should the (x, y)-coordinate fall within the boundary of the wall obstacle, repeat

step 1;

3. Select θs (in radians) with uniform p.d.f. under the interval (−π, π]; and,

4. Let θc = θs.

4.2.5 Reward Function

The SBB algorithm as described defines fitness under a generic model of fitness sharing

(Equation 3.1, Section 3.2.2), which then requires a domain specific episodic reward

2Enforced by setting a limit of Dmax where this is estimated as: steps used so far plus steps ‘as
the crow flies’ from the current location to the origin.

25

function, G(·, ·). As per previous approaches to the truck reversal task, a real-valued

reward function is assumed. Thus, on reaching one of the stop conditions as identified

in Section 4.2.3, the corresponding final values for x, y, and θs are used to provide the

reward function:

G(hi, pk) =
1√

x2 + y2 + θ2
s + 1

(4.2)

Naturally, host trajectories that result in final configurations closer to the overall goal

state receive a larger reward. However, for the special case of a jackknife condition,

the reward is always zero. This avoids preferring strategies that jackknife near the

origin.

4.2.6 Summary

This work adopts the original formulation of the truck reversal domain in terms of the

dynamics of the semi–cab ([39]) and adds the wall obstacle. The composition of the

training scenarios is completely determined by the content of the point population,

whereas post training performance will be assessed in terms of 1 000 semi–cab con-

figurations, Figure 4.3; there is naturally no guarantee that such configurations will

be encountered during training. The task parameterization is summarized in Table

4.1.

4.3 Parameterization

In the following we summarize a common parameterization for SBB as well as in-

troduce our approach to establishing a baseline for the relative difficulty of the task

domains. In the latter case we employ the widely utilized SARSA value function

approximation approach to reinforcement learning.

4.3.1 SBB Parameterization

Parameterization of SBB is summarized in Table 4.2. Needless to say, no claims are

made regarding the optimality of these parameters. Indeed most of the parameter-

ization is carried over from that previously established for supervised learning (no

capacity for constructing policy trees) [34, 15]. Two parameters were varied between

26

0 20 40 60 80 100

−
10

0
−

50
0

50
10

0

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Figure 4.3: Truck Reversal Task: Summary of the 1 000 initial conditions for post
training testing evaluation of solutions from the Truck Reversal domain. The goal is to
return the truck to the origin (0, 0) without triggering a fault condition. The rectangle
at the centre of the world represents the wall obstacle. The ‘pinhead’ location denotes
the end of the semi.

tasks. Under the pinball task a value of 10 was sufficient for the maximum number

of symbionts per host (ω) to avoid the upper bound being reached whereas this was

increased to 15 under truck reversal. A smaller number of generations (tmax) was

sufficient in the pinball experiments in order to save time without compromising the

goal of our experiments. In total each experiment is conducted over 60 independent

runs.

4.3.2 SARSA Value Function Approximation

The focus of this research lies in policy search as opposed to value function approx-

imation. However, we also include baseline results for each task domain using the

SARSA value function method with an ε-greedy stochastic component [55] under a

recently proposed Fourier basis [25] and the widely utilized approach of tile coding. In

both cases the source code is available as part of the RL-glue project.3 The principle

motivation for including a value function approximation method here is to establish

3http://glue.rl-community.org

27

Table 4.2: Parameterization of Host and Symbiont populations. tmax reflects the
generation limit per layer. As per Linear GP, a fixed number of general purpose
registers are assumed (numRegisters) and variable length programs subject to a
max. instruction count (maxProgSize).

Host (solution) population
Parameter Value Parameter Value

tmax 1 000 (105) ω 10 (15)
Psize, Hsize 120 Pgap, Hgap 20, 60

pmd 0.7 pma 0.7
pmm 0.2 pmn 0.1

Symbiont (program) population
numRegisters 8 maxProgSize 48
pdelete, padd 0.5 pmutate, pswap 1.0

Table 4.3: Parameterization for SARSA value function approximation.
Parameter Pinball task Truck reversal task

learning rate (α) 0.001 0.25
eligibility trace (γ) 1.0 1.0
discount factor (λ) 0.9 0.25
exploration rate (ε) 0.01 0.05

a baseline for generalization under each task. In the case of the pinball task we could

make direct reference to a previously established parameterization for the Fourier

basis of order 4 [23]. Under the truck reversal domain extensive benchmarking was

necessary to identify the relevant learning parameters, eventually resulting in a pref-

erence for the tile coding under this task. The resulting SARSA learning parameters

are summarized in Table 4.3.

In the case of the truck reversal task it is also necessary to define the reward as

provided by the environment. A considerable amount of experimentation was neces-

sary in order to provide acceptable results. Specifically, best results were achieved

with a per time step reward of 0 (as opposed to −1 as in the pinball task) with a cost

of −600 encountered should a jackknifing condition occur. The end of episode reward

took the form of: C −
√
x2 + y2 + θ2

s + 1 and is therefore similar to that employed

for SBB (see Equation 4.2). The best performance was obtained when the constant

C took the value of zero (as opposed to a large positive value).

Chapter 5

Empirical Evaluation

5.1 Standard Evaluation Practices

SBB evolves a population of policies during training. Thus, in order to decide which

individual from a run to consider the ‘champion’ for the test evaluation, a post train-

ing validation set is utilized. Such a set is established using the point initialization

routine to create validation points. The individual with the most solutions across

the validation set establishes the representative ’champion’ behaviour from each run.

An independent test set is created in the same way for assessing solution robustness/

generalization, complexity, and other post-training characteristics of interest. We use

500 validation points for Pinball and 1000 for the Truck reversal task. Given the

number of degrees of freedom in the tasks, there is little likelihood in test cases being

encountered during training or validation and there is no bias in sampling cases that

are later encountered during test. Except where noted, all results are analyzed with

respect to 60 independent trials in order to ensure statistical significance.

5.2 Pinball Domain

5.2.1 Evaluation Methodology

A total of four primary experiments will be considered:

Case 1 – Single level, common goal (Monolithic evolution): SBB only

builds a single level, thus no capacity exists for defining hierarchical policies. Relative

to the parameterization of Table 4.2, the symbiont per host and program length limits

are doubled (ω = 30, maxProgSize = 96). Members of the point population specify a

unique start position relative to the common goal, Figure 4.1.

Case 2 – Single level, goal diversity (Incremental evolution): SBB again

builds a single level with parameterization as in Case 1. This time developmental

diversity is introduced by altering the task half way through evolution. For the first

28

29

105 generations, members of the point population define goal locations as well as

start conditions for the pinball. Evolution is then conducted relative to the common

‘global’ goal for the last 105 generations, Figure 4.1.

Case 3 – Two level, common goal (Modularized evolution): This scenario

introduces hierarchical policy discovery (two levels), in which all training episodes are

conducted with respect to the single ‘global’ goal or maze exit, Figure 4.1.

Case 4 – Two level, independent goals (Layered evolution): Hierarchical

policy discovery again appears (two levels), but this time developmental diversity is

introduced as level 0 lets the point population define goal locations as well as start

conditions for the pinball. Evolution at level 1 is again conducted relative to the

common ‘global’ goal.

5.2.2 Generalization Tests

500 initial pinball locations (sampled with uniform probability), or the small grey balls

in Figure 4.1, are used to assess post training performance of a single ‘champion’

host from each trial. Naturally, the single global goal remains the same under all

test conditions i.e., find a path to the ‘exit’ hole at the top centre of the maze.

A violin plot summarizes the resulting distribution (over 60 trials) for each of the

above four SBB configurations and SARSA, Figure 5.1. When more than one cycle

of evolution is present, such as in modular and layered evolution, only the champion

at the highest level is considered. The wide variation in the distribution of SARSA

solutions illustrates that the task is indeed nontrivial. All SBB solutions demonstrated

better consistency.

The single level, monolithic experiment effectively establishes a median base line in

which 50 test cases cannot be solved (Monolithic in Figure 5.1). Introducing develop-

mental diversity within a single cycle of evolution (Incremental in Figure 5.1) results

in statistically significant improvement in generalization performance over Monolithic

evolution. By letting points specify arbitrary goal locations in the early stage of evo-

lution we are forcing agents to first learn partial solutions, or specialist behaviours,

prior to introducing the ultimate task goal and thus rewarding generalization. This

ordering of specialization followed by generalization is one aspect of this work that

distinguishes it from other approaches to incremental evolution [3]. Another major

30

0

100

200

300

400

500

●

●

●
●
●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

400

500

M
on

oli
th

ic

In
cr

em
en

ta
l

Sar
sa

M
od

ula
r (

m
et

a)

M
od

ula
r

La
ye

re
d

(m
et

a)

La
ye

re
d

nu
m

be
r

of
 te

st
 c

as
es

 s
ol

ve
d

level 0 level 1

Figure 5.1: Pinball Task: Generalization performance or count of number of test
points solved by the champion host (y-axis) at each level. 500 test points in total.
x -axis labels correspond to 4 different styles of SBB evolution. Distributions labeled
’X(meta)’ describe the cumulative number of test cases solved by all meta actions
when evaluated individually as oppose collaboratively within hosts of distribution X,
see Section 5.4. SARSA is the baseline Fourier Basis value function approximator.
Vertical line in x-axis marks split between level 0 and 1.

31

difference is that no a priori information is necessary to define specialist learning

tasks. Where other work [3, 60] required human intervention in designing appro-

priate subtasks, this work relied on the stochastic point initialization process alone.

However, it could be argued that the simplicity of the task domain largely makes this

possible rather than the SBB framework. Indeed, a similar approach to automating

subtasks was infeasible under the truck reversal domain, see Section 5.3.1.

Adding an additional cycle of evolution (at a corresponding reduced host size,

program limit and generation per level limit) is unable to provide any improvement

when the same global goal condition is retained at both levels (Modular in Figure

5.1). Indeed, the use of a common goal for both levels of evolution results in a

much lower solution consistency as compared to Monolithic or Incremental evolution.

Conversely, letting the point population define arbitrary target locations during the

evolution of meta actions (level 0) and reintroducing the global goal location at level

1 provides a statistically significant improvement relative to either baseline without

developmental diversity (compare Layered to Monolithic and Modular in Figure 5.1).

Table 5.1 summarizes p-values under the Mann-Whitney non-parametric hypothesis

test. There is no significant difference in the generalization performance of cases

employing developmental diversity (Incremental and Layered evolution), both signif-

icantly outperform their respective baselines (Monolithic and Modular). The natural

implication of this is that encouraging diversity in the early stages of evolution (at

level 0 in layered evolution) is significant in constructing ‘good’ generalist behaviours

later on.

When a hierarchical structure is present, as is Layered evolution, goal diversity at

level 0 helps to produce a population of hosts (meta actions) that specialize on solving

some subset of training scenarios. When reused and re-contextualized by higher-level

hosts, these (specialized) meta actions prove to be more useful building blocks than

meta actions developed relative to the overall task (generalists). Moreover, these

meta actions may be deployed relative to any valid generalization task of the same

domain, reinforcing the value of archiving meta actions in the form of an RTL as

oppose to developmental diversity without archiving (Incremental evolution). This

versatility is explicitly tested in section 5.2.5

32

Table 5.1: Pinball Task: p-value for pairwise Mann-Whitney non-parametric hypoth-
esis tests.

Pairwise comparison p-value

Modular vs. Monolithic 0.1228
Modular vs. Incremental 1.286e− 10

Modular vs. Modular (meta) 0.0001803
Layered vs. Monolithic 2.903e− 06
Layered vs. Incremental 0.079

Layered vs. Modular 7.199e− 08
Layered vs. Layered (meta) 2.097e− 08

Incremental vs. SARSA 2.2e− 16
Layered vs. SARSA 1.56e− 13

5.2.3 Specialization and Generalization in Hierarchical SBB

Further insight into the role of population diversity and specialization during the

initial cycle of hierarchical policy search can be obtained by looking more closely at

the Layered evolution experiment. Figure 5.2 describes the test performance of the

single best level 0 host (meta action) and level 1 host from Case 4 (Layered evolution)

as well as the corresponding cumulative population wide performance. That is to say,

the cumulative population wide performance counts the total number of unique test

cases solved by all members of the host population as opposed to the single ‘champion’

host detailed in Figure 5.1. It is now apparent that meta actions (champ level 0)

typically solve 70 percent of the test cases. However, when measuring the cumulative

population wide performance of meta actions (pop level 0) all the test cases might

have solutions. Thus, competitive fitness sharing has successfully cached a diverse set

of specialist behaviours across the host population.

These behaviourally diverse level 0 hosts thus represent good candidate meta

actions for host–symbiont development at level 1. The level 0 hosts, or meta actions

remain fixed after the first cycle of evolution. This is how hierarchical SBB supports

‘complexification’ without falling into the over-learning trap. Meta actions themselves

do not evolve, level 1 hosts evolve (learn) appropriate contexts in which to deploy

meta actions. Thus, the champion performance at level 1 (champ level 1, Figure

5.2) generally matches the cumulative population wide performance at level 0 (pop

level 0) with a much tighter consistency. Hosts at level 1 have thus been able to

33

0

100

200

300

400

500

●

●

●

●

●

●
●

●●●●●●

●

●

●

0

100

200

300

400

500

Pop

Cha
m

p
Pop

Cha
m

p

nu
m

be
r

of
 te

st
 c

as
es

 s
ol

ve
d

level 0 level 1

Figure 5.2: Pinball Task: Performance of Case 4 SBB (Layered evolution) hosts over
500 test points. ’Pop’ identifies columns with cumulative solution count performance
as estimated across the entire final population whereas the other columns denote
performance of the single best individual from a run. champ+ is the collective per-
formance of meta actions as identified by champion policy trees. Vertical line in x-axis
marks split between level 0 and 1.

leverage the diversity of meta actions to form a single highly fit solution at level 1.

Note, however, that the above analysis is all post evolution, whereas during evolution

effective hierarchies need to be discovered without reference to such ‘global’ pictures

of host capability.

5.2.4 Hierarchical Policy Deployment

In order to demonstrate the application of meta actions evolved at level 0 we need

to establish to what degree their purposeful application and reuse appears. Thus, in

order to provide some insight into this we consider both structural and behavioural

aspects of a specific Case 4 solution solving 492 of the 500 test cases.

Figure 5.3 summarizes the architecture for this particular solution. The large

circle – top centre – denotes the single level 1 host or root of the decision tree. This

34

1 2 3 4 5

+x +y -x -y 0+x +y -x -y 0+x +y -x -y 0+x +y -x -y 0

level 1

level 0

Figure 5.3: Pinball Task: Structure of a hierarchical SBB solution solving 492 of 500
test cases. Top-centre circle represents level 1 host. Black squares represent level 1
symbionts indexed by this host. Each level 1 symbiont assumes one level 0 host as its
meta-action, represented here by the black/ white circle/ square. Each level 0 host
indexes multiple level 0 symbionts. The shape of each level 0 symbiont denotes which
atomic action is assumed (see legend at the bottom of the figure).

level 1 host is comprised of 5 unique symbionts, or small black squares labeled 1

through 5. Each of these level 1 symbionts assumes a meta-action as defined by a

host evolved at level 0, or the large black circle, white triangle, white square, and

white circle of Figure 5.3. The level 0 hosts index a subset of level 0 symbionts

each with a corresponding (task specific) atomic action. Naturally, as each symbiont

learns a unique context for deploying its action, the same atomic action may appear

in multiple places at level 0. Likewise, multiple level 1 symbionts may assume the

same level 0 host as their action, each providing a unique context in which to deploy

the same meta-action. Figure 5.3 supplies a legend mapping level 0 symbiont symbols

to corresponding atomic actions.

Some insight into the degree of reuse and therefore the potential for supporting

temporal abstraction (deploying a meta-action under multiple contexts) is now ap-

parent. At level 1 symbionts 4 and 5 both use the same host 0 policy, implying that

the level 1 symbionts have learned to deploy it under different conditions. Likewise,

a host at level 0 in three of the four scenarios includes multiple symbionts with the

same atomic action (the three symbionts associated with the 3rd level 0 host being

the only exception); implying that multiple contexts appear for the same symbiont

action.

Having established the basic structure of a hierarchical policy, we can now map

35

the states at which level 0 hosts are deployed by symbionts from the level 1 host (root

node of the decision tree) relative to a specific test condition, Figure 5.4. The start

condition corresponds to the large grey circle (bottom left) and global goal is the

large black circle (top centre). The overall trajectory is expressed in terms of shapes

corresponding to the level 0 host deployed at each time step (defined by Figure 5.3).

At least three factors are now readily apparent: 1) the degree of interleaving or

cooperation between different meta-actions (level 0 hosts); 2) the relative specializa-

tion of meta-actions; and, 3) the degree of reliance on wall bouncing/ exploration

for reorientation of the pinball versus linear/ greedy exploitation of a given direction

at different parts of the trajectory. Thus, for example, the level 0 host/ meta ac-

tion represented by a white triangle seems to be deployed predominantly on the left

side of the board while the white square, white ellipse, and black ellipse hosts are

used predominantly on the right side. This decomposition is a direct result of the

communication between level 1 symbionts at each time-step. The level 1 symbionts

have learned appropriate contexts for their meta-actions and are able to express this

information through bidding.

We can also summarize the consistency of bidding behaviours across all test points

by plotting the (x, y) co-ordinate for which different level 1 symbionts (thus host 0

deployment) represent the winning bid, Figure 5.5. The resulting spacial organization

clearly reflects a specific distribution of geographically-specialized host 0 behaviours

in which only the case of (level 0) host 4 appears to be redundant. Moreover, it is

clear that multiple hosts from level 0 are involved in providing solutions to all but

the simplest of test cases.

Finally, we note that it is also possible to review the same trajectory in terms

of which domain-specific atomic actions are deployed at each time-step, Figure 5.6.

It is apparent here that level 0 hosts in general have learned to use their actions

sparingly, most often applying no force to the ball (action 0, circle) and thus incurring

minimal penalty and maximizing their reward. However, the application of other

forces, such as de-acceleration, appears to follow a systematic pattern of application

before entering regions where significant amounts of oscillation between walls are

necessary (the regions of oscillation appearing as the principle mechanism by which

the direction of travel is changed).

36

Figure 5.4: Pinball Task: Sample trajectory in terms of meta-action deployment w.r.t.
hierarchical policy of Figure 5.3. Large grey circle represents start location for this
specific test case. Large black circle represents the global target. Shapes correspond
to level 0 hosts (meta-actions) deployed at each location/time-step in trajectory, as
mapped to specific hosts in Figure 5.3.

5.2.5 Learning and Organizing Meta Actions

In the context of evolving hierarchical SBB policies, the role of hosts at level 0 is to

learn specialized behaviours that do not necessarily provide complete solutions to the

problem but instead are able to solve some relevant subgoal (Figure 5.5). However,

this should be an emergent property, with no requirement to define these subgoals

manually using a priori information. As described in Section 3.1, this work uses

training points in level 0 that define both an arbitrary start location for the ball and

an arbitrary (sub)goal location. Fitness sharing between hosts encourages each level

0 host to specialize at solving a unique subset of these training points. This diversity

is then exploited by level 1 hosts as they autonomously identify subsets of level 0

hosts to use as meta actions.

Figure 5.7 summarizes the set of level 0 training points that the host identified

by the black circle in Figure 5.3 was able to solve. Goal locations are represented by

translucent squares and ball start locations are represented by circles. As individual

points define one target location and one ball starting location, each ball has a hairline

37

! 222

333 444

555

Figure 5.5: Pinball Task: Distribution of winning bids across all test conditions w.r.t.
level 1 symbionts of Figure 5.3. Subsampling applied equally to each sub-plot limit
total figure size to 600KB from 6MB.

38

Figure 5.6: Pinball Task: Sample trajectory in terms of atomic actions deployment
w.r.t. hierarchical policy of Figure 5.3. Large grey circle represents start location
for this specific test case. Large black circle represents the global target. Shapes
correspond to atomic actions deployed at each location/time-step in trajectory, as
mapped to domain-specific actions in Figure 5.3.

protruding toward its corresponding target. The length of the hairline is relative to

the length between the ball and target. Likewise, each target has a line of the same

length protruding from it towards its associated ball. Clearly, this host focused on

solving points with target locations in the upper-right and upper-left corners of the

Pinball domain. Naturally, the target locations in these clusters can be seen to

represent subgoals of the ultimate problem of reaching the goal location in Figure

4.1. Referring back to the final deployment under the specific test configuration /

solution trajectory of Figure 5.4 we note that this particular meta action is deployed

in the area corresponding to greatest point density during training. Likewise this

also correlates with the region in which the same level 1 symbiont has the winning

bids (Subplot 1, Figure 5.5). The level 1 host depicted in Figure 5.3 was thus able

to autonomously organize a subset of symbionts indexing useful meta actions from a

large set of symbionts with a diverse group of potential meta actions.

To further illustrate this we can consider one final experiment identical to Case 4

(Layered Evolution) above except that level 1 training points defined a target location

39

Figure 5.7: Pinball Task: Set of training points (pairs of start and goal locations)
that the black circle level 0 host from Figure 5.3 was able to solve. Ball start locations
are represented by circles while goal locations are represented by translucent squares.
Each ball/goal has a hairline line protruding toward its corresponding goal/ball. The
length of the hairline line is relative to the length between the ball and target.

at the opposite side of the Pinball world from that in Case 4, in the bottom-center

of the world. Again, we select the best level 1 host and review the training points

solved by one of the the meta actions it uses, Figure 5.8. Clearly, this meta action

specializes at solving target locations near the bottom centre of the world. Significant

here is that the top level host has selected a meta action from the library of available

actions which is specifically appropriate for the alternate goal. This suggests that the

library of meta actions (specialists) is diverse enough to be reused under a variety

of global tasks. Selection of an appropriate subset of meta actions from the library

relative to a particular task and learning the relevant context in which to deploy

each action thus represents the goal of the highest level of Layered evolution. This

represents a key advantage to Layered over Incremental evolution, where no such

library is constructed.

40

Figure 5.8: Pinball Task: Set of level-0 training points solved by one meta action
later deployed w.r.t the alternate global goal. Ball start locations are represented by
circles while goal locations are represented by translucent squares. Each ball/goal
has a hairline line protruding toward its corresponding goal/ball. The length of the
hairline line is relative to the length between the ball and target.

5.2.6 Solution Complexity

From an architectural perspective, the relative counts for the number of symbionts

deployed per level and corresponding instruction counts (post intron removal), give

some insight to the relative complexity of solutions. Figure 5.9 summarizes the sym-

biont counts per host as a function of experiment (Monolithic, Incremental, Modular,

Layered) and layer (level 0 and level 1). The non-hierarchical scenarios (Monolithic

and Incremental) naturally result in hosts with large variance and high single layer

symbiont counts (column Monolithic, Figure 5.9). Recall that single-level experi-

ments are parameterized for double the maximum number of symbionts. Also note

that symbiont counts per host for Incremental and Monolithic evolution are nearly

double the per-level symbiont counts in multi-level experiments. However, hierar-

chical solutions are still more complex overall, care of their capability to redeploy

multiple meta actions. Whether it is easier to understand how 5 meta actions are

redeployed versus 8 symbionts is very much in the eye of the beholder.

In the case of instruction count, a similar pattern is noted (Figure 5.10). However,

41

0

5

10

15

●●

0

5

10

15

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

M
od

ula
r

La
ye

re
d

nu
m

be
r

of
 s

ym
bi

on
ts

level 0 level 1

Figure 5.9: Pinball Task: Symbiont Counts per Champion Host. x-axis labels distin-
guish between experimental cases. Vertical line in x-axis marks split between level 0
and 1.

42

0

5

10

15

20

25

30

●

●

0

5

10

15

20

25

30

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

M
od

ula
r

La
ye

re
d

nu
m

be
r

of
 in

st
ru

ct
io

ns

level 0 level 1

Figure 5.10: Pinball Task: Average Instruction Counts per Symbiont. x-axis labels
distinguish between experimental cases. Vertical line in x-axis marks split between
level 0 and 1.

a significant increase in the level 0 instruction count appears for Incremental evolution

and hierarchical SBB with goal diversity (column Incremental, Layered level 0, Figure

5.10). This is most likely an artifact of the more diverse scenarios encountered during

training. Again, when SBB is limited to a single level the instruction counts per

symbiont also undergo a significant increase. By way of comparison, under the original

study of the pinball domain [23], a value function representation assumed a ‘Fourier

basis’ in which between 256 and 1296 basis functions were required per policy. Under

SBB there are typically 5-10 symbiont programs per host and 7-17 instructions per

symbiont program or between 35 to 170 instructions per policy.

5.2.7 Efficiency

Solution Efficiency

The relative efficiency of solutions can be measured by counting the number of time

steps used in each successful episode. Each violin plot in Figure 5.11 outlines the

43

0

500

1000

1500

2000

●

●●
●
●

●

●

●

0

500

1000

1500

2000

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

nu
m

be
r

of
 s

te
ps

 ta
ke

n
to

 s
ol

ve
 p

oi
nt

level 0 level 1

Figure 5.11: Pinball Task: Median number of time steps used by champion over all
successful episodes. x-axis labels distinguish between experimental cases. Vertical
line in x-axis marks split between level 0 and 1.

time steps used by the champion at the highest available level of evolution in each

experiment. As these plots are relative to the test cases actually solved, generalizing

to more solutions naturally results in an increase in the median number of time steps

used.

Learning Curves

Most of the analysis up to this point has been relative to post-training, test perfor-

mance. In this section we look at host fitness over the coarse of evolution to com-

pare the learning efficiency of our Layered evolution experiment against the similar-

performing Incremental evolution. Figure 5.12 (a) and (b) express the maximum host

fitness over all training points at intervals of 20 generations for each experiment.

These plots are similar, with each model having quick initial fitness increase in the

first few generations followed by slow steady improvement until the developmental

variation, or switch from arbitrary goals to common goal, takes place at generation

44

105. For Layered evolution, this developmental variation is mirrored by the hierar-

chical evolutionary transition from level 0 to 1. A transition in performance is seen

here as a new symbiont population is initialized with random programs at level 1,

while level-0 host–symbionts are now frozen to become meta actions. A new group of

cooperating symbionts quickly forms within each level-1 host and fitness again rises as

symbiont programs learn to deploy previously-learned meta actions. Incremental evo-

lution undergoes a corresponding but much less dramatic dip in fitness at this point.

No archiving of previously learned behaviours takes place, thus all host–symbionts

continue to evolve relative to the new common goal. In either case, the learning rates

of Incremental and Layered evolution seem to benefit equally when developmental

variation appears in the form of goal (location) diversity.

5.2.8 Alternate Pinball Worlds

[23] defined two Pinball worlds in their original work with this domain. As it was

unclear which configuration provided the more challenging task, we duplicated the

above experiments and analysis for the alternate world. No significant difference

was apparent in any of our analysis as compared to the above results. Relative

performance between SBB configurations remained constant over both Pinball world

configurations.

5.3 Truck Reversal Domain

5.3.1 Evaluation Methodology

Champion Selection and Test for Generalization

A post training validation set is again utilized to identify a champion from each run

(1,000 semi–cab configurations). In order to reduce the chances of creating semi–cab

configurations that are not solvable, configurations are subject to the constraint that

if the semi–cab were to travel in a straight line from the initial condition, they will not

collide with the obstacle. Assuming the reward function of Equation (4.2), the indi-

vidual ranked with the highest mean reward across the validation set establishes the

representative behaviour from each run. An independent test set of 1,000 semi–cab

45

●●

●●●●●●●

●●●
●●

●

● ●
●
●●
●
●

●

●

● ●
●● ●

●●
●●

●●

●

●●
●

●●
●

●

●
●

generation

m
ax

im
um

 m
ea

n
fit

ne
ss

2 14 28 42 56 70 84 98 112 128 144 160 176 192 208

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Incremental

●
●● ●

●
●●●●●

●
●●

●●

●●
●

●
●

●

●
●

●
●

●
●

●●●

●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●
●●●

●●
●●●

●
●

●●●

●

●

generation
m

ax
im

um
 m

ea
n

fit
ne

ss

2 14 28 42 56 70 84 98 112 128 144 160 176 192 208

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Layered

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

m
ax

im
un

 m
ea

n
fit

ne
ss

generation

(c) Combined Medians

Figure 5.12: Pinball Task: Training Curves for Incremental and Layered Experiments.
(a) and (b) depict the maximum individual host fitness over 210 generations for each
experiment where box plots summarize the distribution w.r.t. 60 independent trials.
(c) plots the median from each of the above distributions where the dashed line
represents Incremental and solid line is Layered. Gap in x axis marks the point at
which developmental variation and hierarchical transition (Layered only) take place.

46

configurations is created in the same way for assessing solution robustness/ general-

ization, Figure 4.3. A test case is considered solved if the co-ordinates for the stopping

state of a trajectory are within the following limits: |x|, |y| < 1.0m, |θs| < 45◦.

On Developmental Diversity

In the case of the pinball task it was possible to develop stronger specialist behaviours

during the first phase of evolution by letting the point population define both the

‘entry’ and ‘exit’ locations for the pinball. Indeed, it was not possible to develop

effective hierarchical policies without this.

However, the dynamics of the truck reversal task are rather different form Pinball,

thus requiring us to take a rather different approach to introducing developmental

diversity. Automating goal variation in truck reversal is difficult. For example, the

standard goal location in truck reversal lies on the y-axis, which essentially acts as

a wall because crossing the y-axis is not permitted. Thus changing the x coordinate

of the goal essentially makes the world smaller and potentially places the wall in

locations that make solutions impossible. Conversely, changing the y coordinate of

the goal will encourage policies to approach the y-axis further from the origin, which

does not correspond to a useful subtask relative to the ultimate goal location. Thus,

the mechanism we will investigate under the truck reversal domain for promoting

stronger meta actions will be to reward both distance minimization and, should the

goal criteria be satisfied, the number of time steps taken. The motivation being that

rather than promote the learning of subtasks, we wish to promote meta actions that

specialize. With this in mind, the following spatiotemporal episodic reward function

is defined:

IF (|x| < 1) ∧ (|y| < 1) ∧ (|θs| < π)

THEN G(hi, pk)← Eqn. (4.2) + Dmax

ts

ELSE G(hi, pk)← Eqn. (4.2)

(5.1)

where the antecedent tests for a valid solution (Section 5.3.1); Dmax(= 600) is the

(episodic) maximum number of interactions between policy and task and ts is the

count of interactions. When satisfied, fitness is expressed as a function of the original

distance-based goal function and a normalized count of the number of steps taken

47

to provide the solution. When not satisfied, fitness is expressed as a function of the

original distance-based goal function alone.

A total of four primary experiments will be considered:

Case 1 – Single level, spatiotemporal fitness (Monolithic Evolution):

SBB only builds a single level, thus no capacity exists for defining hierarchical poli-

cies. Spatiotemporal fitness is used throughout. Relative to the parameterization of

Table 4.2, the symbiont per host and program length limits are doubled (ω = 30,

maxProgSize = 96).

Case 2 – Single level, goal diversity (Incremental Evolution): SBB again

builds a single level with parameterization as in Case 1. This time developmental di-

versity is introduced by altering the task half way through evolution. Spatiotemporal

fitness (Equation 5.1) is employed for the first 1000 generations. Evolution is then

conducted relative to the standard fitness measure (Equation 4.2) for the last 1000

generations.

Case 3 – Two level, spatiotemporal fitness (Modular Evolution): This

scenario introduces hierarchical policy discovery (two levels) and applies the spa-

tiotemporal fitness measure (Equation 5.1) at both levels.

Case 4 – Two level, independent fitness measures (Layered Evolution):

Hierarchical policy discovery again appears (two levels), but this time additional

developmental diversity appears by means of spatiotemporal fitness (Equation 5.1)

at level 0, while level 1 employs the standard fitness measure (Equation 4.2).

5.3.2 Generalization Tests

Hosts are evaluated relative to 1000 unique initial domain configurations, Figure 4.3.

Figure 5.13 summarizes the performance of each experiment in terms of the number

of test cases solved per level. Again, each violin plot depicts the distribution of re-

sults over 60 independent trials. Each distribution represents the number of test cases

solved by the single best / champion host at the highest level available in each ex-

periment. After 2,000 generations, the champion individuals in our non-hierarchical,

Monolithic experiment are able to solve roughly 340 test cases (Monolithic, Fig-

ure 5.13). Alternative combinations of standard and spatiotemporal fitness failed to

improve on this under the non-hierarchical constraint. For example, incorporating

48

0

200

400

600

800

●

●

●

●●0

200

400

600

800

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r,

La
ye

re
d

M
od

ula
r (

m
et

a)

M
od

ula
r

La
ye

re
d

(m
et

a)

La
ye

re
d

nu
m

be
r

of
 te

st
 c

as
es

 s
ol

ve
d

level 0 level 1

Figure 5.13: Truck Reversal Task: Generalization performance or count of number of
test points solved by the champion host (y-axis) at each level. 1000 test points in total.
X axis labels correspond to 4 different styles of SBB evolution. Distributions labeled
’X(meta)’ describe the cumulative number of test cases solved by all meta actions
when evaluated individually as oppose collaboratively within hosts of distribution X,
see Section 5.4.Vertical line in x-axis marks split between level 0 and 1.

spatiotemporal fitness and then standard fitness within a single cycle, or Incremental

evolution, results in significantly less solutions being discovered by champion hosts

(Incremental, Figure 5.13). A trend in the opposite direction was observed with In-

cremental evolution in the Pinball domain. The difference in behaviour is most likely

due to a combination of the difference in the form of ecological diversity employed

and the less constrained nature of the task domain.

Modular evolution introduces hierarchical policy discovery with spatiotemporal

fitness at both levels. Champion hosts are now typically only capable of solving 180

cases at level 0 (Modular level 0, Figure 5.13). However, the hosts making up the

49

Table 5.2: Truck Reversal Task: p-value for pairwise Mann-Whitney non-parametric
hypothesis test.

Pairwise comparison p-value

Modular vs. Monolithic 0.001404
Modular vs. Incremental 3.225e− 05

Modular vs. Modular (meta) 0.003827
Layered vs. Monolithic 0.0001194
Layered vs. Incremental 2.313e− 06

Layered vs. Modular 0.05277
Layered vs. Layered (meta) 0.0009439

final population from level 0 at generation 1000 now become the set of (meta) actions

assumed by level-1 symbionts. These level-1 symbionts evolve contexts in which to

deploy meta actions (level 0 hosts). The resulting champion individuals (Modular

level 1, Figure 5.13) have succeeded in leveraging the meta actions provided from

level 0 to significantly outperform Monolithic and Incremental champions (compare

Modular level 1 to Monolithic and Incremental, Figure 5.13). Again, this is in contrast

to findings under the Pinball domain where Modular evolution made no improvement

over other experiments and in fact represented a decline in generalization performance.

Layered evolution again applies the hierarchical model but now spatiotemporal

fitness is used at level 0 only while level 1 uses standard fitness. This further im-

proves generalization performance of the champion at level 1 (Layered level 1, Figure

5.13) as compared to the baseline hierarchical model (Modular level 1, Figure 5.13).

Developmental diversity essentially allows the model to produce stronger specialists

at level 0 while reinforcing generalization at level 1.

Hypothesis testing confirms the statistical significance of the claims made w.r.t.

generalization, Table 5.2.

5.3.3 Sarsa Base Case

The best SARSA results on this task were obtained under a tile coding as opposed to

the Fourier basis. Again 60 initializations were conducted, which resulted in 1st, 2nd,

3rd quartile counts for the number of post training test cases solved of 〈9.0, 16.5, 30.0〉.
In comparison, the NEAT framework for evolving neural networks under policy search

[51] achieves a median of ≈ 150 test case solutions ([31], Chapter 7). Both results

50

emphasize the relative difficulty of the truck reversal (with obstacle) task. In order

to provide more insight into what SARSA policies are capable of, the behaviour of a

typical policy on the 1 000 test configurations, is reviewed. Figure 5.14 plots both the

resulting semi–cab failure conditions and a snapshot of the semi–cab configurations

after 100 interactions with the environment. In short, the general strategy identified

by SARSA is to avoid jackknifing and the central wall obstacle. However, it fails

to locate the goal condition with sufficient accuracy to provide successful solutions.

Attempts to improve on this result by increasing the resolution of the tile coding

failed; most likely on account of the resulting increase in state–space dimensionality.

More complex approaches to value function approximation might well be able to

address this short coming (e.g., adaptive tile codings, Chapter 7 in [59]), however,

source code is not currently available to support this line of investigation. Review of

the training reward indicates that SARSA had reached a performance plateau in all

cases. Figure 5.15 represents the training curve for the SARSA policy of Figure 5.14.

The initial steep curve indicates that the agent quickly learns to avoid jackknifing.

This is followed by an extended period of improvement up to about 20000 episodes

before reaching a plateau.

5.3.4 Solution Complexity

As with the Pinball domain, the effects of our unique paramteterizations for single-

level and hierarchical experiments can be seen in the number of symbionts per cham-

pion hosts and average instruction counts per symbiont, Figures 5.16 and 5.17. How-

ever, there are no other significant differences in complexity between experiments.

We include these plots for consistency only.

5.3.5 Efficiency

Solution Efficiency

We can again consider the relative efficiency of solutions by looking at the number of

time steps used to solve test cases, Figure 5.18. Naturally, applying spatiotemporal

fitness throughout evolution introduces a bias for faster solutions e.g., compare Lay-

ered and Modular, Figure 5.18. However, this is relative to the number of test cases

51

0 50 10
0

15
0

−150

−100

−50

0

50

100

150

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●●

●
●

●

●
●

●

●

● ●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

(a) Failure conditions

0 50 10
0

15
0

−150

−100

−50

0

50

100

150
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

(b) State at ts = 100

Figure 5.14: Truck Reversal Task: Typical SARSA policy behaviour during evaluation
of truck reversal task under 1 000 test cases. (a) Most failure configurations lie within
the y-axis interval of [−25,+50]. Some reach the 600 step interaction limit, with the
balance hitting the wall object or y-axis at more distant locations. (b) Location of
semi–cab relative to all 1 000 test configurations for ts = 100. Compare to Figure
5.21 for the SBB policy tree at the same time step. Note the increase to axis scale.

1 3544 8416 13732 19491 25250 31009 36768 42527 48286

−600

−500

−400

−300

−200

−100

0

ep
is

od
e

re
w

ar
d

episode

Figure 5.15: Truck Reversal Task: SARSA training reward over 50000 episodes. y-
axis denotes median over 60 independent trials.

52

0

5

10

15

20

25

30
●

0

5

10

15

20

25

30

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

M
od

ula
r

La
ye

re
d

nu
m

be
r

of
 s

ym
bi

on
ts

level 0 level 1

Figure 5.16: Truck Reversal Task: Symbiont Counts per Champion Host. x-axis
labels distinguish between experimental cases. Vertical line in x-axis marks split
between level 0 and 1.

53

0

5

10

15

20

25

30

●

●●

●

●●● ●●●

●

●

0

5

10

15

20

25

30

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

M
od

ula
r

La
ye

re
d

nu
m

be
r

of
 in

st
ru

ct
io

ns

level 0 level 1

Figure 5.17: Truck Reversal Task: Average Instruction Counts per Symbiont. x-
axis labels distinguish between experimental cases. Vertical line in x-axis marks split
between level 0 and 1.

54

0

100

200

300

400

500

600

●

●
●
●

●

0

100

200

300

400

500

600

M
on

oli
th

ic

In
cr

em
en

ta
l

M
od

ula
r

La
ye

re
d

m
ed

ia
n

nu
m

be
r

of
 s

te
ps

 ta
ke

n
to

 s
ol

ve
 p

oi
nt

level 0 level 1

Figure 5.18: Truck Reversal Task: Median number of time steps used by champion
host on solved test points. Vertical line in x -axis differentiates between level 0 and 1
distributions.

actually solved. Using more time steps is a natural consequence of generalizing to

more test cases. Developmental diversity between levels, or Layered evolution, main-

tains an acceptable solution efficiency at level 1 while solving significantly more test

cases (Figure 5.13). Conversely, the Incremental experiment results in the greatest

variance w.r.t. time step efficiency, having some outlier hosts with median number of

steps as low as, 27, 38, and 52. However, these outliers have total solution counts of

1, 10, and 8 respectively. Finally, the baseline hierarchical model (Modular) achieves

similar efficiency to the single- cycle baseline (compare Modular and Monolithic, Fir-

gure 5.18) while solving 40% more test cases (Figure 5.13).

Learning Curve

In the case of truck reversal, leverage obtained from the hierarchical transition be-

tween levels is clearly visible from the learning curve for Layered evolution as shown

in Figure 5.19 (b) and (c). As in Figure 5.12 for the Pinball domain, these plot the

55

maximum host fitness over all training points at intervals of 20 generations for each

experiment. The Layered evolution curve undergoes a pronounced jump as the next

level of SBB is deployed. Such behaviour re-emphasizes the impact of meta actions

as defined by the previously evolved hosts. Incremental evolution, with no archiv-

ing of previously learned material, fails to leverage in the same way. Also notable

here is the absence of a significant dip in fitness corresponding with the developmen-

tal variation after generation 1000. This is because, unlike the Pinball experiments,

the global goal remains the same. Therefore, even in the case of Layered evolution

where initially random symbiont programs are being deployed to select meta actions,

the entire library of meta actions is strong enough relative to the global task that

moderate fitness is maintained. As the level 1 host–symbionts learn to deploy meta

actions in more appropriate contexts, fitness experiences a further step increase and

significantly improves on that of Incremental evolution, Figure 5.19 (c).

Hierarchical Policy Deployment and Symmetrical Behaviour

As in the Pinball domain, some insight into the capacity for a hierarchical policy to

integrate the behaviour of previously evolved meta actions can be seen by plotting

the use of meta actions during specific solution trajectories. Figure 5.20 provides two

example trajectories for the same SBB champion policy. Meta actions are clearly

being interleaved to create an integrated policy, as opposed to merely replaying meta

actions for the duration relative to an initial condition. Moreover, there are clearly

specific contexts / switching points under which different meta actions are deployed.

For the same SBB champion policy we can take a snapshot of progress against all

test points at a specific time step of policy deployment. Figure 5.21 (a) details this

for the same host at ts = 100. A clear north–south partition is present, roughly rela-

tive to the corresponding distribution of initial states. However, this is not explicitly

symmetrical (see also Figure 5.20.(b)). The north trajectory appears to be slightly

more dominant, with trajectories from the south actually employing a re-alignment

‘swirl’ near the origin such that they explicitly join the northern trajectory before suc-

cessfully reversing to the goal location. However, often the champion host behaviour

will be explicitly asymmetric as in Figure 5.21 (b). In this case the asymmetric be-

haviour clearly results in less efficient solutions for start locations in the bottom half

56

m
ax

im
um

 m
ea

n
%

 fi
tn

es
s

0

0.25

0.5

0.75

1

generation

(a) Incremental

generation

(b) Layered

0

0.25

0.5

0.75

1

m
ed

ia
n

m
ax

im
un

 m
ea

n
%

 fi
tn

es
s

generation

(c) Combined Medians

Figure 5.19: Truck Reversal Task: Training Curves for Incremental and Layered
Experiments. (a) and (b) depict the maximum individual host fitness over 2000
generations for each experiment where box plots summarize the distribution w.r.t. 60
independent trials. (c) plots the median from each of the above distributions where
the dashed line represents Incremental and solid line is Layered. Gap in x axis marks
the point at which developmental variation and hierarchical transition (Layered only)
take place.

57

0 20 40 60 80 10
0

−100

−50

0

50

100

●

(a) Swirl

0 20 40 60 80 10
0

−100

−50

0

50

100

●

●

●

(b) Symmetric

Figure 5.20: Truck Reversal Task: Example trajectories for solved test cases from the
same SBB policy tree. Subplot (a) and (b) are relative to one and two specific initial
semi–cab configurations respectively. Symbols distinguish between the selection of
different (level 0) meta actions by the root (level 1) switching policy.

Table 5.3: Truck reversal task: Number of trials in which champion host assumed
’symmetric’ behaviour.

Experiment Symmetric Behaviours

Monolithic 2
Incremental 3

Modular 28
Layered 19

of the world. Explicitly rewarding time step efficiency, as in spatiotemporal fitness

(Equation 5.1), potentially results in many more trials finding symmetric solutions.

However, this benefit is only achieved under hierarchical SBB, see Table 5.3. This

observation reinforces the importance of interleaving multiple (level 0) meta actions

to achieve optimal behaviours.

5.4 Levels of Selection

In this section we add to the argument that hierarchical polices are doing more than

just indexing a large number of meta actions and matching each to an initial con-

figuration of the task. In order to provide an additional qualification on what the

58

0 50 10
0

15
0

−150

−100

−50

0

50

100

150

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Symmetric

0 50 10
0

15
0

−150

−100

−50

0

50

100

150

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Asymmetric

Figure 5.21: Truck Reversal Task: Snapshot of the location of all 1,000 test initializa-
tions for ts = 100. (a) is SBB policy tree from Figure 5.20. (b) is example asymmetric
behaviour. The head of the pin denotes the end of the semi–cab.

hierarchy is contributing, we can explicitly identify the meta actions (SBB level 0

individuals) utilized by each champion. In each case, we count the corresponding

accumulated number of test cases solved. The champion distribution in both task

domains can now be compared directly to the distribution representing the sum of

supporting meta actions (denoted ‘(meta)’ in Figures 5.1 and 5.13). It is now ap-

parent that a level-1 host does indeed explicitly generalize to more than the sum

of the corresponding meta action contribution (compare Modular/Layered (meta) to

corresponding Modular/Layered).

This observation is synonymous with that made in relation to multi-level selection

and group formation [41], as discussed in Section 2.1. Recall that MLS1 defines

fitness of a host as the average of the symbiont membership. Conversely, MLS2

measures fitness as that defined by the host behaviour alone. In the case of our

experiments, MLS1 is synonymous with ‘Modular/Layered (meta)’ and MLS2 with

‘Modular/Layered’, and it follows that a significant improvement in fitness results

following the transition to a hierarchical policy or f(MLS2) >> f(MLS1); where f(·)
denotes fitness and Tables 5.2 and 5.1 confirm statistical significance.

Finally we note that, in the case of Layered (meta) of Figure 5.1, it appears that

the meta actions represent a worst case starting point, yet the resulting policy trees

59

(Layered) provide among the strongest eventual solutions. This is because Figure

5.1 compares performance using the fixed target location (top centre, Figure 4.1),

whereas meta actions of case Layered (meta) are trained against arbitrary start–exit

locations, as defined by the point population.

Chapter 6

Conclusion and Future Work

The role of developmental diversity in the construction of policy search agents through

symbiotic coevolution has been examined. Four configurations having equivalent com-

plexity and computational overhead were tested in two control-style problem domains.

Specifically, these four types of evolution (Monolithic, Incremental, Modularized, and

Layered) allowed us to measure the impact of developmental diversity in general and

the relative importance of hierarchical policy structures.

In the Pinball task, the less challenging of the two domains, both Incremental

evolution (goal diversity without a hierarchical transition) and Layered evolution

(goal diversity with a hierarchical transition) proved beneficial as compared to cor-

responding models with less environmental diversity. Developmental diversity was

implemented in this domain by first evolving solutions relative to partial configura-

tions of the task domain, i.e. arbitrary start and goal locations for the pinball, before

switching to evolution against the common global goal. Thus, we conclude that build-

ing diverse specialist behaviours in the early stages of evolution prior to focusing on

the global task is beneficial for the construction of single-level and hierarchical poli-

cies. However, the utility of archiving a library of meta actions was demonstrated

in the context of model efficiency, where hierarchical models have the advantage of

being able to redeploy meta actions relative to any valid task from the same domain

without starting evolution from scratch.

In the truck reversal domain, a new lexicographic fitness function was introduced

and shown to improve the performance of Monolithic and Modularized evolution rel-

ative to initial SBB experiments in this domain [31]. Moreover, developing solutions

under two independent cycles of evolution with developmental diversity between cy-

cles (Layered evolution) further improved both the efficiency and generalization per-

formance of champion individuals. During the first cycle the ecology again rewards

strong specialists i.e., reward for both spatial and temporal properties. In the second

60

61

cycle the ecology is more general in its reward, recognizing spatial properties alone,

thus promoting the hierarchical composition of generalists from previously evolved

specialists.

In all hierarchical models, the generalization performance of champion policies

was shown to be greater than the cumulative performance from contributing meta

actions. Thus, hierarchical policies are able to discover new solutions by grouping

together multiple meta actions and developing the appropriate contexts in which

each may be deployed.

Future research is likely to consider the case of automating the selection and or-

dering of domain-specific developmental variations during evolution. The research

herein was conducted under a tabula rasa model of point generation. However, eval-

uating potential solutions against points that are themselves evolving (competitive

coevolution) could be attempted. Recent research with the ’host-parasite’ model [8]

has shown that selecting for problem scenarios with reduced ’virulence’ can be effec-

tive at combating the disengagement problem. Similar approaches could be applied

to the problem of automated developmental variation.

Extending our findings to hierarchical structures with more than two cycles of

evolution is another area of particular interest. Currently, the leverage obtained from

the hierarchical transition between level 0 and level 1 (See Figure 5.19 (c)) does

not repeat at subsequent transitions. Thus, some form of structural modification or

further developmental diversity is likely necessary.

Appendix A

Truck Reversal with Automatically Defined Functions

Automatically Defined Functions (ADFs) were introduced by Koza in [27] as an ap-

proach to supporting the development of code modularity, thus problem decompo-

sition. He noted that many problems contain regularities that would allow the re-

peated deployment of similar functions. Thus, each tree-structured GP individual in

the ADF framework has a result producing branch (RPB) along with some number

of local functions (ADFs). The ADFs evolve together with the RPB. The number

of ADFs used, their arity, function set, and the degree of reference between ADFs

(ADFs may be allowed to call each other) are all manually configured a priori.

Koza showed that, on problems that were decomposable, ADFs improved the per-

formance of GP significantly. GP with ADFs was able to find solutions faster and

produced simpler programs. While care was taken to configure ADFs appropriately

for each problem, it was ultimately shown that any configuration of ADFs was ben-

eficial in these problems. Finally, the number and structure of ADFs can be evolved

instead of selected a priori, though this adds considerable computational overhead

and source code is not currently available.

In this section we explore the utility of ADFs within the truck reversal task in

order to establish a baseline hierarchical GP approach to this problem.

A.0.1 Parameterization

The truck reversal task implementation is derived from that outlined in Section 4.2

with specific modifications for the tree-structured GP framework as detailed in this

section. The terminal set T used here consists of the truck state variables, or T =

(x, y, θc, θs), Figure 4.2. The function set F consists of four arithmetic operations, the

two argument Arctangent function ATG, and the conditional comparative operator

IFLTZ (’If Less than Zero’), or F = (+,−, ∗,%, ATG, IFLTZ). See [26] for a detailed

discussion regarding this function set.

62

63

Naturally, the fitness function for these experiments is derived from that used for

SBB. At initialization, 120 fitness cases are sampled with uniform probability follow-

ing the point initialization process in Section 4.2.4. In each subsequent generation,

Pgap fitness cases are removed with equal probability and Pgap new cases introduced

as per the point initialization process. Fitness is the sum error, measured at the ter-

mination of each fitness case, over all fitness cases, where error = x2 +y2 +θ2
s +1. By

way of comparison, [26] measured fitness for the truck reversal problem (without the

additional wall object) relative to only 8 a priori defined fitness cases that remained

constant over the course of evolution.

The search operators used in our standard tree-structured GP are crossover (ap-

plied to 90% of the population) and reproduction (applied to 10% of the population).

With no mutation operator, a large population size is required in order to maintain

a diverse spectrum of potential solutions. Our population size for all experiments

was 2, 000 and we ran for 75 generations. This amounts to 18, 000, 000 evaluations

per experiment (calculated as popSize∗numFitnessCases∗numGenerations). For

comparison, each SBB experiment in this domain had 16, 800, 000 evaluations1. Tree-

structured GP requires several other learning parameters, which we derived directly

from the previous study within a simpler formulation of the truck reversal domain

[26]. Finally, as in [26], GP individuals are not limited to 3 atomic actions. Instead,

we convert the real- valued output of a GP individual to a value that can be directly

applied as a steering angle for the truck tires. Thus, if the program evaluates to a

number between −1.0 and 1.0, the truck turns its wheels to that particular angle (in

radians). Outside that range the control variable saturates. All constraints on illegal

behaviours outlined in Section 4.2, such as jackknifing and colliding with walls, are

also enforced here.

Some analysis of the problem is necessary when selecting the appropriate configu-

ration of ADFs. Since the truck reversal problem consists of two state variables that

describe spatial coordinates (x, y) and two that describe orientation of the cab and

semi (θc, θs), we decided that 2 is an appropriate choice for the number of arguments

to a defined function for this task. For simplicity, no ADFs were permitted to refer-

ence each other. The terminal and function sets for an ADF are identical to T and

1The number of evaluations in each SBB experiment is calculated as ((Hsize ∗ Pgap) + (Hgap ∗
(Psize − Pgap)) ∗ (tmax ∗ 2)

64

F above. Section A.0.2 details our findings for multiple ADF configurations in the

truck reversal task as defined in Section 4.2 i.e., with the additional wall object.

A.0.2 Results

Post training test performance is measured relative to the same 1, 000 unique start

positions for the truck as used under SBB, Figure 5.21. For simplicity we do not choose

a ’champion’ individual w.r.t. a separate validation set. Instead, the individual with

the most solutions across the test set is selected as being the representative ’champion’

of each trial.

Two initial experiments without ADFs are conducted in order to compare the

difficulty of the truck reversal task as defined in Section 4.2 with that used in [26].

The main difference being the addition of the wall obstacle and the enforcement of

tests to detect illegal behaviours such as jackknifing. Generalization performance

for the champion individual from these two experiments is shown as ’0ADF/no wall’

and ’0ADF’ in Figure A.1. The introduction of the wall obstacle and additional

constraints clearly increase the difficulty of the task.

Next, 4 separate experiments are conducted to evaluate an increasing number of

defined functions available to each GP individual. Generalization performance for the

champion in each experiments appears in Figure A.1. Clearly, the individual with the

best generalization performance in our formulation of the task is that with no ADFs

enabled, ’0 ADF’ in Figure A.1. Moreover, the champion performance decreases as

more ADFs are added. We attribute this to the incremental increase in search space

introduced as a result of each additional ADF. Unlike approaches to modularity in

GP such as the RTL framework (Section 2.2) or SBB, where a library of meta actions

is developed and ’frozen’ prior to being redeployed as part of a larger solution, ADFs

attempt to evolve defined functions and the result producing branch simultaneously.

In the case of our truck reversal task, this seems to limit the ability of the framework

to successfully decompose the problem into useful subtasks. The training curves for

each experiment, Figure A.2, reinforce this conclusion.

65

0

100

200

300

400

500

600

700

0ADF/no wall 0ADF 1ADF 2ADF 3ADF 4ADF

●

●

●

●

●

●

●
●

●
●

●

●
●
●●

●

●●

●

●

●
●
●●●

●

●

●

0

100

200

300

400

500

600

700

nu
m

be
r

of
 te

st
 c

as
es

 s
ol

ve
d

Figure A.1: Truck Reversal with ADFs: Generalization performance or count of num-
ber of test points solved by the champion individual (y-axis) from each experiment.
1000 test points in total. X axis labels correspond to 6 different experiments, each
with a particular number of 2-argument ADFs. ’no wall’ denotes the absence of the
wall obstacle.

66

0 20 40 60 80

1.
0e

−
06

1.
5e

−
06

2.
0e

−
06

2.
5e

−
06

3.
0e

−
06

3.
5e

−
06

4.
0e

−
06

0 ADF

1 ADF

2 ADF
3 ADF

4 ADF

m
ed

ia
n

m
ax

im
un

 m
ea

n
fit

ne
ss

generation

Figure A.2: Truck Reversal with ADFs: Median adjusted fitness (60 independent tri-
als) over 75 generations. Each line represents a separate experiment with a particular
number of 2-argument ADFs.

67

A.0.3 Summary

This exercise further establishes the difficulty of the truck reversal task with additional

wall obstacle. Unlike [26], we evolved and tested solutions relative to a large diverse

sampling of task domain configurations. Though we did not test against the 8 specific

fitness cases hand-crafted by Koza [26], the median number of test cases solved was

above 8 for all experiments except ’4ADF’. Koza did not report on the use of ADFs in

the truck reversal domain. Our findings illustrate that, at least for the configurations

we chose to explore, ADFs do not improve the performance of GP for this task.

Incrementally increasing the number of ADFs over multiple experiments continued

to have a detrimental effect on learning rates and generalization performance. Given

this result, it is unlikely that any form of developmental diversity could significantly

improve on this performance.

Bibliography

[1] Charles W. Anderson and W. Thomas Miller. A challenging set of control prob-
lems. In Neural Networks for Control, pages 475–508. MIT Press, Cambridge,
MA, USA, 1990.

[2] A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(1–2):41–77, 2003.

[3] J. Bongard. Behavior chaining: Incremental behavioral integration for evolution-
ary robotics. In Proceedings of the International Conference on Artificial Life,
pages 64–71, 2008.

[4] M. Brameier and W. Banzhaf. Evolving teams of predictors with linear ge-
netic programming. Genetic Programming and Evolvable Machines, 2(4):381–
407, 2001.

[5] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14–23, 1986.

[6] Raffaele Calabretta, Stefano Nolfi, Domenico Parisi, and Gnter P. Wagner. Du-
plication of modules facilitates the evolution of functional specialization. ARTI-
FICIAL LIFE, 6:69–84, 2000.

[7] B. Calcott and K. Sterelny, editors. The major transitions in evolution revisited.
Vienna Series in Theoretical Biology. MIT Press, 2011.

[8] J. Cartlidge and S. Bullock. Combating coevolutionary disengagement by reduc-
ing parasite virulence. Evolutionary Computation, 12(2):159–192, 2004.

[9] S. Y. Chong, P. Tiňo, and X. Yao. Relationship between generalization and
diversity in coevolutionary learning. IEEE Transactions on Computational In-
telligence and AI in Games, 1(3):213–231, 2009.

[10] P. J. Darwen and X. Yao. Speciation as automatic categorical modularization.
IEEE Tractions on Evolutionary Computation, 1(2):101–108, 1997.

[11] E. D. de Jong. A monotonic archive for Pareto-coevolution. Evolutionary Com-
putation, 15(1):61–94, 2007.

[12] R. De Nardi, J. Togelius, O. E. Holland, and S. M. Lucas. Evolution of neural
networks for helicopter control: Why modularity matters. In IEEE Congress on
Evolutionary Computation, pages 1799–1806, 2006.

[13] M. Dorigo and M. Colombetti. Robot shaping: developing autonomous agents
through learning. Artificial Intelligence, 71(2):321–370, 1994.

68

69

[14] J. A. Doucette, P. Lichodzijewski, and M. I. Heywood. Hierarchical task decom-
position through symbiosis in reinforcement learning. In Proceedings of the ACM
Genetic and Evolutionary Computation Conference, page to appear, 2012.

[15] J. A. Doucette, A. R. McIntryre, P. Lichodzijewski, and M. I. Heywood. Sym-
biotic coevolutionary genetic programming: A benchmarking study under large
attribute spaces. Genetic Programming and Evolvable Machines, 13(1):71–101,
2012.

[16] N. Eldredge. The sloshing bucket: How the physical realm controls evolution. In
J. P. Crutchfield and P. Schuster, editors, Evolutionary Dynamics, pages 3–32.
Oxford University Press, 2003.

[17] S. Geva, J. Sitte, and G. Willshire. A one neuron truck backer-upper. In IEEE-
INNS International Joint Conference on Neural Networks, pages 850–856, 1992.

[18] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex gen-
eral behavior. Adaptive Behavior, (5):317–342, 1997.

[19] M. I. Heywood and P. Lichodzijewski. Symbiogenesis as a mechanism for building
complex adaptive systems: A review. In EvoApplications: Part 1, volume 6024
of LNCS, pages 51–60. Springer, 2010.

[20] R. E. Jenkins and B. P. Yuhas. A simplified neural network solution through
problem decomposition: The case of the Truck Backer-upper. IEEE Transactions
on Neural Networks, 4(4):718–720, 1993.

[21] M. Keijzer, C. Ryan, and M. Cattolico. Run transferable libraries – learning
functional bias in problem domains. In Genetic and Evolutionary Computation
Conference, volume 3103 of LNCS, pages 531–542, 2004.

[22] S. Kelly, P. Lichodzijewski, and M. I. Heywood. On run time libraries and
hierarchical symbiosis. In IEEE Congress on Evolutionary Computation, page
to appear, 2012.

[23] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning
domains using skill chaining. In Advances in Neural Information Processing
Systems 22, pages 1015–1023, 2009.

[24] G. Konidaris, S. Kuindersma, A. Barto, and R. Grupen. Constructing skill
trees for reinforcement learning agents from demonstration trees. In Advances
in Neural Information Processing Systems 23, pages 1162–1170, 2010.

[25] G. Konidaris, S. Osentoski, and P. Thomas. Value function approximation in
reinforcement learning using the Fourier basis. In Proceedings of the Conference
on Artificial Intelligence, pages 380–385, 2011.

70

[26] J. R. Koza. A genetic approach to the truck backer upper problem and the
inter-twined spiral problem. In IEEE-INNS International Joint Conference on
Neural Networks, pages 310–318, 1992.

[27] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, 1994.

[28] I. Kushchu. Genetic programming and evolutionary generalization. IEEE Trans-
actions on Evolutionary Computation, 6(5):431–442, 2002.

[29] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary Computation, 19(2):189–223, 2010.

[30] X. Li, C. Zhou, W. Xiao, and P. C. Nelson. Direct evolution of hierarchical solu-
tions with self-emergent substructures. In International Conference on Machine
Learning Applications, pages 337–342, 2005.

[31] P. Lichodzijewski. A symbiotic bid-based framework for problem decomposition
using genetic programming. PhD thesis, Faculty of Computer Science, 2011.
http://web.cs.dal.ca/˜mheywood/Thesis/PhD.html.

[32] P. Lichodzijewski, J. Doucette, and M. I. Heywood. Symbiosis and hierarchical
model building in temporal sequence learning. Technical Report CS-2011-06,
Faculty of Computer Science, Dalhousie University, 2011.

[33] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary Genetic Program-
ming for problem decomposition in multi-class classification. In Proceedings of
the ACM Genetic and Evolutionary Computation Conference, pages 464–471,
2007.

[34] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving
with symbiotic bid-based Genetic Programming. In Proceedings of the ACM
Genetic and Evolutionary Computation Conference, pages 363–370, 2008.

[35] L. Margulis and R. Fester, editors. Symbiosis as a Source of Evolutionary Inno-
vation. MIT Press, 1991.

[36] J. Maynard Smith. A Darwinian View of Symbiosis, chapter 3, pages 26–39.
1991. In ([35]).

[37] R. E. Michod. Darwinian Dynamics: Evolutionary transitions in fitness and
individuality. Princeton University Press, 1999.

[38] D.E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms
for reinforcement learning. Journal of Machine Learning Research, 11:241–276,
1999.

[39] D. H. Nguyem and B. Widrow. Neural networks for self-learning control systems.
IEEE Control Systems Magazine, pages 18–21, 1990.

71

[40] Stefano Nolfi. Using emergent modularity to develop control systems for mobile
robots. Adaptive Behavior, 5:343–363, 1997.

[41] S. Okasha. Multilevel selection and the major transitions in evolution. Philosophy
of Science, 72:1013–1025, 2005.

[42] Michael ONeill and Anthony Brabazon. mgga: The meta-grammar genetic algo-
rithm. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano van Hemert,
and Marco Tomassini, editors, Genetic Programming, volume 3447 of Lecture
Notes in Computer Science, pages 143–143. Springer Berlin / Heidelberg, 2005.

[43] A. Prugel-Bennett. Benefits of a population: Five mechanisms that advantage
population-based algorithms. Evolutionary Computation, IEEE Transactions on,
14(4):500–517, March 2010.

[44] D. C. Queller. Relatedness and the fraternal major transitions. Philosophical
Transactions of the Royal Society of London: Series B, 355:1647–1655, 2000.

[45] S. C. Roberts, D. Howard, and J. R. Koza. Evolving modules in genetic pro-
gramming by subtree encapsulation. In European Conference on Genetic Pro-
gramming, pages 160–175, 2001.

[46] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evo-
lutionary Computation, 5:1–29, 1997.

[47] M. Schoenauer and E. Ronald. Neuro-genetic truck backer-upper controller. In
IEEE Congress on Evolutionary Computation, pages 720–723, 1994.

[48] P. W. H. Smith and K. Harris. Code growth, explicitly defined introns, and
alternative selection schemes. Evolutionary Computation, 6(4):339–360, 1999.

[49] L. Spector, B. Martin, K. Harrington, and T. Helmuth. Tag-based modules
in genetic programming. In Proceedings of the ACM Genetic and Evolutionary
Computation Conference, pages 1419–1426, 2011.

[50] Lee Spector, Kyle Harrington, and Thomas Helmuth. Tag-based modularity in
tree-based genetic programming. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference, GECCO ’12,
pages 815–822, New York, NY, USA, 2012. ACM.

[51] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10(2):99–127, 2002.

[52] Kenneth Stanley. Compositional pattern producing networks: A novel abstrac-
tion of development. Genetic Programming and Evolvable Machines, 8:131–162,
2007. 10.1007/s10710-007-9028-8.

72

[53] K. Sterelny. Symbiosis, evolvability and modularity. In G. Schlosser and G. P.
Wagner, editors, Modularity in Development and Evolution, pages 490–516.
Chicago University Press, 2004.

[54] P. Stone. Layered learning in multiagent systems: A winning approach to robotic
soccer. MIT Press, 2000.

[55] R. R. Sutton and A. G. Barto. Reinforcement Learning: An introduction. MIT
Press, 1998.

[56] E. Szathmary and J. Maynard Smith. The major evolutionary transitions. Na-
ture, 374:227–232, 1995.

[57] Julian Togelius. Evolution of a subsumption architecture neurocontroller. J.
Intell. Fuzzy Syst., 15(1):15–20, January 2004.

[58] Joseba Urzelai and Dario Floreano. Incremental evolution with minimal re-
sources. In Proceedings of IKW99, 1999.

[59] S. Whiteson. Adaptive Representations for Reinforcement Learning, volume 291
of SCI. Springer, 2010.

[60] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving soccer keepaway
players through task decomposition. Machine Learning, 59:5–30, 2005.

[61] Garnett Wilson and Malcolm Heywood. Introducing probabilistic adaptive map-
ping developmental genetic programming with redundant mappings. Genetic
Programming and Evolvable Machines, 8:187–220, 2007. 10.1007/s10710-007-
9027-9.

[62] X. Yao. Evolving artificial neural networks. In Proceedings of the IEEE, pages
1423–1447, 1999.

[63] T. Ziemke, N. Bergfeldt, G. Buason, T. Susi, and S. Svensson. Evolving cognitive
scaffolding and environment adaptation. Connection Science, 16(4):339–350,
2004.

