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Abstract

Genetic Programming (GP) has the potential to provide unique solutions to a wide range
of supervised learning problems. However, the technique suffers from a widely

acknowledged computational overhead. As a consequence, applications of GP are often

confined to datasets consisting of hundreds of training exemplars as opposed to tens of
thousands of exemplars, thus limiting the applicability of the approach. This work

proposes and thoroughly investigates three data sub-sampling algorithms that filter the
initial training dataset in parallel with the learning process. The motivation being to focus

the GP training on the most difficult or least recently visited exemplars. To do so, we

build a hierarchy of subset selections, thus matching the concept of a memory hierarchy.
Such an approach provides for the training of GP solutions to data sets with hundreds of

thousands of exemplars in tens of minutes whilst matching the classification accuracies of
more classical approaches.
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1 Introduction
The interest of this work lies in providing a framework for efficiently training genetic

programming (GP) on large datasets. Specifically, the interest is focused on binary

classification, where efficient multi-class GP algorithms have been proposed elsewhere
[38]. There are at least two aspects to this problem: the cost of fitness evaluation and the

overhead in managing datasets that do not reside within RAM alone. The computational

overhead associated with the inner loop of GP fitness evaluation has been widely
recognized. The traditional approach for addressing this problem has been hardware

based. Examples include Beowulf clusters [1], parallel computers [2] and FPGA
solutions [3]. In this work we propose to address the problem through the following two

observations. Firstly, within the context of supervised learning, the significance of data

sampling algorithms have been widely acknowledged albeit with the motivation to
improve error performance, e.g. boosting and bagging [4, 5]. Secondly, memory

hierarchies are widely used in CPU architectures, where such hierarchies are based on the
concept of temporal and spatial locality [6]. The motivation used here, however, is that

any learning algorithm need only see a subset of the total dataset, where the sampling

process used to identify such a subset of exemplars should also be sympathetic to the
memory hierarchy of the computing platform.

To address these issues the method of Dynamic Subset Selection [7] was revisited and
extended to a hierarchy of subset selections. Such a scheme was previously applied to the

10% KDD-99 benchmark, a dataset consisting of approximately half a million exemplars

[8]. The dataset was first partitioned into blocks that were sufficiently small to reside
within RAM alone. Blocks were then chosen from this partition based on Random Subset

Selection (RSS). This forms level 1 of the selection hierarchy. At level 2, the method of
Dynamic Subset Selection (DSS) was used to stochastically select exemplars from the

block identified at the first level. Several rounds of DSS are performed per level 1 block,

with exemplars selected with a bias based on exemplar difficulty and age. In this work,
this hierarchy is referred to as the RSS-DSS hierarchy.

In this work we concentrate on the parameterization of the algorithm and extending the

evaluation to three other datasets (the previous work of Song et al. concentrated on
application issues associated with the application to an intrusion detection problem [8]).
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Furthermore, two alternative hierarchies are introduced: the first, referred to as the DSS-

DSS hierarchy, selects level 1 blocks using DSS instead of RSS; and the second, referred
to as the Balanced Block hierarchy first partitions the two classes of the dataset and then

forms level 1 blocks by selecting a partition from each class using DSS and then
combining the two partitions. Such a scheme ensures that each block always consists of

the same ratio of exemplars from both the minor and major class. These new hierarchies

are shown to improve the error properties of the ensuing solution.
This thesis is organized as follows: Chapter 2 is a literature survey beginning with an

introduction to Genetic Programming in 2.1 and a discussion of the difficulties
encountered when using Genetic Programming on large datasets in 2.2. Previous work

engaged in dealing with these difficulties is discussed in 2.3. The use of subset selection

algorithms is introduced in 2.4, which is then extended in this work into a hierarchy of
subset selections in 2.5; Chapter 3 deals with methodology, including the generic form of

GP utilized here, namely Dynamic Page-Based Linear Genetic Programming in 3.1, and

the addition of the hierarchical subset selection algorithms to GP which were developed
in this work in 3.2, 3.3 and 3.4; Chapter 4 details the results achieved by these algorithms

on four large datasets; and Chapter 5 is a conclusion and a discussion of future work.
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2 Literature Survey
This chapter begins with an introduction to Genetic Programming in 2.1 and a discussion

of the difficulties encountered when using Genetic Programming on large datasets in 2.2.

Previous work engaged in dealing with these difficulties including data sampling
algorithms, hardware solutions and software solutions, which will be discussed in 2.3.

The use of subset selection algorithms is introduced in 2.4 and in particular Gathercole’s

Dynamic Subset Selection (DSS) [7]. The use of subset selection algorithms is extended
in this work into a hierarchy of subset selections and these algorithms are introduced in

2.5.

2.1 Introduction to Genetic Programming
Genetic programming is an extension to genetic algorithms where the goal, in this case, is

to create a computer program that can solve a problem using a simulated evolutionary
process [3]. Genetic programming (GP) is one of many computational techniques used to

simulate evolution and hence belongs to the computer science field of evolutionary
computation (EC). Genetic programming also belongs to the field of machine learning

(ML), as the goal is to develop computer programs that improve automatically through

experience [21].  Indeed, in this work GP is implemented as a supervised learning
algorithm in which GP is presented a set of labeled exemplars, namely the training

dataset, from which it is expected to generalize (classify) to previously unseen exemplars.
The success of the GP is gauged by running the resulting program on a test dataset in

which the labels are known but are not made available to the program [22].

Genetic Programming begins with an initial population of computer programs, each with
an associated fitness. The fitness of each program is evaluated by running the program on

the entire training dataset. The fitness is a reflection of the program’s classification

accuracy, which is the number of correctly classified exemplars divided by the total
number of exemplars in the training set [24]. GP then transforms the current population

into a new population, or generation, through processes based on the Darwinian concepts
of natural selection and survival of the fittest [20]. This transformation is achieved

through search operators, typically mutation and crossover (sexual recombination).

Mutation involves a random change to an individual program in some way and is used to
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explore the solution space of all programs. Crossover involves interchanging parts of two

programs with the hope that an even fitter program will result. It is an attempt to exploit
the beneficial properties of fit individuals. Crossover is similar to controlled breeding

where the hope is that the mating of two fit individuals can result in an even fitter child.
GP will continue to create new generations in this manner until some kind of termination

criterion is reached. Termination may occur when a certain classification accuracy is

reached or after a fixed number of generations.
A simplified pseudocode Genetic Programming Algorithm can be seen in the following

program, Figure 2.1.1.

Figure 2.1.1: Simplified Pseudocode Genetic Programming Algorithm
GP uses pseudo-random numbers to mimic the randomness of natural evolution and uses

stochastic processes and probabilistic decision-making throughout [21]. The number of
runs needed in order to establish the statistical significance of any GP results depends on

the underlying distribution, however the underlying distributions are unknown. The

accepted rule of thumb requires a minimum of 30 different initializations in order to

GPAlgorithm (parameters) {
(1) initialize population of programs;
(2) read training dataset into memory;
(3) while (generation < NumGenerations)

{
(4) select individuals for training;
(5) while (individual < NumIndividuals)

{
(6) while (pattern < NumPatterns)

{
(7) train individual on pattern;

}
(8) evaluate individual fitness;

}
(9) apply search operators;

}
}
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establish any statistical significance of results (i.e. verify that the solutions are not due to

random chance) [40].
Program Structure: Functional and Terminal Sets – GP assembles variable length

programs from basic ingredients termed functions and terminals. Functions perform
operations on their inputs, which are either terminals or output from other functions. The

actual creation of programs from functions and terminals occurs at the beginning of a run,

when the population is initialized. Loosely speaking, terminals provide a value to the
system while functions process a value already in the system [21]. The terminal set is

typically comprised of the inputs (training dataset features) to the GP program and
constants supplied to the GP program (numbers chosen randomly out of a range of

integers or reals). The function set is composed of the statements, operators, and

functions made available to the GP system. The function set may be application specific
and be selected to fit the specific problem domain at hand [21]. The range of available

functions to provide to a GP system is very broad. Some examples include Boolean

functions (and, or, not, xor), arithmetic functions (plus, minus, multiply, divide),
transcendental functions (trigonometric and logarithmic functions) and conditional

statements (if, then, else, switch). An important feature of the function set is that each
function should be able to handle all values it might receive as an input. This is called

closure [20]. For example, the division operator cannot take zero as an input. Division by

zero will normally crash the system. Protected division is used instead which functions as
normal division except for zero denominator inputs in which the function returns

something else (0,1, very big number). All functions (square root, log, sin, cosine) must
be able to accept all possible inputs because if there is a way to crash the system GP will

certainly find it [21].

In choosing the functions and terminals used in the GP system it is important that they be
powerful enough to represent a solution to the problem at hand [21]. For example, a

function set consisting only of the addition operator will probably not solve many
interesting problems. However, it is better not to use too large a function set for this

enlarges the search space and can sometimes make the search for a solution harder.

Therefore, a good starting point for a function set might be to use just the arithmetic
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operators with protected division [21] or conditional and logical operators (applied self

computing).
Fitness – The fitness of a GP program is the measure used by GP during evolution as to

how well a program has learned to predict the output from the given inputs (features) of
the learning domain. The fitness evaluation allows the GP system to determine which

individuals should have a higher probability of being allowed to multiply and reproduce

and which individuals should have a higher probability of being removed from the
population. For a binary classification problem the fitness is typically taken to be the

number of correctly classified exemplars in the training dataset [21]. In this case a
wrapper is used to convert the real valued result of a GP program to a binary outcome

where positive results represent class one and all other results represent class zero [20].

Selection Operator – After the application of the fitness function selection needs to be
performed to select which individuals in the population will create offspring for the next

generation [23]. Traditionally fitness-proportional selection is used in which each

individual is given a slice of a “roulette wheel” in proportion to its fitness divided by the
sum of all individuals’ fitness. The wheel is then ‘spun’ however many times necessary

to create the new population.
Another popular selection technique is steady state tournament selection. Tournament

selection involves randomly choosing a number of individuals, called the tournament size

(typically 4), from the population. Each individual within the tournament then has its
fitness evaluated. The relative fitness of the individuals is used to divide the tournament

into two groups. The better half will be parents and remain in the population while the
inferior half will be replaced by the offspring created by applying genetic operators to the

parents [21]. Steady state tournament selection does not require the comparison of fitness

between all individuals in the population, which accelerates evolution time considerably
and also provides an easy way to parallelize the algorithm [21]. Moreover, this form of

selection operator is elitist (the best individual always survives) and is known to have a
faster take over rate (poor solutions die out faster) [37].

Search Operators – The randomly initialized programs created by GP at initialization

usually have a very low fitness [21]. Evolution occurs by transforming the initial
programs in the population through the combination of selection (see above) and search
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operators. The three most popular search operators are crossover, mutation and

reproduction. Crossover combines the genetic material of two parents by swapping a part
of one parent with a part of the other. Mutation operates on a single individual and is

normally applied to each child produced by the crossover operator with a low probability
[21]. Mutation makes a random change to the GP program in some way. Reproduction

involves copying an individual so that there are now two versions of the individual in the

population. The probabilities of applying search operators are parameters of a GP run.
Termination Criteria – The training process will end if the GP has converged (an

optimal solution is found), or if the number of generations reaches a pre-set maximum.
The latter method is chosen to avoid over-learning and/or on the basis of computational

considerations.

2.2 GP on Large Datasets
The interest of this work lies in providing a framework for efficiently training GP on

large datasets. The majority of time necessary to train GP is considered to be proportional

to the product of the population size, the number of generations and the data size needed
for fitness evaluation [28, 29]. In fact, relatively little CPU time is expended on other

tasks of the algorithm, such as the creation of the initial random population at the
beginning of the run and the execution of genetic operators during the run [3].

Many authors have stressed that for large and complex problems a large GP population is

necessary due to the inefficiency of GP, in that it produces a low ratio of fit children at
each generation [25, 29]. Therefore for difficult programs, it becomes very unlikely that a

particular generation will produce fitter individuals, and thus a larger population size is
seen as the main route to increasing this likelihood [25]. However, larger populations

require more CPU and memory resources and so the CPU usage is made less efficient

and the time taken to process a generation increases.
In this work it is proposed that there are at least two aspects to the problem of efficiently

training GP on large datasets. Firstly there is the widely acknowledged computational
overhead involved with the inner loop fitness evaluation in GP [1, 3, 26, 29, 31]. The

measurement of fitness for just one individual in just one generation (Figure 2.1.1 – Line

8) might involve exposing that individual to hundreds or thousands of different exemplars
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(Figure 2.1.1 – Line 7). This problem is magnified when dealing with even larger

datasets, such as the ones under investigation here, which can have tens to hundreds of
thousands of exemplars. This overhead has traditionally been addressed by hardware

solutions, by either increasing the speed of computation such as using fast serial
supercomputers or by parallelizing the application by using parallel systems such as

Beowulf clusters [1] or Field Programmable Gate Arrays (FPGAs) [3].

Secondly, there is the overhead in managing datasets that cannot reside within RAM
alone. For datasets of much more than a thousand or so records, reading the entire dataset

into cache is not possible. Therefore, sequentially presenting the entire dataset to each
individual at each generation (Figure 2.1.1 – Line 7) will not make efficient use of the

localized spatial and temporal access patterns on which cache memory and memory

hierarchies are based.
As mentioned in the introduction these problems will be addressed through the following

two observations: the significance of data sampling algorithms; and the significance of

memory hierarchies widely used in CPU architectures. The motivation used here is that
any learning algorithm need only see a subset of the total dataset, where the sampling

process used to identify such a subset of exemplars should also be sympathetic to the
memory hierarchy of the computing platform.

However, first some previous work attempting to deal with these issues will be discussed

in 2.4 and specifically subset selection algorithms discussed in 2.5.

2.3 Previous Work
In this section previous work on improving GP efficiency will be investigated including
data sampling algorithms, hardware solutions and software solutions.

2.3.1 Data Sampling Algorithms
Within the context of supervised learning, the significance of data sampling algorithms

has been widely acknowledged albeit with the motivation to improve error performance.
Bagging and Boosting are both data sampling algorithms that have the capacity to

improve weak learners in that they exploit the instability inherent in the learning
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algorithms. Although GP has not been proven to be a weak learner favorable results have

been reported [30].
Bagging is a method for generating multiple versions of a predictor and using these to get

an aggregated predictor [22]. The multiple versions are formed through making bootstrap
replicates of the training dataset and using these as new training datasets. The replicate

datasets are the same size as the original dataset but formed by drawing at random, with

replacement, from the original dataset [4]. Bagging improves the error performance of
weak learners but GP would have to be run on several datasets of the same size. Even if

parallel implementations of GP could be run on the separate datasets there would be no
improvement in CPU time.

Boosting is a scheme that improves machine-learning methods without the need for more

test cases. It operates by modifying the distribution of the examples in the learning set by
emphasizing hard cases. Boosting creates several hypotheses based on different

distributions, starting with an initial uniform distribution and then creating new

distributions based on the performance of the previous run [22]. The hypotheses are then
combined to obtain a final hypothesis. Paris et al. applied boosting to GP with an

emphasis on error minimization, and indeed found that boosting greatly improved GP
performance [30]. Their focus did not concern large datasets and indeed the use of large

datasets would not be feasible under their scheme. CPU time will take much longer since

GP has to be run on another dataset of the same size for every round of boosting.
Furthermore, improvements cannot be made through parallelization since each new

dataset depends on the performance of GP on the previous dataset.
Therefore both bagging and boosting can not directly address the computational overhead

of the GP fitness evaluation or the overhead associated with dealing with datasets that do

not fit within RAM alone, however the significance of data sampling algorithms is an
important observation and have influenced the solution being proposed in this work for

applying GP to large datasets.

2.3.2 Hardware Solutions
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Hardware solutions to improving GP efficiency include parallel computing methods and

the use of fast serial supercomputers. However these types of systems are often not
available or affordable to most users.

Parallel Computing – Amenability to parallelization is a recognized feature of genetic
programming [29]. The time consuming fitness evaluations of the inner loop of GP are

totally decoupled from one another and can be performed independently for each

individual in the population. There are three main types of parallelization used: the
asynchronous island model, the cellular model and the master-slave model.

Using the asynchronous island model for parallelization the population is divided into
semi-isolated subpopulations (demes) with each subpopulation assigned to a separate

processor [1]. The local processor is responsible for genetic operations, selection,

randomly creating its initial subpopulation and the time consuming task of fitness
evaluations. Once a generation has been completed a relatively small percentage of the

individuals in each subpopulation are probabilistically selected (based on fitness) for

emigration from each processor to other nearby processors. Due to the fitness evaluations
being performed independently for each individual at each processor the asynchronous

island model for parallelization results in an overall increase in the total amount of work
performed that is nearly linear with the number of independent processors [1]. This near

100% efficiency is in marked contrast to the efficiency achieved in parallelizing the vast

majority of computer algorithms.  In fact the use of semi-isolated subpopulations with
occasional migration often delivers a super linear speed-up in terms of the computational

effort required to yield a solution [29].
Bennett et al. built a Beowulf-style parallel computer system to increase the computing

power of GP and produced 14 results that are competitive with human produced results

[1]. Andre and Koza parallelized GP and found a solution to the Boolean even 5 parity
problem with half the computational effort of standard GP [29].

Another method of parallelizing GP is to use the cellular model of parallelization. In the
cellular model each individual has a spatial location on a low-dimensional grid and the

individuals interact locally within a small neighborhood [31]. This model considers the

population as a system of active individuals that interact only with their direct neighbors.
Different neighborhoods can be defined for the cells and the fitness evaluation is done
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simultaneously for all individuals. Selection, reproduction and mating take place locally

within each neighborhood. Cellular GP uses a cellular automata framework to enable a
fine-grained parallel implementation of GP through the diffusion model [31]. The

reported advantages of parallelizing GP in this manner include being able to handle large
populations in a reasonable time, enabling fast convergence by reducing the number of

iterations and execution time and favoring the cooperation in the search for good

solutions which in turn improves the accuracy. In [20] a comparison of cellular GP with
both standard GP and the island model of parallel GP using benchmark problems of

differing complexity was made and the superiority of the cellular approach was shown.
In [31], ensemble techniques for cellular GP are introduced. Bagging is a well-known

ensemble technique, but when the dataset is too large to fit into main memory, the bags

will also be too large and therefore constructing many bags of the same size as the entire
dataset is not feasible solution. However, Breiman, who introduced bagging, suggested

that when datasets are too large to fit within main memory alone, a possible approach was

to partition the dataset into small pieces. A predictor would then be built on each
partition, with the resulting predictors combined together through a suitable voting

scheme. In [31], the approach was to partition the training data into small subsets, and
obtain an ensemble of predictors on the basis of each subset, and then use a voting

classification algorithm to predict the class label of new exemplars. A simple majority-

voting algorithm was used, similar to that used in bagging. A parallel file system for
partitioning the dataset on different processors was used to obtain an efficient data access

time [31]. Using this ensemble technique with parallel GP provides comparable accuracy
to a single predictor trained on the entire training set, but at a much lower computational

cost. Results were reported on several classification datasets and showed a much-reduced

CPU time with comparable accuracy to that of cellular GP without ensembles [31].
Another way to parallelize a GP system is to use a Master-Slave architecture and farm

out fitness cases to slave processors from the master. For problems of 1000 or more
fitness cases a nearly linear speed-up has been reported [21].

Field Programmable Gate Arrays – Field programmable gate arrays (FPGAs) are

massively parallel computational devices. Once they are configured the thousands of
logical function units operate in parallel at the chip’s clock rate. With rapidly
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reconfigurable FPGAs and the idea of evolvable hardware it is possible to embody each

individual of the GP population into hardware [3]. The FPGA can then be used to
evaluate all fitness measurements in parallel while a Pentium type computer can be used

as a general-purpose host computer to perform all other tasks. In this way the massive
parallelism of FPGAs was used to accelerate the time consuming task of fitness

measurement in the inner loop of the GP. This setup was used to solve Minimal Sorting

Networks managing to find a 16-step 7 sorter, a 19-step 8 sorter and a 25-step 9 sorter
which were all proven to be minimal [3]. The limitations of the FPGA is that the clock

rate operates much slower than contemporary computers (10-fold) and the operations that
can be performed by the logical function units of an FPGA are extremely primitive in

comparison to contemporary microprocessor chips. Thus, the instruction set associated

with the solution programs might present a significant barrier to understanding a solution
once found.

2.3.3 Software Solutions
Software solutions provide an alternative and comparably affordable method of

improving GP efficiency. Several software solutions include the use of machine code
evolution [21], the limited error fitness algorithm [27] and tricks of the trade such as the

removal of structural introns [17] and early run termination [21].

Machine Code Evolution – The fast execution of machine code on computer processors
allows a considerable speed-up of GP to be obtained by directly evolving machine code.

Figures differ by system, but an acceleration factor of between 60 and 200 compared to
traditional GP systems can be safely assumed [21]. In this implementation GP individuals

are stored as arrays in memory. These arrays actually contain machine code instructions

in the form of binary code, which operate directly on CPU registers. There is no high-
level interpretation or compilation step involved since the instructions are executed

directly by the processor. In particular, there are no virtual machines, intermediate
languages, interpreters or compilers involved. This is a fast approach, about 60 times

faster than compiled C code, and is very compact in its use of memory. However,

programming this type of system is more difficult than other methods and much greater
effort is needed to assure portability, flexibility and maintainability [21].
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Limited Error Fitness – Using the limited error fitness (LEF) algorithm of [27] a GP

individual’s fitness is related to how many of the ordered set of training exemplars it
classifies correctly before it makes a certain number of misclassifications. After

exceeding this error limit any cases not yet covered by the individual are counted as
misclassified. The fitness score is then the total number of misclassified exemplars.

Therefore, in general, it is quicker to find the fitness of a poor GP individual than a good

GP individual which saves CPU time. Furthermore, the training set order and the error
limit are both altered dynamically in response to the performance of the fittest individual

in the previous generation. The training set order is altered by “bubbling” – moving the
easiest exemplars (misclassified the least) to the end of the ordered set, and thereby

moving the harder exemplars one place towards the start of the ordered set [27]. In this

way easier exemplars may not be reached because of the error limit and harder exemplars
move up the training set and thereby force GP to deal with them. In this way the

population is repeatedly forced by LEF to cope with the difficult exemplars. LEF

continually emphasizes the relative importance of difficult exemplars and de-emphasizes
the importance of easy exemplars [27]. LEF promotes generality, penalizes specialists

and maintains diversity in the GP population keeping it in flux even after many thousands
of generations preventing premature convergence [27]. This flux allows the use of

smaller GP population sizes, which speeds up GP fitness evaluations and allows GP to be

run on smaller computers at a reasonable speed. Furthermore, it makes the problem easier
for GP to solve in small steps.

GP+LEF was used on the “even N parity problem” for N=6 and N=7 where the training
set consists of the 2N possible combinations of N binary inputs. GP+LEF was able to

solve the problem for N=6 and N=7 while standard GP could not. However, GP+LEF has

many more parameters than standard GP, which are used to control the change in
difficulty of the problem in response to the performance of the population in the previous

generation [27]. And it was found the GP+LEF was not very robust to the choice of
values for these parameters. Furthermore, even though individual fitness evaluations run

more quickly, LEF was found to require many more generations with each run taking

several hours to complete.
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Structural Intron Removal – Introns are dispensable instructions that do not affect the

program execution. In particular, structural introns are single instructions that emerge
from manipulating variables that are not used for the calculation of the outputs at that

program position [17]. However, introns do play an important role in protecting the
effective information holding code from being disrupted by the genetic operators.

However, a speed up can be achieved by temporarily removing structural introns from a

program before fitness evaluation. This is achieved by copying all of the effective
instructions to a buffer with the resulting program then used for the fitness evaluations.

This does not cause any changes to the individual during evolution or in behavior but
results in an enormous speedup in execution. Linear GP with intone removal was run on

several medical classification datasets and resulted in a significant decrease in runtime

[17].
Run Termination – In [21] it is noted that it is very helpful to have various criteria for

signaling the end of a GP run. Intron explosion could be one such signal since fitness

improvement is effectively over once exponential intron growth sets in [21]. Early
termination criteria can reduce the run time by a significant amount.

2.4 Subset Selection Algorithms
This work utilizes and extends the active learning concept first proposed by Gathercole

denoted Dynamic Subset Selection. The basic approach and two further subset selection

algorithms based on dynamic subset selection, namely Topology-Based Subset Selection
and Active Data Selection, are summarized.

Dynamic Subset Selection – In [7] and [25], Gathercole and Ross were motivated by the
idea that genetic programming need only see a subset of the total dataset during each

generation of GP. Furthermore, they found that it was beneficial to focus GP’s attention

on difficult exemplars, which are exemplars that are frequently misclassified. It was also
beneficial to involve exemplars that had not been looked at for several generations. These

observations led to the dynamic subset selection algorithm which involves randomly
selecting a target number of exemplars from the whole training set at every generation of

GP, with a bias, so that an exemplar is more likely to be selected if it is difficult or has

not been selected for several generations. GP programs at a given generation are then
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evaluated against this chosen subset of exemplars instead of the entire training dataset.

Besides the dynamic subset selection algorithm, where subsets are chosen randomly but
biased by exemplar difficulty and exemplar age, the author’s developed two more

algorithms: historical subset selection (HSS) in which exemplars are chosen randomly
with a bias only towards exemplar difficulty and random subset selection (RSS) in which

exemplars are chosen randomly but with uniform probability.

GP with the DSS, HSS and RSS algorithms were applied to the Thyroid dataset
consisting of 3,772 exemplars. The learning task was to classify exemplars as normal or

not based upon 21 thyroid gland measurements. The thyroid problem was once
considered the limit in terms of difficulty and CPU time of what was practical for GP

[25]. All three algorithms required much shorter time then standard GP. Furthermore,

DSS produces results as good as those of standard GP, HSS produces results that nearly
match standard GP, and RSS performed surprisingly well and could match the

performance of standard GP in certain situations. GP+DSS produced the best overall

result in comparison to the other subset selection algorithms, standard GP and previous
neural network results and the average GP+DSS performance was better than the best of

standard GP. It was also better able to generalize from the training data than the neural
networks.

GP+DSS was also applied to the Tic-Tac-Toe problem, which consists of 958 cases of all

legal 3X3 board configurations. The learning task was for the GP to classify all possible
board positions as to whether or not they are a win for ‘x’. GP+DSS finds an optimal

solution in all runs compared to standard GP’s 24% success rate and required less
computational effort [25].

The author’s hypothesize that the DSS algorithm provides GP with more possibility for

small increments in fitness. DSS makes more use of the training set and the changing
abilities of the population in supervised learning problems. They reformulate the fitness

function in response to the changing abilities of the GP population, in effect presenting a
different version of the problem to each generation, emphasizing hard exemplars and de-

emphasizing easy exemplars [25]. Furthermore they found that the DSS algorithm

seemed to be quite robust performing well with many different parameter settings.
However, the selection of useful parameter settings is somewhat of a black art.
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These subset selection algorithms are simple, require much less CPU time and could be

widely applicable to other supervised training algorithms [7].

Topology-Based Subset Selection – The authors of [26] developed a subset selection
method that takes the problem structure into account, while being problem independent at

the same time. They gather information about the problem structure being examined

during the evolutionary search by creating a topology, or relationship, on the set of fitness
cases. The topology is represented by an undirected weighted graph. This topology is

induced by the individuals in the evolving population through increasing the strength of
the relation between two fitness cases if an individual in the population is able to solve

both of them. The strength of the relation is increased by increasing the weight of the

edge between the two fitness cases in the graph. Subsets are then chosen during the GP
run such that fitness cases in the subset are as distantly related as possible with respect to

the induced topology. The authors maintain that this topology-based selection (TBS)

helps to improve the performance of GP by allowing dynamically smaller and more
suitable subsets to be selected. TBS was applied to two classification problems: the

intertwined spiral problem and the thyroid dataset. TBS and DSS were applied with two
different settings with TBS having better averages results on both problems under the

first setting, and the comparison of the results using the second setting were not

statistically significant. However, they claim that on average, runs using the topology-
based selection show faster progress than that of dynamic subset selection [26].

However, there is a problem with TBS when the dataset is very large. The most
computationally expensive tasks in TBS are the adaptation of the topology and the

requirement that the edge values in the graph need to be sorted to select the subset at each

generation, which scales approximately quadratically with training set size! The sorting
of the edge weights for a dataset of size N in just one generation would be on the order of

O(N2 log N2) [26]. Clearly this method is not feasible for very large datasets.

Active Data Selection – In [28] the authors accelerate the evolution of GP through active

selection of fitness cases during the GP run. Similar to the method of dynamic subset
selection, active data selection operates on only a subset of the given dataset at each
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generation. However, instead of maintaining the same size the training subset increases

incrementally as the generations go on through a process termed Incremental Data
Inheritance (IDI). In fact each individual program in the active data selection method will

maintain its own training subset starting with a small set of initial cases chosen from the
whole training set. After the evolution of individuals through genetic operators each

individual’s training subset is also evolved. New unseen exemplars are added to each

program’s training dataset from the original dataset.
The authors applied GP with active data selection to the table transport problem, in which

the objective is to find a multi-robot algorithm that, when executed by the robots in
parallel, causes efficient table transport behavior in the group. The training and test set

performance were slightly improved over standard GP, with almost half the CPU time

and with smaller programs evolved [28].
However, with a large dataset this algorithm will still have a problem as the individual

training datasets grow. An individual program’s subset could grow so that the subset no

longer fits within cache or RAM alone, resulting in inefficient use of memory resources.
Moreover this problem can occur with each individual since they maintain their own

subsets and could result in storage issues since there will now be multiple large datasets.

2.5 Hierarchical Subset Selection
For very large datasets that do not fit within RAM alone, the use of subset selection

algorithms of section 2.4 will still require multiple slow hard disk accesses and inefficient
use of memory in the selection of subsets. Therefore, in the work of [8] the dynamic

subset selection (DSS) algorithm of [7] was extended into a hierarchy of subset
selections, to match the concept of a memory hierarchy supported in modern computers.

This work has been re-implemented in this thesis. First the entire training dataset is

partitioned into blocks that are small enough to fit within RAM, as shown in Figure 2.5.1
below. Blocks are then chosen from the partitioned dataset randomly, with uniform

probability, based on random subset selection (RSS). This forms level 1 of the selection
hierarchy. Level 2 of the selection hierarchy used the method of DSS to stochastically

select exemplars form the block selected at level 1, biased by exemplar difficulty and age.

Multiple level 2 subsets are selected for each level 1 block selection.
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In this work this hierarchy is referred to as the RSS-DSS hierarchy, and details of this

algorithm can be found in 3.2. The work of Song et al. concentrated on issues associated
with the application of this hierarchy to an intrusion detection problem (10% KDD’99

dataset) [8]. However, in this work the evaluation of the RSS-DSS algorithm is extended
to three further datasets and there is more concentration on the parameterization of the

algorithm.

Figure 2.5.1: RSS-DSS Hierarchy
An alternative subset selection hierarchy is considered in this work in which level 1 block

selections are also chosen through the use of the DSS algorithm, by introducing a block
difficulty and a block age. Blocks can now be chosen randomly, with a bias towards

block difficulty and block age. This hierarchy is referred to as the DSS-DSS hierarchy

and it relaxes the assumption made by the RSS-DSS hierarchy that all blocks are equally
difficult [32]. Details for the DSS-DSS algorithm are presented in Section 3.3.

An extension of the DSS-DSS hierarchy is also investigated in this thesis. Here, the level
1 blocks are ‘balanced’. This hierarchy is referred to as the Balanced Block DSS-DSS

hierarchy or simply as the Balanced Block algorithm and is outlined in Figure 2.5.2. The

original dataset is first sorted into classes and then each class is divided into partitions,
though partition sizes between each class are not necessarily the same size. Level 1

blocks are then composed from a partition of each exemplar class, where such partitions

are selected in proportion to their difficulty and age by the DSS algorithm. The net effect
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is that every block consists of a balanced set of exemplars, independent of the initial

exemplar data distribution. Level 2 subset selections from this balanced block are
conducted by DSS.

Further details of the RSS-DSS, the DSS-DSS and the Balanced Block Hierarchies will
be examined in Chapter 3 – Methodology.

2.6 Discussion
In this work, the interest is in developing a single classifier capable of dealing with the
entire large dataset and not in creating a committee of classifiers developed on subsets of

the dataset that need to be combined after training on their individual subsets.

The two issues involved with applying GP to large datasets are the overhead involved in
GP fitness evaluations and the overhead of dealing with datasets that do not fit within

RAM alone. It has been shown in 2.4 that the method of dynamic subset selection (DSS)
effectively deals with the issue of GP fitness evaluations only requiring the GP to see a

subset of the entire dataset at every generation. By focusing on exemplars that are

difficult or have not been seen for several generations this technique was shown to speed
up fitness evaluations and even outperform standard GP.

However, for a GP classifier to be successful on a large dataset it is not sufficient to only
address the issue of GP fitness evaluation but must also explicitly address the size of the

dataset. The DSS algorithm does not address the memory overhead involved with large

datasets and so it cannot take advantage of the concepts of temporal and spatial locality
on which cache memory is based. For this reason, the method of dynamic subset selection

is extended upon in this work into a hierarchy of subset selections. Hierarchical subset
selection will improve GP fitness evaluations through the use of DSS and will also be

sympathetic to the memory hierarchy employed in modern computers by dividing the

large datasets into blocks that are small enough to fit within RAM alone.
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Figure 2.5.2: The Balanced Block Hierarchical Subset Selection Algorithm - The original

large dataset is first sorted into the two classes of the binary classification dataset. The

two classes are then divided into partitions. A partition from each class is then combined
to form a level 1 block. Partitions are selected by DSS over partition ages and difficulties.

Once a level 1 block is formed multiple level 2 subset selections are conducted and GP
individuals are trained on selected subsets.
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Original Unsorted Data
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3 Methodology
As indicated above, our principle interest lies in the investigation of exemplar sub-

sampling algorithms, which filter the dataset in proportion to the ‘age’ and ‘difficulty’ of

exemplars as viewed by the learning algorithm, while also incorporating the concept of a
memory hierarchy. Such schemes should significantly decrease the time to complete the

inner loop of GP, without impacting the error performance. The algorithms are actually

independent of the supervised learning algorithm, but in this case they are motivated by
the plight of GP in which the inner loop is iterated over a population of candidate

solutions [36]. Section 3.1 summarizes the form of GP utilized in this work (any generic
form of GP will suffice), whereas the methodologies for the three hierarchical subset

selection techniques are detailed in Sections 3.2, 3.3 and 3.4.

3.1 Dynamic Page-Based Linear Genetic Programming
In this work a form of Linearly-structured GP (L-GP) is employed [9-12]. That is to say,

rather than expressing individuals using the tree like structure popularized by the work of
Koza [13], individuals are expressed as a linear list of instructions which are executed

sequentially [9]. Execution of an individual therefore mimics the process of program

execution normally associated with a simple register machine. That is, instructions are
defined in terms of an opcode and operand (synonymous with function and terminal sets

respectively) that modify the contents of internal registers {R[0],…,R[k]}, memory and
program counter [9]. Output of a program is taken from the best register upon completion

of program execution (or some appropriate halting criterion [11]), where the best register

is the register of the best performing individual that generates the greatest number of hits.

Crossover in Linear GP swaps linear segments of code between two parents as shown in

the Figure 3.1.1 below (adapted from [21]). The parents are in the left half of the figure
while the resulting children are in the right half of the figure. Crossover chooses two

individuals as parents based on some selection policy. Crossover then randomly selects a
number of instructions from each parent (shown in grey) and swaps the selected

sequences between the two parents. Mutation, in linear GP, performs a logical XOR

operation between the candidate instruction and a randomly generated bit sequence.
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Figure 3.1.1: Crossover in Linear GP

Page-based Linear Genetic Programming with Dynamic Crossover
In an attempt to make the action of the crossover operator less destructive, the location of

crossover points remains constant. This scheme is denoted as dynamic page-based LGP,
or DPgLGP [12]. In DPgLGP, an individual is described in terms of a number of pages,

where each page has the same number of instructions. Crossover is limited to the

exchange of single pages between two parents, and appears to result in concise solutions
across a range of benchmark regression and classification problems. Moreover, a

mechanism for dynamically changing page size was introduced, thus avoiding problems

associated with the a priori selection of a specific number of instructions per page at
initialization. Mutation operators take two forms. In the first case the ‘mutation’ operator

selects an instruction for modification with uniform probability and performs an XOR
with a second instruction, also created with uniform probability. If the ensuing instruction

represents a legal instruction the new instruction is accepted, otherwise the process is

repeated. The second mutation operator ‘swap’ is designed to provide sequence
modification. To do so, two instructions are selected within the same individual with

uniform probability and their positions exchanged. The motivation behind the swap
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mutation operator is that the sequence in which instructions are executed within a

program has a significant effect on the solution. Thus a program may have the correct
composition of instructions but specified in the wrong order.

The fixed number of instructions per page and the crossover operator being constrained
to swapping a single page between programs means that once initialized the length of an

individual (the number of pages multiplied by the number of instructions per page) never

changes. This differs from classical GP where there is no constraint on crossover, which
can result in an increase in the number of instructions and thus the length of individual

programs often without a corresponding improvement in performance (code bloat).
Despite the fixed length of individuals, pgLGP appears to be capable of providing

concise solutions and does not appear to be sensitive to the maximum number of

instructions, hence, it does not need extensive fine-tuning of this parameter as might be
anticipated [12]. The maximum page size of 256 instructions utilized here was adopted

from the previous work of Song et al. [8]. Median results in terms of program size are

typically well within this maximum and indicate that this parameterization is satisfactory.
Furthermore, the crossover operator in traditional Linear GP is responsible for creating

significant overheads in terms of memory management and memory accesses. The main
memory management problem coming from the requirement to swap code fragments of

differing lengths between pairs of individuals. Enough memory needs to be reserved for

each individual up to the maximum program length, and entire blocks of code physically
shuffled. DPgLGP only swaps code fragments of equal length and so the memory

management problem now simplifies to reading programs and copying the contents of
parents to children [12].

3.2 RSS-DSS Hierarchy
The basic formulation for the hierarchical sampling of training exemplars divides the

problem into three levels. Level 0 divides the training set into a sequence of equal blocks.
Blocks reside in memory and are chosen stochastically, Level 1.  Level 2 samples the

exemplars of the selected block using the stochastic sampling algorithm Dynamic Subset
Selection (DSS), which biases selection towards the more difficult or older exemplars [7].

Program 1 outlines the general relationship between learning algorithm (GP in this case)
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and hierarchical sampling algorithm for the case of RSS block selection at level 1 and

DSS exemplar selection at level 2:

Program 3.1 - Genetic Programming with RSS-DSS Hierarchy
{

(1) divide dataset into blocks (level 0)

(2) initialize training system and population
(3) while (RSStermination == FALSE)

{
(4) conduct Block Selection (level 1)

(5) while (DSStermination == FALSE)

{
(6) conduct Subset Selection (level 2)

(7) while (TournamentEnd == FALSE)

{
(8) conduct tournament selection

(9) train tournament individuals on Subset
(10) update exemplar difficulty

(11) apply search operators

}
}

(12) update #Subset selected at next block b instance
}

(13) run best individual on entire dataset

(14) run best individual on test dataset
(15) record results

(16) remove introns and translate
}

Basic design decisions now need to identify: how a block is identified (level 1), how a
subset is selected (level 2) where GP individuals only iterate over the contents of a
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subset, and how many subsets are selected per block, i.e. the source of the computational

speedup. Three basic algorithms are proposed, RSS-DSS (§3.2), DSS-DSS (§3.3) and the
Balanced Block algorithm (§3.4).

Level 1 – Block based Random Subset Selection (RSS). At level 0 the datasets are
partitioned into ‘blocks’ (Program 3.1, Line 1), all the blocks exist on the hard disk. A

block is then randomly selected with uniform probability (Program 3.1, Line 4) – or

Random Subset Selection (RSS) – and read into RAM, level 1 of the hierarchical Subset
Selection algorithm. Following selection of block ‘b’ a history of training pressure on the

block is used to determine the number of iterations performed at level 2 of the RSS-DSS
hierarchy – the DSS subset. This is defined in proportion to the error rate over the

previous instance of block ‘b’ for the ‘best’ individual over a level 2 subset from block

‘b’ (Program 3.1, Line 12), Eb(i-1). Thus, the number of DSS subset iterations, I, on
block, b, at the current instance, i, is

Ib(i) = I (max) ¥ Eb(i – 1) . (3.1)

Where I(max) is the maximum number of subsets that can be selected on a block; and Eb(i –

1) is the error rate (number of block misclassifications) of the best-case subset individual
from the previous instance, i, of block b. Hence, Eb(i)=1 – [hitsb(i)/ #exemplars(b)],

where hitsb(i) is the hit count over block b for the best-case individual identified over the
entire RSS block at iteration i of block b; and #exemplars(b) is the total number of feature

vectors in block b. To identify the ‘best case’ individual an array is kept over block b to

record the hits for each individual in the population. After each tournament the hits of the
parents are accumulated while the hits of the newly created individuals are set to zero.

The best case individual over block b is therefore the individual with the maximum
number of hits accumulated. Naturally, denoting the ‘best case’ individual in this manner

prefers individuals that have been chosen for the level 2 subset more often, and so has the

potential to miss better performing individuals which might reside in the population.
However, an alternate scheme would reintroduce a significant computational cost of the

inner loop.
Level 2 – Dynamic Subset Selection (DSS) A simplified version of DSS is employed in

the second level of the selection hierarchy [7]. Once a block has been selected using the

above RSS process, exemplars within the block are associated with an age and difficulty.
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The age is the number of DSS selections since the exemplar last appeared in a DSS

subset. The difficulty is the number of GP individuals that misclassified the exemplar the
last time it appeared in the DSS subset. Following selection of a block at level 1, all ages

are set to one and all difficulties are set to a worst-case difficulty (i.e. no persistence of
exemplar difficulties or ages beyond a block selection). Exemplars appear in the DSS

subset stochastically, with a fixed chance of being selected by age or difficulty

(%difficulty = 100 – %age). Thus two roulette wheels exist per block, one is used to
control the selection of exemplars with respect to age and the other difficulty, the roulette

wheels being selected in proportion to the corresponding probability for age and
difficulty. This process is repeated until the DSS subset is full (Program 3.1, Line 6), the

age and difficulty of selected exemplars being reset to the initial values. Exemplars that

were not selected from the block have their age incremented by one whereas their
difficulties remain the same. Currently DSS uses a subset size of 50 exemplars, with the

objective of reducing the number of computations associated with a particular fitness

evaluation. Each DSS subset is kept for six steady state tournaments (4 individuals taking
part per tournament) before reselection takes place with up to I(b)(i) selections per block

(Program 3.1, Line5) – equation (3.1).
The use of the fixed probability of 70% for difficulty ensures that greater emphasis is

given to exemplars that resist classification, while the 30% for age ensures that easier

exemplars are also visited in an attempt to prevent over-learning.

3.3 DSS-DSS Hierarchy
The RSS-DSS algorithm makes the implicit assumption that all blocks are equally
difficult. The following DSS-DSS algorithm relaxes this assumption. To do so, a block

difficulty and age is introduced and used to bias the stochastic selection of blocks in

proportion to their relative age and difficulty using roulette wheel selection. Thus, the
probability of selecting block i is,

Block(i)weight   = %diff x Blockdiff(i) + %age x Blockage(i)

Âj (Blockdiff(j)) Âj (Blockage(j))
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P(block(i))       = Block(i)weight (3.2)

Âj (Block (j) weight)

Where %diff is the fixed difficulty weighting (70%) and %age the age weighting (100 -

%diff); Blockdiff(i) and Blockage(i) are the respective block difficulty and age for block i;
and j indexes all blocks.

At initialization each block has an age of one and worst-case difficulty. Therefore, block

selection will initially be uniform. The age of a block is the number of RSS block
selections since last selected. The difficulty of a block takes the form of a weighted

running average, thus persistent across block selections, or,

Block(i, 0) = Block (i – 1);

Block(i, j) = a exemplardiff(j) + (1 – a) Block (i, j – 1); "j Œ {1, …, Psubset}

Block(i) = Block(i, Psubset)

Where exemplardiff(j) is the difficulty of exemplar j; j indexes all exemplars in the subset
of Psubset exemplars; and, a is a constant (0 < a < 1), set to 0.1 in this case. The difficulty

of a block will be updated before each new level 2-subset selection (Program 3.1 – Line

11 and before returning to Program 3.1 – Line 5). Since a is small, each of the exemplars

in subset have the ability to influence the overall block difficulty by a small amount. If

the exemplar difficulty is high, the overall block difficulty will increase, whereas if the
exemplar difficulty is small, the overall block difficulty will decrease. Level 2 of this

hierarchy uses the same DSS process as the RSS-DSS hierarchy.

3.4 Balanced Block Hierarchy
For many datasets the distribution of class exemplars is not uniform, thus some classes

are represented excessively while others are represented very infrequently. This is
typically the case with the anomaly detection problem on computer networks such as the

classification problem of the 10% KDD’99 dataset. Some attacks, such as Denial of

Service, occur very frequently (the basic objective is to overload the target network node)
making up almost 80% of the training data, while others, such as a probe or User to Root

(U2R) attack, are very infrequent, and account for only a small percentage of the overall
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audit data [33]. The following tables (Tables 3.4.1 and 3.4.2) show the unbalanced

distribution of each of the training datasets used in Chapter 4. Note that the Census
Income dataset, the Shuttle 2 dataset and the Shuttle 4 dataset are particularly

unbalanced.

Dataset 10%KDD’99 Adult Census-Income
Class 0 19.69% 24.78% 5.76%
Class 1 80.31% 75.22% 94.24%

Table 3.4.1: Dataset Distributions

Shuttle 1 2 3 4
Class 0 20.84% 99.60% 85.14% 94.42%
Class 1 79.16% 0.40% 14.86% 5.58%

Table 3.4.2: Shuttle Datasets Distributions
One approach to the problem of unevenly distributed data might be to stratify the data

such that each level one block had the same distribution as the original data [33].
Unfortunately, when some exemplar classes are very rare this scheme will also fail since

rare exemplars are still encountered very infrequently.

The approach taken here is based on the previous DSS-DSS algorithm, but has the added
goal of always having class 0 and class 1 exemplars represented in the Level 1 block at a

fixed percentage. In this way both classes can always be represented regardless of the
original size and distribution of the dataset. An optimal percentage of each class in the

level 1 block now needs to be determined. This approach is termed the Balanced Block

algorithm.
The first stage of the balanced block algorithm is to sort the dataset and to select the

desired percentage of class 0 and class 1 exemplars to appear in the Level 1 balanced

block. Once a percentage has been selected, say 25/75 (25% of the block class 0 and 75%
of the block class 1), the class 0 and class 1 exemplars in the sorted dataset can be

divided up into partitions matching the size of its block percentage. For example, a block
size of 1000 with a 25/75 block partition ratio would require class 0 partitions of 250

exemplars and class 1 partitions of 750 exemplars. A block can now be created by

selecting a partition from each class and combining the two partitions. Partitions are
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selected to be in the Level 1 block by the DSS algorithm, which biases selection by

partition difficulty and partition age.
The net effect is that every block consists of a balanced set of exemplars, independent of

the initial data distribution.
Program 3.2: Balanced Block Algorithm Level 2 Subset Selection
{

(1) for ( i < level 2 subset size )
{

(2) Select partition to choose exemplar from by roulette wheel selection
over partition difficulty

(3) Select whether to choose exemplars by age or difficulty by roulette

wheel selection over the age/difficulty ratios
(4) Select exemplar for subset by roulette wheel selection over total

partition age or difficulty as chosen in line 3

}
}

The level 2 subset selection algorithm has also been altered for this algorithm. Once the

partitions have been selected for a level 1 block, exemplars are chosen for the level 2

subset by the algorithm in Program 3.2.

Program 3.3 - Genetic Programming with Balanced Block Hierarchy
{

(1) sort dataset into classes

(2) divide each class into partitions (level 0)
(3) initialize training system and population

(4) while ( BLOCKtermination == FALSE)
      {

(5) conduct class 0 partition selection (level 1)

(6) conduct class 1 partition selection (level 1)
(7) combine partitions to form Block (level 1)
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(8) while (DSStermination == FALSE)

{
(9) conduct Balanced Block Subset Selection as in Program 3.2  (level 2)

(10) while (TournamentEnd == FALSE)
{

(11) conduct tournament selection

(12) train tournament individuals on subset
(13) update exemplar difficulty

(14) apply search operators
}

}

(15) update #Subset selected at next block b instance
}

(16) run all individuals on entire dataset

(17) run best hits and best performance individuals on test dataset
(18) record results for both

(19) remove introns and translate both

Program 3.3 outlines the relationship between the GP learning algorithm and the

Balanced Block hierarchical sampling algorithm. An additional design decision for this
algorithm is the choosing of a block partition ratio (i.e. 25%/75%, 50%/50%), which will

also determine the number of partitions and the size of the partitions for each class, which
are necessary in order to partition the classes at Level 0 of the hierarchy (Program 3.3 –

Line 2).

Partition ages and difficulties are much like the block ages and difficulties introduced in
the DSS-DSS algorithm (Section 3.3), and are used to bias the stochastic selection of

partitions in proportion to their relative age and difficulty. The difficulty of partitions,
like block difficulty, takes the form of a weighted running average, and is thus persistent

across partition selections with a condition that only exemplars chosen from a partition

are allowed to update that partition. In this way each exemplar chosen for the Level 2
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subset has the ability to update the overall partition difficulty. The difficulty of a partition

is updated before each new Level 2 subset selection (Program 3.3 – Line 9).
Moreover, following the creation of a block at Level 1 of the hierarchy (Program 3.3 –

Lines 5, 6 and 7),  a history of training pressure on the two partitions of the block are
used to determine the number of iterations to perform at Level 2 (Program 3.3 – Line 9)

of the Balanced Block algorithm. The number of iterations performed on a block is

calculated using the average of the two partition error rates as opposed to the block error
rate of Equation 3.1.
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4 Results

4.1 Experimental Setup
As indicated in the introduction, the principle interest of this work is in establishing a

framework for applying Genetic Programming to large datasets. To this end experiments
are reported using four large binary classification datasets: the KDD-99 Intrusion

Detection dataset, taken from the 5th ACM SIGKDD Knowledge Discovery and Data

Mining Competition (1999) [14]; and the Adult dataset, the Census Income dataset and
the Shuttle dataset all taken from the UCI Machine Learning Repository [15].

The stochastic nature of the GP algorithm requires that runs be conducted over at least 30

different initializations in order to establish the statistical significance of the results, thus
verifying that the solutions found are not due to random chance [40]. To this end, all of

the experiments on these datasets are based on 40 GP runs using one of the Hierarchical
Subset Selection algorithms and Dynamic page-based Linear-GP [12]. Runs differ only in

their choice of random seeds used for initializing the population, with all other

parameters remaining unchanged. 40 GP runs are used, instead of only the necessary 30
in order to establish statistical significance, due to the occurrence of degenerate solutions.

Degenerate solutions are GP programs that label all exemplars as one class (i.e. label
every exemplar class 1). They are of no interest and are removed if found in the results.

Degenerate solutions seem more likely to occur on imbalanced datasets, several of which

will be studied here. The number of degenerate solutions found is recorded so we can be
sure that we have achieved 30 results in order to verify statistical significance.

Training was performed on a dual G4 1.33 GHz Mac Server with 2 GB RAM. For the
experiments on the datasets mentioned above, the best individuals of each of the 40 GP

runs are recorded in terms of two metrics: the Hits metric; and the TNR+TPR metric. The

Hits metric is just a counter for the number of correct classifications of either class by a
GP program (i.e., classification accuracy). To achieve the greatest number of hits the GP

programs will usually concentrate on labeling the class that has a larger representation in
the dataset. The trade off to this method is often a very poor accuracy on the smaller

class.
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The TNR+TPR metric stands for the true negative rate (TNR) plus the true positive rate

(TPR). The true negative rate is the number of class 0 exemplars predicted correctly to be
class 0 by the GP program divided by the total number of class 0 exemplars (TNR is

equal to 1-false positive rate (1 - FPR), see Table 4.1.1 below). The true positive rate is
the number of class 1 exemplars predicted correctly to be class 1 by the GP program

divided by the total number of class 1 exemplars (TPR is the same as the detection rate

(DR), see Table 4.1.1 below). This metric puts equal importance on achieving good
classification accuracy on both classes of a binary classification dataset regardless of the

size of each class. The TNR+TPR metric credits the accuracy of GP programs on the
smaller class but the trade off is typically not detecting as much of the larger class

resulting in a lower overall classification accuracy than the Hits metric.

Note that all training is performed with the equivalent of a ‘hits’ based count. Selection of
the ‘best’ individual from a population is calculated post-training in terms of the Hits

Metric and the TNR+TPR metric as evaluated across the training data.

The best individual program of a GP run is determined by running all of the programs in
the population on the training data and selecting the programs the have the highest

number of hits and the highest value for TNR+TPR.
The performance of each of the 40 best individuals is recorded in terms of run time in

minutes on the training dataset, and accuracy (hits rate), detection rate (DR), and false

positive rate (FPR) on both the training and test datasets and program size both before
and after simplification. Furthermore, the best individuals programs are output and then

translated. Detection rates and false positive rates are estimated as shown in Table 4.1.1.

Detection Rate = 1 – ( # of False Negatives / Total # of Positives )
False Positive Rate = ( # of False Positives / Total # of Negatives )

Table 4.1.1: Detection Rate and False Positive Rate

These results from the 40 best individuals in terms of the Hits metric and the TNR+TPR

metric are then summarized in terms of the first, second (median) and third quartiles. The

use of the mean (average) and variance would suffice if the data conformed to a normal
distribution (which it rarely does). The normal distribution would need to be verified,

which requires a sufficient number of points. However, the shape of the distribution can
not be established here due to the computational overhead involved in conducting the
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hundreds of trials necessary to achieve the sufficient number of points. The use of

quartiles, on the other hand, makes a minimum number of assumptions regarding the
distribution of the data and is therefore considered a robust statistic. The spread of

quartile plots are an indication of the degree of variation in the results, with tighter
quartiles representing greater consistency of the solution.

Removal of Structural Introns – Once evolution is complete, programs can be
simplified by the removal of structural introns [17]. As mentioned in Chapter 2, introns

are dispensable instructions that do not have any effect on the output of the program.
Structural introns, in particular, are single instructions that emerge from manipulating

variables that are not used in the sequence of instructions contributing to the calculation

of the output [17]. Introns do play an important role in protecting effective code from
being disrupted by genetic operators, such as crossover, during GP training, but once

training is complete these instructions can be safely removed.

GP Parameters – Table 4.1.2 lists the common parameter settings for all GP runs.

Parameter Setting
1 Population size 125
2 Maximum # of pages 32
3 Page size 8 instructions
4 Maximum working page size 8 instructions
5 Crossover probability 0.9
6 Mutation probability 0.5
7 Swap probability 0.9
8 Tournament size 4
9 Number of Registers 8

10 Instruction type 1 probability 0.5/5.5
11 Instruction type 2 probability 4/5.5
12 Instruction type 3 probability 1/5.5
13 Function set {+,-,*,/}
14 Terminal set {0, …, 255} » {exemplar

features}
15 Level 2 subset size 50
16 Block selection iterations 1000
17 Max subset selection iterations (6

tournaments/iteration) 100

18 Wrapper function 0 if output £ 0, otherwise 1
19 Cost function Increment by 1/(# in class)

for each misclassification
Table 4.1.2: Parameter Settings for Dynamic Page-based Linear GP
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The first 14 parameters are standard GP parameters [12] while parameters 15, 16 and 17
define the number of epochs before training stops. The 18th parameter merely reflects the

problem type – classification – and is used to map the continuous GP output into a binary

classifier. The last parameter, 19, is the ‘hits’ count used to measure fitness during
training.

Instruction Set – The GP instructions employ a 2-address format in which provision is
made for: up to 16 internal registers, up to 64 inputs (Terminal Set), 5 opcodes

(Functional Set) – the fifth is retained for a reserved word denoting end of program – and

an 8-bit integer field representing constants (0-255) [12]. Two mode bits toggle between
one of three instruction types: opcode with internal register reference; opcode with

reference to input; target register with integer constant. Extension to include further
inputs or internal register merely increases the size of the associated instruction field. The

output is taken from the best performing register.

In addition to the hierarchical subset selection algorithms the C5.0 tree induction
algorithm was run on each of the datasets tested here (see [39]). C5.0 provides an

alternative machine-learning algorithm for comparative purposes. C5.0 was chosen since
it is readily available, it is able to handle large datasets and it is easy to use. In addition to

a vanilla C5.0 run various pruning parameterizations were attempted in order to reduce

the number of tree nodes and/or rules returned by the algorithm.
The rest of Chapter 4 investigates the performance of the RSS-DSS, the DSS-DSS and

the Balanced Block algorithm on the Adult dataset (4.2), the 10% KDD’99 dataset (4.3),

the Census Income dataset (4.4) and the Shuttle dataset (4.5). Each section contains a
parameterization of the Balanced Block algorithm in terms of the optimal ratio of the

Level 1 block into class partitions. This optimal block partition ratio is then used in the
comparison to the other algorithms. Section 4.2 uses the Adult dataset to further

investigate the parameterization of the RSS-DSS, DSS-DSS and the Balanced Block

algorithms.

4.2 The Adult Dataset
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The Adult Dataset represents a prediction problem taken from the 1994 Census Bureau

database and can be found in the UCI Machine Learning Repository [15]. It is the
smallest dataset considered here, with a training set of over 30,000 exemplars. The

learning task is to predict whether a person’s income exceeds $50,000 per year based on
14 census data features. Each exemplar represents a person and is made up of 14 personal

and demographic characteristics plus a label. All exemplars with missing features were

removed from both the training and test data. The data distribution for the Adult dataset is
approximately 25% class 0 and 75% class 1 for both training and test sets, Table 4.2.1.

The Adult Dataset Training Test
Class 0 (>$50K) 7474 24.78% 3700 24.57%

Class 1 (<=$50K) 22688 75.22% 11360 75.43%
Total 30162 100% 15060 100%

Table 4.2.1: The Adult Dataset and Data Distribution

In the following section, the Adult dataset is used to conduct a range of parameter

sensitivity experiments. RSS-DSS and DSS-DSS parameterization is presented in 4.2.1

while Balanced Block parameterization is presented in 4.2.2.

4.2.1 RSS-DSS and DSS-DSS Algorithm Parameterization

4.2.1.1 Block Sizes
Recall from Chapter 3 that the RSS-DSS and DSS-DSS algorithms initially divide the
large dataset into a series of blocks. The block size is chosen so that a single block can fit

entirely within RAM alone. However, within the limitation of fitting in RAM it is not

known what the optimal block size should be. To this end, experiments with different
block sizes were run for the RSS-DSS and DSS-DSS algorithms. Adult dataset block

sizes and the corresponding number of blocks can be found in Table 4.2.2. Note that for
each dataset the final block will not contain the full block size but the remaining number

of exemplars.

Block Size 250 500 750 1000 2500 5000
# of blocks 121 61 41 31 13 7

Table 4.2.2: Adult Dataset Block Sizes and Number of Blocks
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Tables 4.2.3 and 4.2.4 list median results in terms of run time in minutes, test accuracy,

test detection rate and program size after intron removal for both the Hits metric and the
TNR+TPR metric. Full results, including first, second (median) and third quartiles as

well as training results can be found in Appendix A, Tables A.1 and A.2.

RSS-DSS
Block Size 250 500 750 1000 2500 5000

Time 7.26 8.06 7.22 8.69 9.19 12.35
Hits Metric

Accuracy 80.59% 81.00% 79.42% 80.77% 79.52% 79.21%
DR 0.9229 0.9197 0.9578 0.9148 0.9297 0.9601
FPR 0.5181 0.4918 0.7108 0.4953 0.6159 0.7541

TNR+TPR 1.4048 1.4279 1.2470 1.4195 1.3138 1.2060
Size 89 79 58 91 51.5 63

TNR+TPR Metric
Accuracy 75.13% 75.20% 73.48% 76.16% 72.93% 73.87%

DR 0.7158 0.7140 0.6849 0.7276 0.6809 0.6934
FPR 0.1368 0.1338 0.1138 0.1377 0.1211 0.1212

TNR+TPR 1.5790 1.5802 1.5711 1.5899 1.5598 1.5722
Size 75 81 65 76.5 53 59

Table 4.2.3: Median RSS-DSS Results for Differing Block Sizes

DSS-DSS
Block Size 250 500 750 1000 2500 5000

Time 7.45 7.98 7.44 7.88 9.64 11.20
Hits Metric

Accuracy 80.83% 80.60% 80.81% 79.64% 79.79% 79.58%
DR 0.9244 0.9325 0.9327 0.9293 0.9404 0.9420
FPR 0.4828 0.5604 0.5554 0.6024 0.6143 0.6035

TNR+TPR 1.4416 1.3721 1.3773 1.3269 1.3261 1.3385
Size 80 73 70 70.5 65.5 48.5

TNR+TPR Metric
Accuracy 75.64% 75.08% 74.46% 74.53% 74.77% 74.56%

DR 0.7188 0.7136 0.7082 0.7066 0.7069 0.7004
FPR 0.1300 0.1342 0.1268 0.1305 0.1232 0.1276

TNR+TPR 1.5888 1.5794 1.5814 1.5761 1.5837 1.5728
Size 75.5 87 72 72 66.5 61

Table 4.2.4: Median DSS-DSS Results for Differing Block Sizes

Tables’ 4.2.3 and 4.2.4 show that as the block size increases, then the run times of the
algorithm seem to increase. The smaller block size resulting in a significant speedup in
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CPU time mirrors cache block size design, in which larger blocks encounter a higher

transfer penalty if it is not leveraged into an extended utilization.
It is also apparent that the Hits metric results in greater classification accuracy for both

algorithms while the TNR+TPR metric not surprisingly has the greater TNR+TPR value.
The Hits metric performs better in terms of detection rate while the TNR+TPR metric has

a much better false positive rate. This coincides with our expectations for these metrics.

In terms of test accuracy, test detection rate and test false positive rate; both algorithms
appear to be quite robust across blocks sizes within each metric. Therefore, we will

dismiss the larger block sizes of 2500 and 5000 as the optimal block size due to slower
run times. All of the other block sizes compare well in terms of consistency (spread of

quartiles – see Appendix A, Tables A.1 and A.2). Any of the other four block sizes can

be chosen as optimal and a block size of 1000 is used throughout this section
corresponding to our original parameterization of the algorithm. Upon reflection, it may

have been better to choose a block size of 750 due to its superior median run times and

program sizes after intron removal with all other results being comparable. However, no
significance testing was conducted to verify a significant difference in results.

Block Size 250 500 750 1000 2500 5000
RSS-DSS 16.95 16.95 17.56 16.99 16.72 17.56
DSS-DSS 16.46 16.63 16.95 16.95 17.06 17.03

Table 4.2.5: Best Case Adult Dataset Error Rates

Block Size 250 500 750 1000 2500 5000
RSS-DSS 1.6085 1.6069 1.6026 1.6058 1.6107 1.6061
DSS-DSS 1.6088 1.6070 1.6086 1.6011 1.6042 1.6071

Table 4.2.6: Best Case Adult Dataset TNR+TPR Values

Tables 4.2.5 and 4.2.6 list the error rates of the best case RSS-DSS and DSS-DSS
algorithms with varying block sizes in terms of both error rate and TNR+TPR values. For

the DSS-DSS algorithm as block size decreases the error rate also tends to decrease while
in most cases the DSS-DSS error rate was better than the RSS-DSS error rate. For

TNR+TPR values there does not seem to be a trend with a decrease of block size but the

DSS-DSS algorithm does tend to find a marginally better solution in most cases.

4.2.1.2 Block and Exemplar Age/Difficulty Ratios
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Table 4.2.7 list the median results for varying age/difficulty ratios for the RSS-DSS

algorithm for both the Hits metric and the TNR+TPR metric.
Recall that exemplars appear in the DSS subset stochastically, with a fixed chance of

being selected by age or difficulty. For example, a 30/70 age/difficulty ratio means that
for each exemplar to be selected for the DSS subset there is a 30% chance of being

selected by age and a 70% chance of being selected by difficulty. Age/difficulty ratios of

30/70, 10/90 and 0/100 were run, although the other extreme of 100/0 was not tested. The
10/90 ratio decreases the probability of being selected by age and increases the

probability of being selected by difficulty. The 0/100 ratio means that all exemplars are
chosen for the DSS subset by difficulty not taking age in to account at all. The 0/100 ratio

is similar to boosting algorithms in wide spread use which are based on difficulty alone.

Full results for this experiment can be found in Appendix A, Table A.3. These results
show that the three ratios seem to be comparable in terms of consistency (spread of

quartiles in Appendix A, Table A.3).

RSS-DSS
Exemplar Age/Diff 30/70 10/90 0/100

Time 8.58 8.25 8.21
Hits Metric

Test Accuracy 80.77 79.40 79.64
Test DR 0.9148 0.9518 0.9491
Test FPR 0.4953 0.7061 0.6408

TNR+TPR 1.4195 1.2457 1.3083
Program Size 91 76 77

TNR+TPR Metric
Test Accuracy 76.16% 74.36% 74.32%

Test DR 0.7276 0.7030 0.6988
Test FPR 0.1377 0.1265 0.1242

TNR+TPR 1.5899 1.5765 1.5746
Program Size 76.5 79.5 77.5

Table 4.2.7: Median RSS-DSS Exemplar Age/Difficulty Ratios

Table 4.2.7 shows that the 0/100 ratio had the lowest median run time. This could be a

result of removing the first roulette wheel based selection between age and difficulty in
choosing an exemplar for the DSS subset.

The 30/70 age/difficulty ratio achieves the best median test accuracy and the best

TNR+TPR value for both the Hits metric and the TNR+TPR metric. The 10/90 ratio
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achieves a higher median test accuracy than the 0/100 ratio but a worse TNR+TPR value

for the Hits metric, while outperforming the 0/100 ratio for both values for the TNR+TPR
metric. These results suggest that it is indeed beneficial to consider the age of exemplars

when deciding which exemplars to choose for the DSS subset.
Table 4.2.8 shows the median results of varying the ratio of choosing blocks by age and

difficulty as well as varying the ratio of choosing exemplars by age and difficulty (as in

Table 4.2.7).

DSS-DSS
Block

Age/Diff 30/70 10/90 0/100
Exemp.
Age/Diff 30/70 10/90 0/100 30/70 10/90 0/100 30/70 10/90 0/100

Time 7.04 7.45 7.71 7.13 7.22 7.06 6.98 7.33 7.06
Hits Metric

Acc. 79.64 79.29 80.27 80.53 80.13 80.02 79.63 79.49 79.89
DR 0.929 0.959 0.929 0.936 0.930 0.942 0.959 0.959 0.941
FPR 0.602 0.733 0.528 0.557 0.538 0.610 0.740 0.738 0.578
Size 70.5 69 85 83.5 72 80 64.5 75.5 72.5

TNR+TPR Metric
Acc. 74.44 73.49 75.40 75.27 75.14 74.47 74.35 73.05 74.32
DR 0.706 0.690 0.720 0.714 0.714 0.703 0.703 0.679 0.704
FPR 0.129 0.126 0.137 0.138 0.131 0.128 0.126 0.120 0.125
Size 70.5 74 72 72.5 69.5 67.5 65.5 75.5 75

Table 4.2.8: Median DSS-DSS Block and Exemplar Age/Difficulty Ratios

Unlike the exemplar age/difficulty ratio the block ratio is used to determine a weight for

each block in proportion to its age and difficulty. Roulette wheel selection of blocks is

then applied over all block weights. Varying the block age/difficulty ratio will therefore
alter the effect of block age and block difficulty on each blocks weighting. Block ratios of

30/70, 10/90 and 0/100 were tested each with corresponding exemplar ratios of 30/70,
10/90 and 0/100. Full results of this experiment can be found in Appendix A, Table A.4.

The median results shown in Table 4.2.8 are surprisingly similar across the table with

time, test accuracy, test detection rate and test false positive rates differing by a very
small margin. Consulting the quartiles in Appendix A, Table A.4 show that all of the

results seem to be comparably consistent as well. This suggests that the DSS-DSS
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algorithm is actually quite robust in terms of both block age/difficulty ratio and exemplar

age/difficulty ratio.

4.2.2 Dataset Manipulation

4.2.2.1 Sorting the Adult Dataset
Leading up to the development of the Balanced Block algorithm, experiments were run to

test the effect of sorting the dataset before application of the DSS-DSS algorithm. Two

block sizes were used: 1000 (31 blocks) and 5000 (7 blocks). Sorting the dataset creates
only one block in between the two classes in which both classes are represented.

Figure 4.2.1: Sorted Adult Dataset with 7 Blocks

Figure 4.2.1 shows the sorted Adult dataset divided into seven blocks of size 5000. Block

one is made up entirely of class 0 exemplars (white block) while blocks three through

seven are made up entirely of class 1 exemplars (dark blocks). Only block two has
exemplars from both classes (grey block – with 2474 class 0 and 2526 class 1).
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Figure 4.2.2: Quartile Plots of Block Selection Frequencies on Sorted Adult Dataset for
Block Sizes of 1000 (31 Blocks) and 5000 (7 Blocks).

The frequencies shown in Figure 4.2.2 show that the single mixed block (block 8 for

block sizes of 1000, and block 2 for block size of 5000) is chosen more often for both
block sizes. It seems logical that it would be harder for the algorithm to do well on a
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block that has both class 0 and class 1 unless it can learn to solve both classes. This

suggests that the mixed block would consistently be the most difficult and it is indeed
chosen more often by the DSS-DSS algorithm. This verifies that the DSS-DSS algorithm

is functioning as anticipated.
Table 4.2.9 lists the median results of running the DSS-DSS algorithm on the sorted

Adult dataset. Full results of this experiment can be found in Appendix A, Table A.5.

Block Size 1000 5000
Run Time (mins) 2.34 7.38

Hits Metric
Accuracy 77.48 77.92

Detection Rate 0.9587 0.9618
False Positive Rate 0.7892 0.7892

TNR+TPR 1.1695 1.1726
Program Size 34 51

TNR+TPR Metric
Accuracy 71.05 70.48

Detection Rate 0.6618 0.6415
False Positive Rate 0.1399 0.1039

TNR+TPR 1.5219 1.5376
Program Size 24.5 41.5

Table 4.2.9: Median DSS-DSS Results on Sorted Adult Dataset

The sorting of the Adult dataset has resulted in faster median run times and usually a

smaller median program size than for DSS-DSS for block sizes of 1000 and 5000 on the

unsorted Adult dataset (see Table 4.2.4). However, in almost all other instances,
including accuracy and TNR+TPR value, the sorted median results were worse than those

of the unsorted results (except for DR for the Hits metric).

Dataset Sorted Adult Unsorted Adult
Block Size 1000 5000 1000 5000

Best Accuracy 80.33 79.40 83.05 82.97
Best TNR+TPR 1.5512 1.5711 1.6011 1.6071

Table 4.2.10: Best Case DSS-DSS Results on Sorted and Unsorted Adult Dataset

Table 4.2.10 shows the best accuracy and the best TNR+TPR value for DSS-DSS

algorithm with block sizes of 1000 and 5000 on both the sorted and unsorted Adult
datasets. It is readily apparent that the unsorted Adult dataset results are superior in both
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accuracy and TNR+TPR. The basic hypothesis here is that blocks of the same exemplar

class encourage degenerate GP solutions, thus impacting the detector quality as a whole.

4.2.2.2 Manually Mixing the Adult Dataset
Further testing was conducted on the DSS-DSS algorithm where the dataset was initially
separated into its respective classes. Creating blocks with a fixed proportion of class 0

exemplars and class 1 exemplars then formed a new dataset. When the smaller class ran
out, the remainder of the larger class was put together at the end of the new dataset.

Different block proportions were attempted for these manually mixed datasets as shown

in Table 4.2.11.

Dataset Block Size Num Blocks Breakdown
Mixed 1 1000 31 15 blocks 50/50, 15 blocks class 1, 1 block rest
Mixed 2 1000 31 30 blocks 25/75, 1 block rest
Mixed 3 5000 7 3 blocks 50/50, 3 blocks class 1, 1 block rest
Mixed 4 5000 7 6 blocks 25/75, 1 block rest

Table 4.2.11: Manually Mixed Adult Datasets

Figure 4.2.3: Mixed 3 – Manually Mixed Adult Dataset

Figure 4.2.3 shows an example of a manually mixed Adult dataset. This is the Mixed 3
dataset which is the third dataset shown in Table 4.2.11 with 3 blocks mixed (blocks 1 to

3 shown in grey), followed by three blocks of class 1 exemplars (blocks 4 to 6 shown in
dark), followed by a single block of the remainder of the dataset (block 7 shown in grey).

Table 4.2.12 shows the median results of the DSS-DSS algorithm on the four mixed

Adult datasets of Table 4.2.11. Full results can be found in Appendix A, Table A.6. The
Mixed 2 and the Mixed 4 dataset both have all of their blocks representing both class 0

and class 1 exemplars. The DSS-DSS algorithm seems to take longer on these two
datasets as compared to Mixed 1 and Mixed 3 respectively. However, the Mixed 2 and

Mixed 4 results show an improvement over the results of Mixed 1 and Mixed 3, which

only have half of their block with representatives of both classes. The greater quantity of
mixed blocks results in higher median accuracies and median TNR+TPR values for both
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Block Size 1000 5000
Dataset Mixed 1 Mixed 2 Mixed 3 Mixed 4

Run Time (mins) 4.89 7.73 8.68 11.81
Hits Metric

Accuracy 77.71 79.15 77.77 79.70
Detection Rate 0.9586 0.9569 0.9586 0.9413

False Positive Rate 0.7892 0.7215 0.7892 0.6073
TNR+TPR 1.1694 1.2354 1.1694 1.3340

Program Size 63.5 62.5 46 71
TNR+TPR Metric

Accuracy 71.11 72.62 70.64 74.73
Detection Rate 0.6506 0.6746 0.6439 0.7056

False Positive Rate 0.1014 0.1208 0.1011 0.1315
TNR+TPR 1.5492 1.5538 1.5428 1.5741

Program Size 59 56 33 73.5
Table 4.2.12: Median DSS-DSS Results on Mixed Adult Datasets

block sizes of 1000 and 5000, and for both the Hits metric and the TNR+TPR metric.

Furthermore, the results from the manually mixed Adult dataset show a definite
improvement over the results of the previous section’s sorted Adult dataset.

Block Size 1000 5000
Dataset Mixed 1 Mixed 2 UnMixed Mixed 3 Mixed 4 UnMixed

Best Hits 81.02 83.14 83.05 79.87 83.02 82.97
Best Performance 1.5729 1.6057 1.6011 1.5802 1.6017 1.6071

Table 4.2.13: Best Case DSS-DSS Results on Mixed Adult Datasets
and UnMixed Adult Dataset

Table 4.2.13 shows the best results found by the DSS-DSS algorithm on the four mixed

datasets as well as the best results on the unmixed Adult dataset for comparison. The
Mixed 2 (Mixed 4) dataset with all blocks mixed again shows better results in terms of

best accuracy and best TNR+TPR value than Mixed 1 (Mixed 3). Furthermore, the best
Mixed 2 results outperform the best results found on the unmixed Adult dataset with

block size of 1000, while the best Mixed 4 results have a higher accuracy than the

unmixed Adult with block size 5000 and a comparable TNR+TPR value.
The improvement in performance of the datasets in which each block has a mixture of

class 0 and class 1 exemplars helped to motivate the Balanced Block algorithm.

4.2.3 The Balanced Block Algorithm Parameterization



45

This section takes a closer look at the Balanced Block algorithm. In 4.2.3.1 the result of

varying the a parameter is investigated. Recall that the a parameter controls the amount

of influence that the difficulty of each individual exemplar chosen to be in the level 2
DSS subset has over its’ partition difficulty (partition difficulty is calculated as a running

average similarly to block difficulty in the DSS-DSS algorithm see 3.3). A larger a

increases the influence each exemplar has on the partition difficulty while a smaller a

decreases this influence.

In 4.2.3.2 the difficulties of the two partitions making up the level 1 balanced block and
the number of exemplars from each class in the level 2 DSS subset are listed for the first

20 DSS iterations. This table is investigated to confirm whether the balanced block
algorithm is working as expected.

In 4.2.3.3 several block partition ratios are investigated to discover the optimal setting for

the balanced block algorithm on the Adult dataset. The block partition ratio controls the
proportion of exemplars from each class that make up the level 1 block (e.g., a 25/75

block partition ratio denotes 25% of the level 1 block to class 0 exemplars and 75% of the
block to class 1 exemplars).

4.2.3.1 a Parameter

Tables’ 4.2.14 and 4.2.15 show the best results in terms of the Hits metric and the

TNR+TPR metric for the Balanced Block algorithm with various a parameters and

various block partition ratios. Recall that the a parameter is used to update the running

average of partition difficulties from exemplars chosen to be in the DSS subset from that
particular partition.

aHITS Metric 0.05 0.1 0.2
10/90 83.294 83.234 82.636
15/85 82.417 82.444 82.889
25/75 82.058 82.311 82.875
30/70 81.833 81.700 82.072

37.5/62.5 83.572 82.689 82.191
50/50 83.061 82.855 82.616

Block
Partition

Ratio

62.5/37.5 82.503 81.985 81.580
Table 4.2.14: Best Case Accuracies for Balanced Block Algorithm

a Parameters using Hits Metric
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aTNR+TPR Metric 0.05 0.1 0.2
10/90 1.5986 1.5941 1.5930
15/85 1.5994 1.6007 1.6004
25/75 1.6004 1.5921 1.5947
30/70 1.5997 1.5998 1.5969

37.5/62.5 1.6053 1.5899 1.5761
50/50 1.6004 1.6031 1.5981

Block
Partition

Ratio

62.5/37.5 1.6044 1.5921 1.5841
Table 4.2.15: Best Case TNR+TPR for Balanced Block Algorithm

a Parameters using TNR+TPR Metric

For both the Hits and the TNR+TPR metrics the best combination was an a of 0.05 and a

block partition ratio of 37.5/62.5. However, all of the best hits and performance measures

were very close together, differing by only a small amount, suggesting that the algorithm

is in fact quite robust in terms of these parameters.

4.2.3.2 Balanced Block DSS Selection
Once partitions have been selected to create a 1st level block of the Balanced Block
algorithm the DSS subset needs to be filled. The subset is filled through choosing

exemplars from one of the two partitions. A partition is chosen through a roulette wheel
selection over partition difficulties. Table 4.2.16 shows the first 20 iterations of DSS for

the first block created by the Balanced Block algorithm on the Adult dataset. The second

and third columns of Table 4.2.16 show the partition difficulties over the 20 rounds with
both partition difficulties originally starting at 25. The fourth and fifth columns show

each partition’s percentage of the total partition difficulty. The sixth and seventh columns

show how many exemplars from each class were chosen for the DSS subset (a total of 50
exemplars per DSS subset) and columns eight and nine show the percentage of each

exemplar in the DSS subset. The selection of a partition from which to choose an
exemplar for the DSS subset is a stochastic process and so the proportion of total

partition difficulty and the proportion of each class in the DSS subset should be similar

though not necessarily the same. An examination of Table 4.2.16 shows that this is
indeed the case, verifying that the Balanced Block algorithm is working as expected.
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Partition Difficulty % of Total Diff # Class % of Total# Class 0 Class 1 Class 0 Class 1 0’s 1’s 0’s 1’s
1 25.00 25.00 50.00 50.00 20 30 40 60
2 4.76 22.87 17.22 82.78 12 38 24 76
3 11.43 6.55 63.58 36.42 28 22 56 44
4 2.25 21.59 9.43 90.57 3 47 6 94
5 8.41 1.15 88.02 11.98 40 10 80 20
6 1.49 16.06 8.51 91.49 4 46 8 92
7 8.00 1.43 84.84 15.16 45 5 90 10
8 2.63 10.44 20.14 79.86 13 37 26 74
9 10.43 7.02 59.78 40.22 33 17 66 34

10 1.73 20.04 7.95 92.05 4 46 8 92
11 8.39 1.45 85.25 14.75 39 11 78 22
12 1.84 16.64 9.97 90.03 5 45 10 90
13 10.22 1.16 89.79 10.21 45 5 90 10
14 1.22 10.69 10.28 89.72 9 41 18 82
15 9.88 4.70 67.78 32.22 35 15 70 30
16 1.37 19.16 6.67 93.33 1 49 2 98
17 3.73 1.10 77.17 22.83 42 8 84 16
18 1.04 14.44 6.69 93.31 2 48 4 96
19 5.59 1.16 82.87 17.13 46 4 92 8
20 1.34 8.81 13.17 86.83 9 41 18 82

Table 4.2.16: Balanced Block DSS Selection

The partition difficulties in columns two and three of Table 4.2.16 do seem to fluctuate a
good deal between each DSS round. This seems to suggest that exemplars may have too

much influence over the partition difficulties at each DSS round. The amount of influence
exemplars have over the partition difficulty is controlled by the a parameter, which was

set to 0.1 in this experiment. However, in the previous subsection experiments with
different a parameters did not seem to have a very large affect on the outcome of the GP

experiments.

4.2.3.3 Balanced Block – Block Partition Ratios
Table 4.2.17 show the corresponding sizes and number of partitions for each of the block

partition ratios that will be used to parameterize the Balanced Block algorithm below. A
block partition ratio of 10/90 indicating that Level 1 blocks are made up of 10% class 0

and 90% class 1. For the block size of 1000 used in this experiment this means that the

class 0 partitions are of size 100 and class 1 partitions are of size 900.
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Block Ratios 10/90 15/85 25/75 30/70 37.5/62.5 50/50 62.5/37.5
Size 100 150 250 300 375 500 625Zero

Partitions # 75 50 30 25 20 15 12
Size 900 850 750 700 625 500 375One

Partitions # 26 27 31 33 37 46 61
Table 4.2.17: Balanced Block Algorithm Adult Dataset – Number of Partitions and Size

of Partitions

Block partition ratios have been chosen to try to ensure a good number of partitions for

each class, and to try to fit as many exemplars into partitions as possible for each class

(extra exemplars are put into a final partition which is usually much smaller than the
other partitions) and just to test a variety of different block partition ratios.
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Figure 4.2.12: Adult Dataset Balanced
Block Partition Ratios – Program Size

after Intron Removal TNR+TPR Metric

Figures 4.2.4 to 4.2.12 show quartile plots of the results of the Balanced Block algorithm

with varying block partition ratios on the Adult dataset. Results are reported in terms of
run time, test accuracy, test detection rate, test false positive rate and program size after

intron removal for both the Hits metric and the TNR+TPR metric. Full results from this

experiment can be found in Appendix A, Table A.7.
The results shown in Figures 4.2.4 to 4.2.12 show that median values across partition

ratios are, for the most part, quite similar. However, the spread of the quartile plots are
quite different. For the Hits metric the 30/70 ratio seems to be the best partitioning it has

the highest median detection rate but in a classic trade-off has the worst false positive

rate. However, this partitioning is always competitive and is the most consistent of all the
partitions (smallest spread in quartile plots). For the TNR+TPR metric the 30/70 ratio

again seems to be the best partitioning being among the lowest median run times, the
highest median test accuracies, the highest median detection rates, the lowest median

false positive rates (lower is better) and in the middle in terms of program size after

intron removal. However, again the 30/70 partitioning appears to be the most consistent
of all the partitions (smallest spread in quartile plots).

Therefore, the 30/70 partitioning will be chosen as the best parameterization of the
Balanced Block algorithm on the Adult dataset and will be used for comparison against

the RSS-DSS and DSS-DSS algorithms in the next section.
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4.2.4 GP Algorithm Comparison
Figures 4.2.13 to 4.2.21 below show quartile plots of the results for the RSS-DSS, the

DSS-DSS and the Balanced Block algorithm with block partition ratio of 30/70 on the
Adult Dataset. Results are summarized in terms of run time, test accuracy, test detection

rate, test false positive rate and program size after intron removal for both the Hits metric
(left figures) and the TNR+TPR metric (right figures). Full results may be found in

Appendix A, Table A.8.
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Figure 4.2.21: Adult Dataset – Program
Size after Intron Removal TNR+TPR
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The DSS-DSS algorithm had the slowest median run time (Figure 4.2.13) and somewhat

surprisingly the balanced block algorithm had the fastest median run time. The step up in
run time between the RSS-DSS and the DSS-DSS algorithm at first appeared to be a

natural reflection of the overhead in conducting an additional roulette wheel based

calculation for block selection in DSS-DSS, as opposed to the uniform selection in the
RSS-DSS algorithm. However, under this reasoning the Balanced Block algorithm should

also suffer from extra calculations due to selecting partitions to make up the Level 1
block, and extra roulette selections to determine which partitions of the Level 1 block

will contribute exemplars to the DSS subset. Upon further consideration it is believed that

run time will be more affected by the size (complexity) of GP programs throughout
training than extra roulette wheel selections due to the far greater number of program

executions for fitness evaluation.
The Hits metric has much higher test accuracy than the TNR+TPR metric (Figures 4.2.14

and 4.2.15), a much higher test detection rate (Figures 4.2.16 and 4.2.17) than the

TNR+TPR metric but a much higher (worse) false positive rate (Figures 4.2.18 and
4.2.19) than the TNR+TPR metric. This follows our reasoning that the Hits metric will

concentrate on the larger class 1 and try to maximize detection rate, and thereby

achieving a better overall accuracy while the TNR+TPR metric attempts to concentrate
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on both classes with equal importance thereby improving the false positive rate but

suffering a lower test accuracy.
The RSS-DSS algorithm had the highest median test accuracy (Figure 4.2.14) and the

lowest median test false positive rate (Figure 4.2.18) for the Hits metric. The DSS-DSS
algorithm had the highest median test accuracy (Figure 4.2.15), the highest median

detection rate (Figure 4.2.17) and the lowest program size after intron removal (Figure

4.2.21) for the TNR+TPR metric.
The Balanced Block algorithm had the lowest median run time (Figure 4.2.13), the

highest median detection rate for the hits metric (Figure 4.2.16) and the lowest median
false positive rate for the TNR+TPR metric (Figure 4.2.19).

The Balanced Block algorithms results always seemed competitive with the RSS-DSS

and DSS-DSS results and also seemed to show the most consistency (tightness of quartile
plots) out of all three algorithms.

4.2.5 Comparison with Other Algorithms
In order to provide some qualification of the classifier performance Table 4.2.18 details
(best case) error rates of alternative machine learning algorithms summarized as part of

the UCI repository [15]. Unfortunately no information is provided regarding the learning

algorithms, the reliability with which these results were attained or any preprocessing or
algorithm parameterizations necessary to achieve these results.

Algorithm Error Algorithm Error
FSS Naïve Bayes 14.05 Voted ID3 (0.6) 15.64

NBTree 14.10 CN2 16.00
C4.5-auto 14.46 Naïve-Bayes 16.12

IDTM (decision table) 14.46 Voted  ID3 (0.8) 16.47
HOODG 14.82 T2 16.84
C4.5 rules 14.94 1R 19.54

OC1 15.04 Nearest-neighbor (3) 20.35
C4.5 15.54 Nearest-neighbor (1) 21.42

Table 4.2.18: Error Rates on Adult Dataset [15]

Table 4.2.19 lists results reported by Folino et al. in [31] where ensemble techniques for

parallel GP’s are investigated. In particular the cellular model of parallel genetic

programming (CGPC – Cellular Genetic Programming Classifier) was employed which is
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a fine-grained parallel implementation of GP through the diffusion model using cellular

automata as a framework.

Algorithm Accuracy Error Rate
CGPC 82.74 17.26

BagCGPC 83.42 16.58
BagCGPC without com. 81.74 18.26

Table 4.2.19: Parallel GP Results [31]

BagCGPC is an extension to CGPC where an ensemble of classifiers is created. Each
classifier is trained on a different subset of the overall dataset. The classifiers are then

combined to classify test data by applying a majority-voting algorithm as in bagging.

Furthermore, in order to take advantage of the cellular model of GP the subpopulations of
each ensemble classifier are not independently evolved, but exchange the outermost

individuals in an asynchronous way. The third entry BagCGPC without communication
removes the communication used in BagCGPC.

Algorithm Best Accuracy Best Error Rate Best TNR+TPR
RSS-DSS 83.66 16.34 1.6042
DSS-DSS 82.60 17.40 1.6074

Balanced Block (30/70) 83.57 16.43 1.6053
Table 4.2.20: Best Case Adult Dataset Results

Table 4.2.20 shows the best results found by each GP algorithm in terms of accuracy and
TNR+TPR value in order to compare with Table 4.2.18. The RSS-DSS found the best

overall test accuracy achieving 83.66% while the DSS-DSS algorithm found the best
overall TNR+TPR value at 1.6074. It is readily apparent that the GP solutions are ranked

towards the end of Table 4.2.18, however, they also appear before the step change in

errors from an error of 17 to an error of 19.5. Again, there is no additional information on
how the algorithms in 4.2.18 fare on the smaller class, and so it is unknown how they

would compare in terms of TNR+TPR. The results in Table 4.2.19 also appear before the
step change in errors in Table 4.2.18. However, despite the advantages of parallelizing

GP and using an ensemble of classifiers our algorithms in Table 4.2.20 show comparable

results. In particular, the best case RSS-DSS and the best case Balanced Block algorithm
outperform all of the CGPC algorithms.
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Algorithm Time Size Accuracy Error DR FPR TNR+TPR
Tree 0.18 291 86.1 13.9 0.9324 0.3695 1.5629

Tree (0.1) 0.20 36 86.1 13.9 0.9583 0.4555 1.5028
Tree (0.001) 0.16 22 85.7 14.3 0.9612 0.4789 1.4823

Tree (0.00001) 0.15 18 85.7 14.3 0.9631 0.4878 1.4753
Rules 0.76 97 86.5 13.5 0.9441 0.3924 1.5517

Rules (0.1) 0.24 22 86.1 13.9 0.9582 0.4548 1.5034
Rules (0.001) 0.19 10 85.7 14.3 0.9600 0.4774 1.4826

Rules (0.00001) 0.18 10 85.7 14.3 0.9628 0.4867 1.4761
Table 4.2.21: C5.0 Results on the Adult Dataset (pruning settings in brackets)

Additional experiments with the C5.0 tree induction algorithm, Table 4.2.21 row 1,
indicate that high classification accuracies are indeed reliably achieved (test set error rate

of 13.9%), albeit at the expense of solution complexity (over 290 nodes, verses 60-170

instructions in GP). Thus, GP solutions appear to be trading complexity for precision
under the parameterization considered here.

However, a manipulation of the pruning options provided with C5.0 were able to reduce
the size of the solution to 36 tree nodes while maintaining the error rate of 13.9% (Table

4.2.21, row 2 – Tree (0.1)). Further tweaking of the pruning option led to even smaller

trees but resulted in some degradation of the error rate. Results for C5.0 Rules with
various pruning values are also shown with standard C5.0 rules achieving the lowest error

rate of all.
In terms of run time, all C5.0 algorithms finished in less than one minute as compared to

GP solutions that were on the order of 10 to 15 minutes for one run, with 40 runs

requiring up to 10 hours.
However, the last column of Table 4.2.21 shows the TNR+TPR value for the C5.0

algorithms. GP results in Table 4.2.20 show larger TNR+TPR values than those of any
C5.0 algorithm (i.e., better false positive rates under solutions found by GP). However,

C5.0 is not trained to optimize this metric.

CPU time (hrs) % train % test Best error
16.3 82.95 82.91 16.65

Table 4.2.22: Tree Structured GP on Adult Dataset, no RSS/DSS algorithm
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One final comparison is made. In this case results are reported for a vanilla

implementation of Koza’s original Tree structured GP [13] using lilgp [19]. This provides
GP baseline performance figures for classification accuracy, run time and solution

complexity. Lilgp represents an efficient C code implementation of Tree-structured GP
and is parameterized using the default values of: Pop. Size 4000; Crossover prob. 90%;

Reproduction prob. 10%; Mutation prob. 0% (i.e., parameterization as per Koza

[92][94]). As per the page-based linear GP results a node limit of 256 nodes was utilized
(as opposed to a depth limit). Results are reported in terms of median CPU time and best

case error for a total of 10 trials in Table 4.2.22. Table 4.2.22 shows that the RSS-DSS,
the DSS-DSS and the Balanced Block algorithms have not negatively impacted on the

classification performance of GP whilst retaining a computational speedup of 4 orders of

magnitude.

4.3 The 10% KDD’99 Dataset
The second large dataset under investigation is the KDD-99 Intrusion Detection dataset,

taken from the 5th ACM SIGKDD Knowledge Discovery and Data Mining Competition

(1999) [14]. Two partitions of the dataset are used, the 10% KDD’99 for training and the
Corrected Test for test, as per the original competition [14]. The 10% KDD’99 dataset

represents a real data-mining problem, containing approximately 500,000 exemplars.
Given the considerably large dataset a block size of 5000 was used resulting in 99 blocks

compared to the Adult’s block size of 1000 and 31 blocks. The data distribution of the

10% KDD’99 training data and the Corrected Test can be seen in Table 4.3.1.

Class Training Test
0 97,249 19.69% 60,577 19.48%
1 396,744 80.31% 250,424 80.52%

Total 493,993 100% 311,001 100%
Table 4.3.1: 10% KDD’99 and Corrected Test Data Distribution

Each exemplar is described in terms of 41 features, comprising of 9 basic features and 32

derived features describing temporal and content information. Here we only use the first
8 basic features, but express these in terms of a shift register with 8 taps taken at intervals

of 8 sequential exemplars. Such a scheme requires that the learning algorithm also
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identify the useful temporal properties, rather than relying on the a priori selected

features (see [16]). Each entry of the KDD dataset represents a connection, labeled in
terms of one of five categories: Normal, Denial of Service (DoS), Probe, User to Root

(U2R) and Remote to Local (R2L). In this work we are only interested in distinguishing
between Normal and any of the four attack categories. Moreover, 79% of the training

data represent instances of DoS, 20% Normal and the remainder Probe, U2R and R2l,

Table 4.3.2. Thus, as well as representing a large training set it is also unbalanced,
introducing the possibility for degenerate solutions (i.e., a detector that labels every

exemplar as attack). The test data on the other hand increases the contribution of the
second smallest attack category, R2L, to 5% of the dataset and introduces 14 attack types

unseen during training, Table 4.3.2. Moreover, there are many unseen attacks in the test

data, relative to those encountered during training.

Data Type Training Test
Normal 19.69% 19.48%
Probe 0.83% 1.34%
DoS 79.24% 73.90%
U2R 0.01% 0.07%
R2L 0.23% 5.20%

Table 4.3.2: Distribution of Attacks

4.3.1 Balanced Block – Block Partition Ratios
Several different block partition ratios were tested to help parameterize the Balanced
Block algorithm on the 10% KDD’99 dataset and to choose a best partitioning for

comparison against the RSS-DSS and DSS-DSS algorithms. Block partition ratios of
10%/90% (10% class 0, 90% class 1), 20%/80%, 25%/75% and 50%/50% were chosen

for variety and convenience. The results of these experiments are summarized in Figures

4.3.1-4.3.9 for both the Hits Metric and the TNR+TPR Metric in terms of run time, test
set accuracy, test detection rate, test false positive rate and program size after structural

introns have been removed. Full results, including training data results, can be found in
Appendix B, Table B.1.
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Figure 4.3.3: KDD Dataset: Balanced
Block Partitions – Test Accuracy

TNR+TPR Metric
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Figure 4.3.9: KDD Dataset: Balanced
Block Partitions – Program Size after

Intron Removal TNR+TPR Metric

The 25/75 block partition ratio is the best parameterization of the Balanced Block
algorithm for the KDD’99 dataset. The 25/75 ratio has the best median run time (Figure

4.3.1), test false positive rates (Figures 4.3.6 and 4.3.7) and program size after intron

removal (Figures 4.3.8 and 4.3.9). It is competitive in terms of test classification accuracy
(Figures 4.3.2 and 4.3.3) and test detection rate (Figures 4.3.4 and 4.3.5) and it seems to

be the most consistent across all of the figures for both the Hits metric and the TNR+TPR
metric.

4.3.2 GP Algorithm Comparison
Figures 4.3.10 through 4.3.18 are quartile plots comparing the RSS-DSS algorithm, the
DSS-DSS algorithm and the Balanced Block algorithm with a 25/75 block partition ratio

on the 10% KDD’99 dataset. The Hits Metric results are shown in the left figures while

the TNR+TPR Metric results are shown on the right for easy comparison. Full results of
this experiment can be found in Appendix B, Table B.2.
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Figure 4.3.10 : KDD Dataset – Run Time (minutes)
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Figure 4.3.11: KDD Dataset – Test
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Figure 4.3.12: KDD Dataset – Test
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Figure 4.3.14: KDD Dataset – Test
Detection Rate TNR+TPR Metric
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Figure 4.3.10 shows the quartile plots for algorithm run times in minutes. It is clear that

the RSS-DSS algorithm has the fastest median run time and is the most consistent in

terms of run time. The RSS-DSS hierarchy typically taking less time to train than the
DSS-DSS hierarchy and the Balanced Block algorithm appears to be a natural reflection

of the overhead in conducting additional roulette wheel based calculations for block
selections for DSS-DSS and Balanced Block, as opposed to the uniform selection of the

RSS-DSS algorithm. However, all three algorithms are two orders of magnitude better

than previously reported research in which GP was applied directly to the entire 10%
KDD’99 dataset [18]. Such a direct application required 48 hours to complete a single

trial (Pentium III, 800Mhz), whereas here each trial takes less than 20 minutes; 40 trials

therefore completing in less than 15 hours. Relative to the Adult dataset, five less minutes
appear to be necessary in run time indicating that although the Adult dataset is smaller,

there is more diversity in the dataset, where this is also reflected in the additional
complexity in the solutions.

In terms of test accuracy and detection rate for both metrics the four figures (4.3.11 to

4.3.14) show a similar pattern. The RSS-DSS algorithm shows the highest median
accuracies and detection rates. The accuracy and detection rates get worse with DSS-DSS

and worse again with the Balanced Block algorithm but these algorithms both show an
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improvement in test false positive rates than the RSS-DSS algorithm, Figures 4.3.15 and

4.3.16. Furthermore, the DSS-DSS algorithm shows an improved consistency (tighter
quartile plots) than the RSS-DSS algorithm in terms of accuracy, detection rate and false

positive rate. The Balanced Block algorithm shows a further improvement in consistency
than the DSS-DSS algorithm.

Finally, in terms of program size after intron removal, Figures 4.3.17 and 4.3.18, the

Balanced Block algorithm produced the smallest median program sizes and was also the
most consistent of the three algorithms.

For 10% KDD’99 dataset results it is interesting to note that the differences in results
between the Hits metric and the TNR+TPR metric is not very large with many of the

quartile plots appearing to be almost the same between the two metrics. Indeed it is the

case that the program with the best hits on the 10% KDD’99 dataset was often the same
program that achieved the best TNR+TPR value.

4.3.3 GP Algorithm Comparison on KDD Attack Types
Figures 4.3.19 to 4.3.26 depict the classification accuracy of each algorithm for both
metrics on the four separate attack categories (Probe, Denial of Service, User to Root and

Remote to Local). Full results, including training accuracies, can be found in Appendix

B, Table B.3.
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Figure 4.3.19: KDD Dataset – Probe
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Figure 4.3.20: KDD Dataset – Probe
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Figure 4.3.21: KDD Dataset – DoS
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Figure 4.3.22: KDD Dataset – DoS
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Figure 4.3.23: KDD Dataset – U2R
Accuracy Hits Metric 

Figure 4.3.24: KDD Dataset – U2R
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Figure 4.3.25: KDD Dataset – R2L
Accuracy Hits Metric 

Figure 4.3.26: KDD Dataset – R2L
Accuracy TNR+TPR Metric

The RSS-DSS algorithm has the highest classification accuracies for each of the attack

categories, which corresponds to its higher detection rate (Figures 4.3.13 and 4.3.14).
However, in general the RSS-DSS algorithm had the worst consistency across all of the

attack categories with the Balanced Block algorithm with 25/75 block partition ratio
being the most consistent.

For all three algorithms classification accuracy was the highest for the DoS category with

results over 95% accuracy while results on the other attack categories are significantly
worse with Probe achieving median results of approximately 53-57%, U2R achieving 9-

13%, and U2R achieving only 1.5-2.5% accuracy. However, the overall detection rate

remains very high for all three algorithms due to DoS making up 73.9% of the entire test
dataset and 91.79% of the attacks.

It is also interesting to note that on the training dataset the three algorithms were
achieving median accuracies of 14-32% on the R2L category (see Appendix B, Table

B.3), which dropped off to 1.5-2.5% accuracy on the test dataset, Figures 4.3.25 and

4.3.26. The increase in the contribution of the R2L attack category to the test dataset and
the introduction of 14 attack types unseen during training may contribute to this fall off.

The DoS and Probe categories also experience a reduction in classification accuracy
between training and test (Appendix B, Table B.3).
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4.3.4 KDD Smallest GP Program
Table 4.3.3 shows the smallest program found by all three algorithms on the KDD dataset

after structural introns have been removed.

Opcode Destination Source
1 MUL R[4] Input[1][1]
2 DIV R[4] Input[1][5]
3 DIV R[4] Input[1][5]
4 MUL R[4] Input[1][1]
5 DIV R[4] Input[1][5]
6 SUB R[4] Input[7][5]

Table 4.3.3: KDD Smallest GP Program (Balanced Block partition 50/50)

The program contains six instructions and was found by the Balanced Block algorithm

with a 50/50 partitioning. Inputs are read as Input[temporal][feature]. All registers are
initialized to zero and therefore register four, R[4], will initially start at zero. Due to R[4]

starting at zero the output of this program will be:

R[4] = 0 – Input[7][5] = - Input[7][5] (4.3.1)

with the exception of one scenario. The exception occurs when Input[1][5] is equal to

zero. In this case dividing by Input[1][5] will be protected division which returns a one.
Therefore, Line 5 in Table 4.3.3 will result in R[4] = R[4] / 0 = 1 and the output of line 6

will be:
 R[4] = 1 – Input[7][5] (4.3.2)

The only effective code for this program is in lines 5 and 6 of Table 4.3.3, and these lines

can be re-expressed as:
IF ( Input[1][5] == 0)

R[4] = 1 – Input[7][5]
ELSE

R[4] = - Input[7][5]

or as the expression:
Output = R[4] =  ( 0 / Input[1][5] ) – Input[7][5] (4.3.3)

The results of this program actually fare very well on the KDD test data as shown in

Table 4.3.4.
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Accuracy DR FPR Normal Probe DoS U2R R2L
Results 90.475 0.8946 0.0535 94.65% 50.53% 95.65% 15.35% 3.62%

Table 4.3.4: KDD Smallest Program Results

The results of this program being so small and faring so well seem rather surprising at

first. However, looking at the program in Table 4.3.3 we see that it makes use of only
feature five of the KDD dataset, which is SRC (the number of data bytes from destination

to source). For Normal traffic the SRC value is usually a positive integer. This fact, along

with the fact that normal traffic usually occurs consecutively, means that Input[1][5] and
Input[7][5] are typically both positive integers. This results in line 5 of Table 4.3.3 being

zero and line 6 returning a non-zero negative Input[7][5]. The wrapper function of our
GP maps all values less than or equal to zero as a normal connection and so normal

traffic is classified correctly as evidenced in Table 4.3.4.

On the other hand, DoS attacks typically have an SRC value of zero. This fact, along with
the fact that DoS traffic usually occurs consecutively, means that Input[1][5] and

Input[7][5] are typically both zero. This results in Line 5 of the program in Table 4.3.3

returning a one due to protected division. Furthermore, Input[7][5] also being typically
zero means the output becomes a one. The wrapper function sets all output values greater

than zero as an attack and so DoS attacks are labeled correctly again evidenced in Table
4.3.4.

4.3.5 Comparison to Other Algorithms
Table 4.3.5 shows the winning and second place entries from the KDD’99 competition
versus the corresponding GP cases.

Algorithm Detection Rate False Positive Rate TNR+TPR
Winning Entry 0.908819 0.004472 1.9043
Second Place 0.915252 0.005760 1.9095

Best GP (RSS-DSS) 0.903050 0.011160 1.8927
Best GP (DSS-DSS) 0.906116 0.014115 1.8920

Best GP (Balanced (20/80)) 0.903712 0.004031 1.8997
Table 4.3.5: Comparison Against KDD Winning Entries

Both the winning entries were based on decision trees and were trained using a boosting

algorithm on different partitions of the original 10% KDD’99 dataset. Furthermore, they
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developed independent detectors for each class over all 41 features, all of which make a

direct comparison difficult. The winning entries took roughly 24 hours to complete
training, while GP training, on the other hand, took approximately 10-15 hours to

complete (15-20 minutes for each GP run (Figure 4.3.10) for 40 runs). The winning
KDD’99 solutions were complex with 500 C5.0 decision trees in the case of the winning

entry [34] while GP programs contained approximately 50-70 instructions on median,

Figures 4.3.17 and 4.3.18. However, it is not clear how instructions and C5.0 tree nodes
or C5.0 rules can be compared. It is apparent however, that the GP solutions are

competitive to the KDD’99 competition winners, Table 4.3.5, with the Balanced Block
algorithm using a 20/80 partitioning finding the best GP solution.

C5.0 Time (mins) Size Test
Accuracy

Test DR Test
FPR

TNR+TPR

Tree 4.87 188 92.8% 0.9176 0.0052 1.9124
Tree (0.1) 5.15 135 93.1% 0.9128 0.0045 1.9083

Tree (0.001) 6.83 100 92.9% 0.9155 0.0056 1.9099
Tree (0.00001) 5.26 131 93.0% 0.9166 0.0054 1.9112

Rules 10.58 46 93.3% 0.9121 0.0055 1.9066
Rules (0.1) 9.16 48 92.9% 0.9160 0.0049 1.9111

Rules (0.001) 9.44 26 93.1% 0.9136 0.0052 1.9084
Rules (0.00001) 9.05 34 93.2% 0.9139 0.0050 1.9089

Table 4.3.6: C5.0 KDD results (binary classification with pruning levels in brackets)

Table 4.3.6 provides test results of running C5.0 on the 10% KDD’99 dataset provided to
our GP algorithms (binary classification problem distinguishing only between attacks and

normal connections with only the first eight basic connection features plus a temporal
history) as compared to KDD’99 competition winners who developed C5.0 classifiers for

each of the 41 features. These C5.0 results have very high test accuracies, outperforming

all three of our algorithms best results in most cases (Table 4.3.7), with C5.0 rules
achieving the highest accuracy at 93.3%. In terms of TNR+TPR C5.0 outperforms all of

our algorithms in all cases (Table 4.3.7 below) and even outperforms the KDD
competition winners in some cases. However, the Balanced Block algorithm with 20/80

partitioning found the lowest false positive rate (Table 4.3.5) at 0.004031 in comparison

to all of our results, the KDD winning entries, and C5.0, whilst remaining competitive in
terms of Detection Rate and TNR+TPR.
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Max Hits Max TNR+TPR
RSS-DSS 91.98% RSS-DSS 1.8927
DSS-DSS 92.17% DSS-DSS 1.8920

Balanced (50/50) 92.89% Balanced (20/80) 1.8997
Table 4.3.7: Best Case KDD Results

C5.0 actually ran quite quickly on the 10% KDD’99 dataset normally taking between 4 to
10 minutes to run (Table 4.3.6). GP results typically take between 8 to 20 minutes for 1

run and so total training time takes between 10 to 15 hours (See Figure 4.3.10).
In terms of solution size, C5.0 ranged from 100 to 188 tree nodes, and C5.0 Rules ranged

from 26 to 48 rules. GP results typically ran from 20 to 110 instructions after intron

removal with median results between 40 to 70 instructions. Again it is difficult to know
how C5.0 tree nodes and C5.0 rules can be compared to GP instructions.

4.4 The Census Income Dataset
The Census Income dataset is taken from the UCI Machine Learning Repository [15].

Similar to the Adult dataset, the learning task is to predict whether a person’s income
exceeds $50,000 per year. Each exemplar represents a person and is made up of 40

personal and demographic characteristics (or features) plus a label. All exemplars with
missing features were removed from both the training and test datasets. The Census

Income dataset is approximately three times the size of the Adult dataset with each

exemplar having 40 features compared to the Adult Dataset’s 14 features per exemplar.
The data distribution for the Census Income dataset is shown in Table 4.4.1.

Training Test
Class 0 (>$50K) 5479 5.76% 2683 5.66%

Class 1 (<=$50K) 89651 94.24% 44708 94.34%
Total 95130 100% 47391 100%

Table 4.4.1: The Census Income Dataset Data Distribution

From Table 4.4.1, it is readily apparent that Census Income is an imbalanced dataset

having approximately 6% class 0 and 94% class 1 for both training and test data. This

means that a degenerate classifier (one that labels all exemplars as one class) can achieve
94% accuracy. Degenerate classifiers on the Census Income dataset will typically achieve
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a 100% detection rate with a false positive rate close to 0%. These classifiers are of no

interest. Instead, we are looking for classifiers who perform well on both classes.
Avoiding degenerate solutions on imbalanced data is a difficult task for GP while using

the Hits metric. This metric rewards programs that classify the most data correctly
regardless of class and therefore degenerate solutions will fare quite well. On the other

hand, programs that are learning to classify the smaller class will have a lower hits count

and will therefore have a greater chance of being overwritten. So degenerate programs
will be encouraged while other programs cannot survive long enough to learn to be

competitive on both classes. For all three algorithms, RSS-DSS, DSS-DSS and Balanced
Block, degenerate solutions were returned for every run using the Hits metric.

The second metric, TNR+TPR, encourages the GP programs to classify both classes with

equal importance. No degenerate solutions were found for any of the algorithms when
this metric was employed. Therefore, all results reported on the Census Income dataset

use the TNR+TPR metric only.

4.4.1 Balanced Block – Block Partition Ratios
Several different block partition ratios were tested to help parameterize the Balanced

Block algorithm on the Census Income dataset and to choose a best partitioning for
comparison against the RSS-DSS and DSS-DSS algorithms. Block partition ratios of

5%/95% (5% class 0, 95% class 1), 10%/90%, 20%/80%, 25%/75% and 50%/50% were

chosen for variety and convenience. The results of these experiments are summarized in
Figures 4.4.1-4.4.5 in terms of run time, test set accuracy, test detection rate, test false

positive rate and program size after structural introns have been removed. Full results,
including training data results, can be found in Appendix C, Table C.1.

All results for different block partition ratios seem to have medians that are quite close to

one another, suggesting that the algorithm is fairly robust in terms of partitions. The best
partition ratio to use for comparison seems to be the 10/90 ratio. The 10/90 and 50/50

ratios had the highest test set accuracies (Figure 4.4.2) and detection rates (Figure 4.4.3)
but the 50/50 ratio had the worst median run time (Figure 4.4.1) and median program size

(Figure 4.4.5). The 10/90 ratio also has the best median run time (Figure 4.4.1) and was

typically more consistent than the other block partition ratios. Therefore, the Balanced
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Block algorithm with a 10/90 block partition ratio is used to compare to the RSS-DSS

and DSS-DSS algorithms.

0

2

4

6

8

10

12

5/95 10/90 20/80 25/75 50/50
68

70

72

74

76

78

80

5/95 10/90 20/80 25/75 50/50

Figure 4.4.1: Census Income: Balanced
Block Partitions – Run Time (minutes) 

Figure 4.4.2: Census Income:
Balanced Block Partitions – Test

Accuracy

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

5/95 10/90 20/80 25/75 50/50

 

0.12

0.14

0.16

0.18

0.2

0.22

0.24

5/95 10/90 20/80 25/75 50/50

Figure 4.4.3: Census Income:
Balanced Block Partitions – Test

Detection Rate

Figure 4.4.4: Census Income:
Balanced Block Partitions – Test

False Positive Rate



74

0

20

40

60

80

100

120

140

5/95 10/90 20/80 25/75 50/50

Figure 4.4.5: Census Income: Balanced Block Partitions – Program Size after Intron
Removal

4.4.2 GP Algorithm Comparison
Figures 4.4.6 through 4.4.10 are quartile plots comparing the RSS-DSS algorithm, the

DSS-DSS algorithm and the Balanced Block algorithm with a 10/90 block partition ratio
on the Census Income dataset. Full results from this experiment can be found in

Appendix C, Table C.2.
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The DSS-DSS algorithm has the worst median run time (Figure 4.4.6) and test false

positive rate (Figure 4.4.9), but has the best test classification accuracy (Figure 4.4.7) and
Detection Rate (Figure 4.4.8). It also appears to be the most consistent of the three

algorithms. The Balanced Block algorithm had the best median run time (Figure 4.4.6),
test false positive rate (Figure 4.4.9) and solution size after intron removal (Figure

4.4.10). The Balanced Block algorithm seems to have made the classical trade-off of

achieving a better false positive rate at the expense of a worse Detection Rate. The
lowering of the detection rate in turn lowers the overall classification accuracy due to

class 1 making up the majority of the dataset. The Balanced Block algorithm does not
appear to be as consistent as the DSS-DSS algorithm. The RSS-DSS algorithm always
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seemed to find the middle ground between the DSS-DSS algorithm and Balanced Block

algorithm.
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Figure 4.4.11 and 4.4.12 are shown to demonstrate the difference between the Hits metric

and the TNR+TPR metric on the Census Income dataset. Figure 4.4.11 shows the best

test classification accuracy achieved by each program in terms of the Hits metric
(diamonds) and the TNR+TPR metric (squares). Figure 4.4.12 show the best combined

true negative rate and true positive rate (TNR+TPR value) achieved by each program in
terms of the Hits metric and the TNR+TPR metric. It is evident in Figure 4.4.11 that the

Hits metric returns individuals with much higher classification accuracy than those using

the TNR+TPR metric. However, notice that the Hits metric classification accuracy is
around 94.5 - 95% which is just above the degenerate test set accuracy of 94.34% and in

fact the algorithm does return mostly degenerate solutions and even the best results had
very poor false positive rates (accuracy on small class). Figure 4.4.12 shows that indeed

the Hits metric results in a much lower best TNR+TPR value which is due to the Hits

metric very poor true negative rate (true positive rate or detection rate is usually near 1
while the true negative rate is near 0). On the other hand the best TNR+TPR metric

programs achieve only about 83 – 85% classification accuracy but have a much higher

best TNR+TPR than the Hits metric and return no degenerate solutions.
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4.4.3 Comparison with Other Algorithms
Table 4.4.2 shows some results reported on the Census Income dataset [15]. C4.5 and all

C5.0 algorithms performed better than the default accuracy of 94.34% but no other
information was reported such as run time, solution size and how well the algorithms

performed on each class (TNR+TPR).

Algorithm Test Classification Accuracy
C4.5 95.2%
C5.0 95.3%

C5.0 Rules 95.3%
C5.0 Boosting 95.4%
Naïve-Bayes 76.8%

Table 4.4.2: Other Results Reported on Census Income Dataset [15]

To obtain these figures and to verify the results reported above, C5.0 was run on the

Census Income dataset. Results are reported in Table 4.4.3.

Algorithm Time
(mins)

Size Test
Accuracy

Test
DR

Test
FPR

TNR+TPR

C5.0 0.67 263 95.61% 0.9919 0.6396 1.3523
C5.0 (0.1) 0.70 48 95.56% 0.9922 0.6545 1.3377

C5.0 (0.001) 0.53 12 95.20% 0.9965 0.7898 1.2067
C5.0 (0.00001) 0.52 12 95.20% 0.9965 0.7898 1.2067

C5.0 Rules 2.60 76 95.60% 0.9946 0.6865 1.3081
C5.0 Rules (0.1) 1.15 17 95.37% 0.9944 0.7238 1.2706

C5.0 Rules (0.001) 0.70 7 95.15% 0.9962 0.7920 1.2042
C5.0 Rules (0.00001) 0.68 7 95.15% 0.9962 0.7920 1.2042

Table 4.4.3: C5.0 Results on Census Income Dataset (Pruning level in brackets)
C5.0 and C5.0 Rules achieved an even higher accuracy than that reported in Table 4.4.2.

Furthermore, all runs of C5.0 and C5.0 Rules achieved an almost perfect true positive (or
detection rate) while achieving a rather poor false positive rate. The C5.0 algorithm was

very fast and managed to find very short trees and rules when the level of pruning was
increased.
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Algorithm Best Test Accuracy Best Test TNR+TPR
RSS-DSS (Hits) 94.63% 1.2230
DSS-DSS (Hits) 94.85% 1.2042

Balanced (10/90) (Hits) 94.49% 1.1203
RSS-DSS (TNR+TPR) 85.69% 1.6335
DSS-DSS (TNR+TPR) 85.66% 1.6308

Balanced (10/90) (TNR+TPR) 84.80% 1.6243
Table 4.4.4: Best Results on Census Income Dataset

All of the algorithms reported in Table 4.4.4 have a better test classification accuracy

than Naïve Bayes but worse than the other algorithms reported in Table 4.4.2 and worse

than C5.0 results in Table 4.4.3. The three algorithms using the Hits metric in Table 4.4.4
achieved results that were very similar to that of C5.0 with a very high test classification

accuracy, but a poor TNR+TPR value. The three algorithms using the TNR+TPR metric
had quite a bit lower classification accuracy but a much higher TNR+TPR value. This

means that the TNR+TPR metric learns to classify the smaller class much better than the

Hits metric and C5.0.

Algorithm Median Run Time
(mins)

Median Size after Intron
Removal

RSS-DSS (TNR+TPR) 8.57 65
DSS-DSS (TNR+TPR) 13.70 66

Balanced (10/90) (TNR+TPR) 6.02 53
Table 4.4.5: Median Run Times and Program Sizes on Census Income Dataset

Table 4.4.5 shows that the run times of the three algorithms are much slower than that of
C5.0. Furthermore, although it is difficult to make a comparison between rules or tree

nodes and program instructions it seems that C5.0 results in smaller solutions than our
algorithms.

4.5 Shuttle Dataset
The Shuttle dataset is taken from the Statlog Project Databases of the UCI Machine

Learning Repository [15]. The shuttle dataset has a training dataset of 43,500 exemplars
and a test dataset of 14,500 exemplars. Approximately 80% of the training and test data

belongs to class 1, Tables 4.5.1 and 4.5.2, and therefore the default accuracy is about
80%. The aim suggested with the dataset is to obtain an accuracy of 99 - 99.9%. This
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dataset is originally a seven class problem however due to classes 2, 3, 6 and 7 being so

small, Table 4.5.1, it has been reformulated into a 4-class problem by combining these
classes. Classes 2, 3, 6 and 7 have been combined to form class 2, Table 4.5.2.

Class Training Test
1 Rad Flow 34,108 11,478
2 Fpv Close 37 13
3 Fpv Open 132 39
4 High 6,748 2,155
5 Bypass 2,458 809
6 Bpv Close 6 4
7 Bpv Open 11 2

Table 4.5.1: Original Shuttle Distribution

Class Training Test
1 34,108 78.41% 11,478 79.16%
2 186 0.43% 58 0.40%
3 6,748 15.51% 2,155 14.86%
4 2,458 5.65% 809 5.58%

Total 43,500 100% 14,500 100%
Table 4.5.2: New Shuttle Distribution

Moreover, we are only developing binary classifiers so the problem has been broken

down into 4 binary classification problems where the object is to classify in class and out
of class for each of the four classes. Therefore, we are actually building classifiers for

four datasets Shuttle 1, 2, 3 and 4. The distributions of the four shuttle training and test

datasets are shown in Tables 4.5.3 and 4.5.4.

Training Test
Shuttle 1 9,392 34,108 3,022 11,478
Shuttle 2 43,314 186 14,442 58
Shuttle 3 36,752 6,748 12,345 2,155
Shuttle 4 41,042 2,458 13,691 809

Table 4.5.3: Shuttle Datasets 1-4 Distributions

Training Test
Shuttle 1 21.59% 78.41% 20.84% 79.16%
Shuttle 2 99.57% 0.43% 99.60% 0.40%
Shuttle 3 84.49% 15.51% 85.14% 14.86%
Shuttle 4 94.35% 5.65% 94.42% 5.58%

Table 4.5.4: Shuttle Datasets 1-4 Percentage Distributions
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4.5.1 Balanced Block – Block Partition Ratios
Several different block partition ratios were tested to help parameterize the Balanced

Block algorithm on the Shuttle datasets and to choose a best partitioning for comparison
against the RSS-DSS and DSS-DSS algorithms. Block partition ratios of 25%/75% (25%

class 0, 75% class 1), 37.5%%/62.5%% and 50%/50% were chosen for variety and
convenience for Shuttle 1. Only one block partition ratio of 95%/5% was chosen for

Shuttle 2 due to the small size of class 1 for this dataset so no comparison is made in this

section. Three block partition ratios of 70%/30%, 62.5%/37.5% and 50%/50% were
chosen for Shuttle 3, and two block partition ratios were chosen for Shuttle 4 of

62.5%/37.5% and 50%/50%. The results of these experiments for each Shuttle dataset are

summarized in subsections 4.5.2.1 to 4.5.2.3 in terms of run time, test set accuracy, test
detection rate, test false positive rate and program size after structural introns have been

removed for both the Hits metric and the TNR+TPR metric. Full results, including
training data results, can be found in Appendix D, Tables D.1, D.2 and D.3.

4.5.1.1 Shuttle 1
Figures 4.5.1 to 4.5.9 below show the results of the three block partition ratios attempted

for the balanced block algorithm on the Shuttle 1 dataset.
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Figure 4.5.1: Shuttle 1 Partitions - Run Time (minutes)
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Figure 4.5.2: Shuttle 1 Partitions - Test
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Figure 4.5.3: Shuttle 1 Partitions - Test
Accuracy TN + TP Metric
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Figure 4.5.4: Shuttle 1 Partitions - Test
Detection Rate Hits Metric 

Figure 4.5.5: Shuttle 1 Partitions - Test
Detection Rate TN + TP Metric
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Figure 4.5.7: Shuttle 1 Partitions - Test
False Positive Rate TN + TP Metric
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Figure 4.5.8: Shuttle 1 Partitions –
Program Size after Intron Removal Hits

Metric           

Figure 4.5.9: Shuttle 1 Partitions –
Program Size after Intron Removal TN +

TP Metric

The results in Figures 4.5.1 to 4.5.9 show that the 25/75 partition of the Balanced Block

algorithm has the best median run time, test accuracy, test detection rate and test false
positive rate for both metrics. Moreover, the 25/75 partition is the most consistent in

terms of run time and false positive rate and has similar consistency to the other partitions

for accuracy, detection rate and program size after intron removal. Therefore, the 25/75
block partition ratio will be chosen as the best parameterization of the Balanced Block

algorithm on the Shuttle 1 dataset.
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4.5.1.2 Shuttle 3
Figures 4.5.10 to 4.5.13 below show the results of the three block partition ratios
attempted for the balanced block algorithm on the Shuttle 3 dataset. For this dataset

individuals returned by the Hits metric and the TNR+TPR metric were the same and so
only one graph of accuracy, detection rate, false positive rate and program size after

intron removal is shown.
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Figure 4.5.10: Shuttle 3 Partitions – Run
Time (minutes)

Figure 4.5.11: Shuttle 3 Partitions - Test
Accuracy
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Figure 4.5.12: Shuttle 3 Partitions – Test
Detection Rate         

Figure 4.5.13: Shuttle 3 Partitions - Test
False Positive Rate
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Figure 4.5.13: Shuttle 3 Partitions - Program Size after Intron Removal

The 50/50 ratio has the best median run time, test accuracy, test detection rate and
program size after intron removal. It also has a similar median false positive rate to the

other partitions. Furthermore, it is the most consistent partitioning in all but program size.

Therefore, the 50/50 ratio is chosen as the best parameterization of the balanced block
algorithm for the Shuttle 3 dataset.

4.5.1.3 Shuttle 4
Two block partition ratios were attempted for the balanced block algorithm on the Shuttle

4 dataset. For this dataset individuals returned by the Hits metric and the TNR+TPR
metric were again the same and so only one graph of accuracy, detection rate, false

positive rate and program size after intron removal is shown.
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Figure 4.5.15: Shuttle 4 Partitions – Test
Accuracy
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Figure 4.5.16: Shuttle 4 Partitions – Test
Detection Rate

Figure 4.5.17: Shuttle 4 Partitions – Test
False Positive Rate
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The 62.5/37.5 ratio had the best median run time, test accuracy, test detection rate, test

false positive rate and program size after intron removal. Furthermore it was more
consistent than the 50/50 ratio in each figure. Therefore, the 62.5/37.5 ratio is chosen as

the best parameterization of the balanced block algorithm for the Shuttle 4 dataset.

4.5.2 Degenerates
Table 4.5.5 lists the number of degenerate solutions out of 40 runs for each partitioning

of each Shuttle dataset.

Dataset Partition Hits Metric TN+TP Metric
25/75 0 0

37.5/62.5 0 0Shuttle 1
50/50 0 0

Shuttle 2 95/5 27 27
50/50 17 17

62.5/37.5 16 16Shuttle 3
70/30 15 15
50/50 13 13Shuttle 4 62.5/37.5 7 7

Table 4.5.5: Balanced Block Partitions Degenerates

Recall degenerate solutions are those programs that label all of the dataset as one class.
The Shuttle 1 dataset has no degenerate solutions for any partition, however the

remaining three Shuttle datasets have quite a few, with Shuttle 2 having an excessive

amount. Recall that the stochastic nature of the GP algorithm requires that runs be
conducted over at least 30 different initializations in order to establish the statistical

significance of any results (verifying that the solutions are not due to random chance).
Therefore, the Balanced Block results for the Shuttle 2 and Shuttle 3 dataset fail to meet

this requirement since degenerate solutions are not considered.

Table 4.5.6 lists the number of degenerate solutions of each algorithm on each dataset
with the Balanced Block algorithm using the best partitioning found in the previous

section. All three algorithms successfully avoid degenerates on the Shuttle 1 dataset.

Furthermore, both the RSS-DSS and DSS-DSS algorithms perform far better in terms of
degenerates on the remaining three datasets only resulting in degenerate solutions on the

Shuttle 2 dataset at a far less rate than the Balanced Block algorithm.
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Algorithm Hits Metric TNR+TPR Metric
RSS-DSS 0 0
DSS-DSS 0 0Shuttle 1

Balanced (25/75) 0 0
RSS-DSS 5 5
DSS-DSS 5 5Shuttle 2

Balanced (95/5) 27 27
RSS-DSS 0 0
DSS-DSS 0 0Shuttle 3

Balanced (50/50) 17 17
RSS-DSS 0 0
DSS-DSS 0 0Shuttle 4

Balanced (62.5/37.5) 7 7
Table 4.5.6: Algorithm Comparison of Degenerate Solutions

The high frequency of degenerate solutions found by the Balanced Block algorithm
occurs on the more imbalanced Shuttle datasets (see Table 4.5.4) and especially on the

extremely imbalanced Shuttle 2. These results seem to favor the choice of the RSS-DSS

and DSS-DSS algorithms.

4.5.3 GP Algorithm Comparison

Despite the frequency of degenerates and the questionable significance of the Balanced

Block algorithm results, the three algorithms will be compared on the four Shuttle
datasets in the following subsections. Full results of these experiments can be found in

Appendix D, Tables D.4, D.5, D.6 and D.7.

4.5.3.1 Shuttle 1
Figures 4.5.19 to 4.5.27 below show the comparison between the RSS-DSS, the DSS-

DSS and the Balanced Block algorithm with 25/75 block partition ratio on the Shuttle 1
dataset.
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Figure 4.5.19: Shuttle 1 Algorithm Comparison - Run Time (minutes)
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Figure 4.5.20: Shuttle 1 Algorithm
Comparison – Test Accuracy Hits
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Figure 4.5.21: Shuttle 1 Algorithm
Comparison – Test Accuracy TNR+TPR
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Figure 4.5.22: Shuttle 1 Algorithm
Comparison – Test Detection Rate Hits

Metric

Figure 4.5.23: Shuttle 1 Algorithm
Comparison – Test Detection Rate
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Figure 4.5.25: Shuttle 1 Algorithm
Comparison – Test False Positive Rate
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Figure 4.5.26: Shuttle 1 Algorithm
Comparison – Program Size after Intron

Removal Hits Metric

Figure 4.5.27: Shuttle 1 Algorithm
Comparison – Program Size after Intron

Removal TNR+TPR Metric

The Balanced Block algorithm with 25/75 block partition ratio achieves the highest
median test accuracy (Figure 4.5.20 and 4.5.21), the highest median test detection rate

(Figure 4.5.22 and 4.5.23), the lowest median test false positive rate (Figure 4.5.24 and

4.5.25) and the lowest median program size after intron removal (Figure 4.5.26 and
4.5.27) for both the Hits metric and the TNR+TPR metric. Furthermore, this algorithm

had the most consistency in terms of run time, test false positive rate and program size
after intron removal.
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The DSS-DSS algorithm achieves the lowest median run time (Figure 4.5.19) and has all

median values better than that of the RSS-DSS algorithm. The DSS-DSS algorithm also
had the most consistency in terms of test accuracy and test detection rate. The DSS-DSS

algorithm was always more consistent than the RSS-DSS algorithm.

4.5.3.2 Shuttle 2
Figures 4.5.28 to 4.5.32 below show the comparison between the RSS-DSS, the DSS-
DSS and the Balanced Block algorithm with 95/5 block partition ratio on the Shuttle 2

dataset. For this dataset the Hits metric and the TNR+TPR metric returned the same

individual as best for all algorithms and so only one figure is shown for each comparison.
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Figure 4.5.28: Shuttle 2 Algorithm
Comparison – Run Time (minutes)

Figure 4.5.29: Shuttle 2 Algorithm
Comparison – Test Accuracy
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Figure 4.5.30: Shuttle 2 Algorithm
Comparison – Test Detection Rate

       

Figure 4.5.31: Shuttle 2 Algorithm
Comparison – Test False Positive Rate
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        Figure 4.5.32: Shuttle 2 Algorithm Comparison – Program Size after Intron
Removal

The DSS-DSS algorithm has the highest median test accuracy (Figure 4.5.29), and a

better test false positive rate (Figure 4.5.31) than the RSS-DSS algorithm. The RSS-DSS
algorithm and the DSS-DSS algorithm seem to have the same median run time (Figure

4.5.28), median test detection rates (Figure 4.5.30) and median program size after intron
removal (Figure 4.5.32). The Balanced Block algorithm with 95/5 block partition ratio

had the worst median run time and only outperformed the other algorithms in median test

false positive rate. However, the Balanced Block algorithm does have the greatest
consistency in all figures except for run time.

4.5.3.3 Shuttle Three
Figures 4.5.33 to 4.5.37 show the comparison of results of the three algorithms on the

Shuttle 3 dataset. The Balanced Block algorithm used a 50/50 block partition ratio. The
Hits metric and the TNR+TPR metric returned the same best programs for each of the

algorithms and so only one set of figures needs to be shown.
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Figure 4.5.34: Shuttle 3 Algorithm
Comparison – Test Accuracy
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Figure 4.5.35: Shuttle 3 Algorithm
Comparison – Test Detection Rate

               

Figure 4.5.36: Shuttle 3 Algorithm
Comparison – Test False Positive Rate
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Figure 4.5.37: Shuttle 3 Algorithm Comparison – Program Size after Intron Removal
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On this dataset the RSS-DSS algorithm and the DSS-DSS algorithm seemed to perform
similarly. The RSS-DSS algorithm had the highest median test accuracy (Figure 4.5.34)

and the lowest median false positive rate (Figure 4.5.36). All three algorithms seemed to

fare the same in terms of run time (Figure 4.5.33). The Balanced Block algorithm with
block partition ratio 50/50 fared significantly worse than the other two algorithms in

terms of test accuracy, test detection rate and test false positive rate and only had a lower
median solution size after intron removal than the other two algorithms. However, the

Balanced Block algorithm again appeared to be the most consistent algorithm only faring

worse in terms of detection rate of which the RSS-DSS and DSS-DSS algorithm get
almost perfect results.

4.5.3.4 Shuttle 4
Figures 4.5.38 to 4.5.42 show the comparison of results between the three GP algorithms

on the Shuttle 4 dataset. The Balanced Block algorithm used a 62.5/37.5 block partition
ratio here. Again, for this dataset the Hits metric and the TNR+TPR metric again returned

the same programs as the best results and so only one set of figures needs to be shown.
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Figure 4.5.38: Shuttle 4 Algorithm
Comparison – Run Time (minutes)

Figure 4.5.39: Shuttle 4 Algorithm
Comparison – Test Accuracy
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Figure 4.5.40: Shuttle 4 Algorithm
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Figure 4.5.41: Shuttle 4 Algorithm
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Figure 4.5.42: Shuttle 4 Algorithm Comparison – Program Size after Intron Removal

For this dataset the RSS-DSS and DSS-DSS algorithms achieve nearly perfect results in

terms of test accuracy (Figure 4.5.39), test detection rate (Figure 4.5.40) and test false
positive rate (Figure 4.5.41). The RSS-DSS algorithm also had the best median solution

size after intron removal (Figure 4.5.42). The Balanced Block algorithm with block

partition ratio 62.5/37.5 had the best median run time but in general did not fare as well
on Shuttle 4 as the other two GP algorithms.

4.5.4 Shuttle Programs
In this section some small programs from the Shuttle dataset will be examined. The
Balanced Block algorithm found all the following programs in Tables 4.5.7 to 4.5.10. The

programs are small but perform rather well and demonstrate the power of GP to find
simple transparent solutions. Furthermore, we can glean information about the
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relationship between a class and the features that determine whether an exemplar belongs

to that class, through examining the features used by a program.

Opcode Destination Source
1 DIV R[7] Input[8]
2 LOD R[7] 53
3 SUB R[7] Input[0]
4 DIV R[7] Input[8]
5 DIV R[7] Input[8]
Table 4.5.7: Shuttle One – Balanced Block 25/75 Smallest Program

This program was found by the Balanced Block algorithm using the best partitioning of

25/75. This small five instruction program can be further simplified. Loading register
seven with 53 in instruction two makes instruction one’s result inconsequential. The

resulting four instruction program is very small but achieves an accuracy of 95.37% with
a test detection rate of 0.9447, a test false positive rate of 0.0122 for a TNR+TPR value

of 1.9325. Furthermore, this five instruction program makes use of Input[0] and Input[8],

which corresponds to the first feature and the last feature of an exemplar. This result
gives us insight into class one exemplars since their classification relies heavily on only

two of an exemplars nine features.

Opcode Destination Source
1 ADD R[1] Input[6]
2 LOD R[1] 20
3 SUB R[1] Input[8]
4 LOD R[1] 20
5 ADD R[1] Input[1]
6 DIV R[4] R[3]
7 SUB R[4] R[1]
8 SUB R[4] Input[1]
Table 4.5.8: Shuttle 2 – Balanced Block 95/5 Smallest Program

This small eight instruction program was found by the Balanced Block algorithm using

the 95/5 block partitioning. This program can also be further simplified. Loading register

one with the value 20 at instruction four makes the previous three instructions redundant.
Therefore, this program simplifies to a five instruction program which achieves a 99.73%

accuracy with a test detection rate of 0.7069, a test false positive rate of 0.0015 for a
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TNR+TPR value of 1.7054. Furthermore, this five instruction program only makes use of

Input[1], which corresponds to the second feature of the exemplars. This result gives us
insight into class two exemplars since there classification relies heavily on the second

feature of an exemplar.

Opcode Destination Source
1 SUB R[4] Input[0]
2 ADD R[4] Input[6]
3 LOD R[0] 76
4 MUL R[4] Input[8]
5 MUL R[4] Input[8]
6 SUB R[5] R[0]
7 SUB R[5] R[4]
8 SUB R[5] R[0]

Table 4.5.9: Shuttle 3 – Balanced Block 50/50 Smallest Program

This program was found by the Balanced Block algorithm on the Shuttle 3 dataset using

the best partitioning 50/50. This small eight instruction program can not be further

simplified. This program is still small and achieves an accuracy of 94.12% with a test
detection rate of 1, a test false positive rate of 0.0690 for a TNR+TPR value of 1.9310.

Class three exemplars seem to rely on inputs 0, 6 and 8 corresponding to features 1, 7 and
9 of an exemplar.

Opcode Destination Source
1 SUB R[1] Input[6]
2 ADD R[5] Input[6]
3 LOD R[1] 80
4 LOD R[1] 13
5 ADD R[1] R[5]
6 LOD R[1] 13
7 SUB R[1] Input[6]
8 SUB R[1] Input[6]

Table 4.5.10: Shuttle 4 – Balanced Block 62.5/37.5 Smallest Program

This program was found by the Balanced Block algorithm using the best partitioning of

62.5/37.5. This small eight instruction program can be further simplified. Loading
register one with 13 in instruction six makes the previous five instructions

inconsequential. The resulting three instruction program is very small and achieves an
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accuracy of 99.99% with a test detection rate of 1, a test false positive rate of 0.000073

for a TNR+TPR value of 1.999927. This three instruction program also gives us insight
into class four exemplars, in that they are almost perfectly classified through only

considering the seventh feature (features 1 to 9 correspond to Input[0] to Input[8]).

4.5.5 Combining Programs to Build an Overall Classifier
In order to obtain an overall result on the full Shuttle dataset for comparison with other

algorithms it is necessary to combine the individual classifiers together as in [38]. This
was achieved by taking the best TNR+TPR classifiers from each of the individual Shuttle

datasets (Shuttle 1 to 4) for an algorithm. The program with the lowest number of false

positives out of these best programs is then applied to the dataset. Every exemplar that is
classified as negative by this program is then passed on to the program with the next

lowest number of false positives. This process is repeated until each of the four programs
has been run. The resulting overall classification accuracy is calculated by adding up the

correctly classified results from each program and dividing by the total number of test

exemplars.
For example in the RSS-DSS algorithm the best results from each shuttle dataset are

shown in Table 4.5.11.

Dataset Accuracy TPR+TNR False Negatives False Positives
Shuttle 1 99.86% 1.9938 3 18
Shuttle 2 99.83% 1.9983 0 25
Shuttle 3 99.88% 1.9985 0 18
Shuttle 4 99.99% 1.9999 0 1

Table 4.5.11: Best Case TNR+TPR Results by RSS-DSS Algorithm on Shuttle Datasets

So, we then apply the best programs in order of 4, 3, 1 and then 2 according to the lowest
number of false positives.

Program # of exemplars Accuracy Correct Incorrect
4 14500 99.99% 809 1
3 13690 99.91% 2155 13
1 11522 99.82% 11473 18
2 31 100% 28 0

3 leftover 14465 32
Table 4.5.12: Results after Each Program on Test Data
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The first line of Table 4.5.12 shows the result of applying the best program of the RSS-
DSS algorithm on the overall Shuttle dataset. The program labels 810 exemplars, 809 of

which were correct and 1 of which was not. The remaining 13,960 exemplars were

deemed negative and so they are passed on to the program with the next least number of
false positives, which comes from the Shuttle 3 results. This process is continued until all

of the programs have run.
The programs are applied in order of the least number of false positives so that the

programs that classify the most data incorrectly will effectively see less of the data. This

gives the poorer programs less chance to label the data incorrectly. This effect can be
seen in Table 4.5.12 as the number of incorrectly classified exemplars for program three

has dropped to 13 compared to the number of false positives normally achieved by
program three of 18. Furthermore, program four has improved classifying no exemplars

incorrectly.

The result of applying the programs in this manner has resulted in 14,465 exemplars
classified correctly and 35 exemplars (32 incorrect plus 3 unclassified) were incorrectly

classified. Dividing 14,465 by the total number of exemplars 14,500 gives an overall
classification accuracy of 99.76%.

4.5.6 Comparison with Other Algorithms
Table 4.5.13 shows the best-case results of the hierarchical GP algorithms versus results
reported using parallel genetic programming with an ensemble of classifiers.

Shuttle Test Accuracy
CGPC 94.82%

BagCGPC 94.63%
BagCGPC without comm. 91.46%

RSS-DSS 99.76%
DSS-DSS 99.78%

Balanced Block 99.87%
Table 4.5.13: Algorithms versus Ensemble Parallel GP’s

The last three entries of Table 4.5.13 show the best test accuracies achieved by the three

GP algorithms on the entire Shuttle dataset. The overall accuracies are calculated
following the method outlined in section 4.5.5. The first three entries in Table 4.5.13 are
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results reported by Folino et al. in [31] where ensemble techniques for parallel GP’s are

investigated (as discussed in 4.2.4). In particular the cellular model of parallel genetic
programming (CGPC – Cellular Genetic Programming Classifier) was employed.

BagCGPC is an extension to CGPC where an ensemble of classifiers is created. Each
classifier is trained on a different subset of the overall dataset and exchange outermost

individuals in an asynchronous way (communication). The third entry BagCGPC without

communication removes the communication used in BagCGPC.
All of our classifiers perform very well outperforming the ensemble parallel GP’s and

approaching the upper limit goal of 99-99.9% accuracy. The Balanced Block algorithm
achieved the best test accuracy with 99.87%. Despite the advantages of parallelizing GP

and using an ensemble of classifiers our algorithms outperform these results by almost

5%. However, our classifiers were built on a four class problem evolving classifiers for
each of the four classes while it is assumed that CGPC results were obtained on the

original 7 class dataset.

Run Time Size Accuracy
C5.0 Tree 0.065 16 99.9%

C5.0 Tree (0.1) 0.067 16 99.9%
C5.0 Tree (0.001) 0.063 15 99.9%

C5.0 Tree (0.0001) 0.063 13 99.8%
C5.0 Rule 0.108 13 99.9%

C5.0 Rule (0.1) 0.108 13 99.9%
C5.0 Rule (0.001) 0.102 13 99.9%

C5.0 Rule (0.00001) 0.095 11 99.8%
Table 4.5.14: C5.0 Results on Shuttle Dataset (pruning level in brackets)

Table 4.5.14 shows the results of running C5.0 on the full Shuttle dataset. C5.0 obtains

almost perfect classification accuracy with a very small run time and small trees or rules
for all cases. C5.0 test accuracies are as good or better than our GP test accuracies (C5.0

rounds up to the first decimal place).
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5 Conclusions and Future Work
The computational overhead of the inner loop fitness evaluation of GP is addressed by

introducing a hierarchy of training subset selections. This enables the scaling up of the

size of problems for which approaches based on GP may be applied. To do so, the
original problem is divided into a series of blocks. Blocks are either selected uniformly

(RSS), relative to their age and difficulty (DSS) or can be ‘balanced’ consisting of

partitions chosen relative to their respective partition age and difficulty (Balanced Block).
Exemplars are sampled from the chosen subset relative to their exemplar age and

difficulty (DSS). Such schemes match the observations used to formulate the memory
hierarchy typically employed in computer architectures.

The hierarchical subset selection algorithms presented here were compared to a standard

tree GP implementation (lilgp) on the Adult dataset demonstrating that these hierarchies
have not negatively impacted classification performance whilst resulting in a

computational speed up of one order of magnitude. Furthermore, these algorithms
provided faster results than previously reported on the 10% KDD’99 dataset by three

orders of magnitude, although previous results are not the binary version of the dataset

utilized here.
The RSS-DSS algorithm and the DSS-DSS algorithm proved to be robust towards a

variety of parameters settings, including block size, exemplar age/difficulty ratios and
block age/difficulty ratios for the DSS-DSS algorithm. The DSS-DSS algorithm

outperformed the RSS-DSS algorithm for the most part, and was typically the more

consistent algorithm (tighter spread of quartiles). However, both algorithms appeared
sensitive to unbalanced datasets returning degenerate solutions.

The Balanced Block algorithm was motivated by the encouraging results discovered
when datasets were manually balanced in to blocks and by the plight of the GP algorithm

when faced with unbalanced datasets. The Balanced Block algorithm proved to be robust

in terms of several parameters, including the alpha parameter and the block partition
ratio. Furthermore, the algorithm was typically competitive with the RSS-DSS and DSS-

DSS algorithms and was often more consistent (tighter spread of quartiles) than these

algorithms. However, contrary to the motivation behind the algorithm the Balanced
Block algorithm suffered on the datasets that were the most unbalanced and frequently
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returned degenerate solutions. In effect, enforcing a balanced block content may be

resulting in seeing too much of the minor class and therefore overlearning on this class.
Alternatively, the number of training epochs may need to be reconsidered, where this was

a constant across all datasets.
Therefore, the optimal hierarchical subset selection algorithm appears to be the DSS-DSS

algorithm, which is more consistent and outperforms the RSS-DSS algorithm, and often

outperforms the Balanced Block algorithm while remaining less prone to degenerate
solutions.

Two GP evaluation metrics were also examined in this work: the Hits metric and the

TNR+TPR metric. These metrics were used to determine the best GP programs post

training. The Hits metric usually returns a higher accuracy than the TNR+TPR metric and
concentrates on learning to classify the larger class in the dataset. The TNR+TPR metric,

on the other hand, tries to maximize the sum of the true negative rate plus the true

positive rate. This metric treats both classes as equally important regardless of the
original distribution. This usually results in a much better accuracy on the smaller class

than the Hits metric but the trade off is a poorer accuracy on the larger class that
translates to a lower overall classification accuracy. However, for heavily unbalanced

datasets the TNR+TPR metric was shown to help the GP algorithm to avoid useless

degenerate solutions. This metric could also be useful for problems where learning to
classify the smaller class is of greater importance than a high accuracy on the larger class.

These methods differ from alternative sampling algorithms such as ‘boosting’ by

introducing the concept of age and difficulty (boosting is explicitly based on

exponentially weighted difficulties) and utilizing a hierarchy of samples. The latter point
is fundamental in efficiently scaling the algorithm to larger datasets than is normally

possible without specialist hardware. That is to say, competitive solutions are located in
minutes rather than hours. Furthermore the framework of these algorithms is not specific

to GP and thus potentially applicable to other learning algorithms such as neural

networks or unsupervised learning algorithms [36].
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The C5.0 tree induction algorithm was also run on the datasets found here for

comparison. C5.0 obtains very good results in terms of accuracy on all datasets
performing as well as, and typically better than, the GP algorithms. C5.0 provided

solutions to the classification problems much faster than the GP algorithms and usually
required a lower number of tree nodes or rules than GP program instructions. However, it

is unknown how instructions and C5.0 tree nodes or rules compare. On the other hand,

GP results using the TNR+TPR metric were able to provide better results than C5.0 in
terms of this metric and in accuracy on the smaller class. In all, these results suggest that

GP needs improvement to be considered an equivalent alternative to C5.0 for binary
classification problems.

Relative to other work in which GP is explicitly applied to large datasets the proposed
methodology appears not to degrade the quality of solutions found (Adult and 10%

KDD’99) whilst providing speedups in the range of several orders of magnitude.

Moreover, no specialist hardware resources are required.

Future work
Currently for all of the hierarchical subset selection algorithms used here there is no

persistence of exemplar ages and difficulties beyond the current block. Future work will

involve investigating the maintaining of exemplar values globally beyond the current
block through possibly maintaining a history of the most difficult or significant

exemplars. Then these exemplars could be revisited and concentrated on in later
generations.

The plight of our GP algorithms on unbalanced datasets and Balanced Block algorithm’s

failure to be of benefit on unbalanced data warrants further investigation. In particular,
the use of a fixed stopping criterion that is independent of block fitness used in this work

may be negatively impacting the Balanced Block algorithm. The inclusion of an
algorithm for early stopping could potentially prevent any over learning and provide an

additional speedup in run time. Furthermore, the Balanced Block algorithm’s ability to

achieve superior consistency, could be related to this problem, and is also worth
investigating.
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Other work could involve the building of a cascade of hierarchical subset selection

classifiers where each additional classifier could take as inputs the original dataset as well
as the output from the original classifier. This should make it possible to incrementally

improve on the performance of the previous classifier. Such an architecture was
considered utilizing the RSS-DSS hierarchy, resulting in the Cascade GP algorithm [36].
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Appendix A Adult Dataset Results

Table A.1 RSS-DSS Block Sizes
Hits Metric

Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final
250

5.79 79.36 0.8996 0.4195 79.50 0.8974 0.4279 117 53.25
7.26 80.58 0.9227 0.5174 80.59 0.9229 0.5181 159 89
9.24 81.71 0.9433 0.6097 81.65 0.9433 0.6068 201 119.5

500
5.98 79.30 0.8965 0.4306 79.36 0.8940 0.4336 127 45
8.06 81.06 0.9213 0.4928 81.00 0.9197 0.4918 167 79
9.69 81.71 0.9583 0.6423 81.60 0.9576 0.6426 217 101.75

750
5.11 78.61 0.8998 0.4361 78.68 0.8976 0.4355 102.25 38.75
7.22 79.31 0.9586 0.7089 79.42 0.9578 0.7108 143 58
9.43 81.24 0.9833 0.7998 81.23 0.9837 0.8030 191 84.5

1000
7.17 79.36 0.8821 0.4089 79.41 0.8814 0.4124 135 66.25
8.69 80.86 0.9168 0.4985 80.77 0.9148 0.4953 167 91
10.64 81.58 0.9593 0.6869 81.65 0.9590 0.6857 223 126

2500
6.23 78.43 0.9166 0.4735 78.62 0.9158 0.4770 77 30.5
9.19 79.29 0.9298 0.6211 79.52 0.9297 0.6159 142 51.5
12.07 80.53 0.9674 0.7876 80.77 0.9698 0.7892 191 102.5

5000
10.28 78.28 0.9304 0.5348 78.57 0.9298 0.5325 101 42.75
12.35 79.14 0.9597 0.7574 79.21 0.9601 0.7541 135 63
15.04 80.65 0.9809 0.7993 80.96 0.9830 0.8027 175 97
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TNR+TPR Metric
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

250
5.87 72.78 0.6791 0.1217 72.74 0.6800 0.1195 119 48
7.28 75.38 0.7221 0.1391 75.13 0.7158 0.1368 159 75
9.24 77.06 0.7447 0.1568 76.95 0.7434 0.1553 203 100.5

500
6.34 72.97 0.6837 0.1237 72.96 0.6809 0.1195 135 43.5
8.22 75.10 0.7123 0.1371 75.20 0.7140 0.1338 167 81
9.71 76.48 0.7425 0.1580 76.71 0.7456 0.1562 219 108.5

750
5.29 71.60 0.6578 0.1078 71.73 0.6589 0.1036 103 34.5
7.28 73.27 0.6838 0.1188 73.48 0.6849 0.1138 143 65
9.43 75.13 0.7134 0.1432 75.42 0.7175 0.1388 191 93.5

1000
7.17 74.19 0.6972 0.1233 74.19 0.7004 0.1199 135 53
8.69 75.85 0.7242 0.1416 76.16 0.7276 0.1377 167 76.5

10.64 77.68 0.7556 0.1627 77.45 0.7534 0.1631 223 113.75
2500

6.38 71.29 0.6545 0.1086 71.39 0.6554 0.1036 79 25.25
9.37 72.86 0.6794 0.1232 72.93 0.6809 0.1211 149 53

12.12 74.95 0.7116 0.1359 75.12 0.7154 0.1330 191 103.5
5000

10.25 71.45 0.6559 0.1090 71.51 0.6562 0.1047 103 36.25
12.66 73.86 0.6955 0.1247 73.87 0.6934 0.1212 135 59
15.16 74.68 0.7107 0.1349 74.95 0.7094 0.1339 175 93
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Table A.2 DSS-DSS Block Sizes
Hits Metric

Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size After
250

5.57 79.32 0.9027 0.4329 79.57 0.9026 0.4371 111 36.75
7.45 80.53 0.9252 0.4785 80.83 0.9244 0.4828 155 80
8.99 82.18 0.9342 0.6246 82.20 0.9354 0.6228 193 107

500
5.50 78.95 0.9189 0.4536 79.06 0.9202 0.4528 113 40.75
7.98 80.53 0.9344 0.5583 80.60 0.9325 0.5604 183 73
9.52 81.95 0.9736 0.7927 81.76 0.9736 0.7959 219 113.5

750
5.08 78.93 0.8967 0.4442 79.13 0.8947 0.4480 103 42.5
7.44 80.71 0.9320 0.5551 80.81 0.9327 0.5554 151 70
9.03 81.38 0.9638 0.7699 81.56 0.9637 0.7673 193 91.25

1000
5.93 78.85 0.9051 0.4501 79.04 0.9016 0.4532 109 48
7.88 79.52 0.9309 0.6047 79.64 0.9293 0.6024 151 70.5
9.41 81.07 0.9808 0.7978 81.06 0.9812 0.8013 207 111.75

2500
6.65 78.64 0.8972 0.4302 78.74 0.8955 0.4357 101 38.25
9.64 79.57 0.9412 0.6180 79.79 0.9404 0.6143 159 65.5
11.76 81.24 0.9744 0.7900 81.08 0.9752 0.7922 191 107.75

5000
8.76 78.54 0.9143 0.4637 78.81 0.9158 0.4643 93 31.75
11.20 79.30 0.9418 0.6086 79.58 0.9420 0.6035 135 48.5
14.15 81.68 0.9783 0.8001 81.62 0.9798 0.8035 183 86
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TNR+TPR Metric
Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size After

250
5.70 72.84 0.6798 0.1226 72.80 0.6785 0.1174 113 53
7.63 75.25 0.7145 0.1311 75.64 0.7188 0.1300 163 75.5
9.00 77.47 0.7553 0.1590 77.42 0.7538 0.1560 197 104.75

500
5.50 73.65 0.6933 0.1244 73.42 0.6915 0.1209 113 51.75
7.98 74.72 0.7111 0.1376 75.08 0.7136 0.1342 183 87
9.52 77.50 0.7499 0.1623 77.51 0.7507 0.1598 217 105.5

750
5.33 71.52 0.6579 0.1100 71.60 0.6590 0.1065 103 30
7.83 74.31 0.7045 0.1275 74.46 0.7082 0.1268 159 72
9.07 77.43 0.7536 0.1632 77.40 0.7533 0.1638 199 105

1000
5.97 71.60 0.6570 0.1071 71.72 0.6581 0.1026 111 50
8.03 74.70 0.7094 0.1323 74.53 0.7066 0.1305 159 72
9.48 76.16 0.7368 0.1573 76.15 0.7395 0.1561 203 113

2500
6.68 72.32 0.6726 0.1144 72.42 0.6728 0.1121 97 36
9.64 74.49 0.7024 0.1273 74.77 0.7069 0.1232 159 66.5
11.85 75.85 0.7286 0.1475 76.11 0.7325 0.1441 191 103

5000
8.80 71.60 0.6581 0.1088 71.71 0.6593 0.1057 87 36
11.37 74.23 0.6979 0.1289 74.56 0.7004 0.1276 135 61
14.07 75.61 0.7344 0.1569 75.84 0.7314 0.1546 183 83
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Table A.3 RSS-DSS Exemplar Age/Difficulty Ratios
Hits Metric

Time
Train
Acc Train DR

Train
FPR Test Acc Test DR Test FPR Size

Size
After

30/70
7.10 79.36 0.8821 0.4089 79.41 0.8814 0.4124 135 66.25
8.58 80.86 0.9168 0.4985 80.77 0.9148 0.4953 167 91

10.71 81.58 0.9593 0.6869 81.65 0.9590 0.6857 223 126
10/90

6.28 78.23 0.9149 0.4678 78.50 0.9137 0.4685 118.5 28.5
8.25 79.27 0.9509 0.7062 79.40 0.9518 0.7061 167 76

10.68 81.49 0.9781 0.8033 81.40 0.9779 0.8114 231 100.25
0/100

6.33 78.60 0.9152 0.4681 78.74 0.9143 0.4636 125 42.5
8.21 79.51 0.9476 0.6436 79.64 0.9491 0.6408 159 77

10.25 80.67 0.9728 0.7879 80.92 0.9736 0.7897 207.5 104.5

TNR+TPR Metric

Time
Train
Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size After

30/70
7.10 74.19 0.6972 0.1233 74.19 0.7004 0.1199 135 53
8.58 75.85 0.7242 0.1416 76.16 0.7276 0.1377 167 76.5
10.71 77.68 0.7556 0.1627 77.45 0.7534 0.1631 223 113.75

10/90
6.28 71.62 0.6582 0.1097 71.67 0.6591 0.1057 118.5 46.5
8.25 74.46 0.7054 0.1317 74.36 0.7030 0.1265 163 79.5
10.68 76.25 0.7329 0.1518 76.28 0.7324 0.1498 219 110.75

0/100
6.33 71.83 0.6612 0.1099 71.98 0.6629 0.1069 125 55
8.21 74.20 0.6966 0.1270 74.32 0.6988 0.1242 159 77.5
10.25 75.21 0.7202 0.1539 75.37 0.7162 0.1492 207.5 120.25
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Table A.4 DSS-DSS Block Age/Difficulty Ratios and Exemplar Age/Difficulty
Ratios

Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final
30/70 – 30/70

5.28 78.85 0.9051 0.4501 79.04 0.9016 0.4532 109 48
7.04 79.52 0.9309 0.6047 79.64 0.9293 0.6024 151 70.5
8.52 81.07 0.9808 0.7978 81.06 0.9812 0.8013 207 111.75

30/70 – 10/90
5.92 78.50 0.9261 0.5553 78.63 0.9246 0.5605 119 47.5
7.45 79.12 0.9593 0.7281 79.29 0.9586 0.7328 163 69
9.83 80.26 0.9770 0.7939 80.39 0.9787 0.7964 225 102.5

30/70 - 0/100
6.06 78.90 0.8870 0.4057 79.16 0.8822 0.4087 127 64.75
7.71 80.46 0.9298 0.5294 80.27 0.9294 0.5282 167 85
9.69 81.55 0.9642 0.7876 81.38 0.9642 0.7892 231 122.75

10/90 – 30/70
5.34 78.92 0.9035 0.4140 79.06 0.9034 0.4168 111 53.5
7.13 80.80 0.9336 0.5581 80.53 0.9355 0.5569 163 83.5
8.33 81.85 0.9685 0.7886 81.84 0.9708 0.7902 201 112.25

10/90 – 10/90
5.41 78.54 0.9110 0.4528 78.70 0.9082 0.4577 119 40
7.22 79.86 0.9282 0.5348 80.13 0.9300 0.5384 159 72
9.38 82.07 0.9645 0.7881 81.84 0.9655 0.7892 215 98

10/90 – 0/100
5.70 78.84 0.9030 0.4238 79.04 0.9010 0.4287 125 45
7.06 79.86 0.9418 0.6127 80.02 0.9420 0.6101 167 80
9.38 81.45 0.9756 0.7989 81.47 0.9777 0.8039 209 104.25

0/100 – 30/70
5.01 78.49 0.9129 0.4609 78.55 0.9113 0.4618 109 42.5
6.98 79.44 0.9585 0.7397 79.63 0.9585 0.7396 151 64.5
8.84 81.37 0.9811 0.8109 81.26 0.9816 0.8142 207 104.25

0/100 – 10/90
5.68 78.81 0.9213 0.5221 79.09 0.9219 0.5182 119 38
7.33 79.42 0.9584 0.7305 79.49 0.9585 0.7380 159 75.5
9.01 81.15 0.9810 0.7975 81.09 0.9817 0.8018 195 114.25

0/100 – 0/100
5.40 78.48 0.9002 0.4312 78.44 0.8985 0.4375 119 53.5
7.06 79.76 0.9393 0.5773 79.89 0.9413 0.5776 167 72.5
9.28 81.11 0.9706 0.7919 81.25 0.9715 0.7928 223 99.5
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TNR+TPR Metric
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

30/70 – 30/70
5.28 71.49 0.6560 0.1064 71.58 0.6568 0.1016 109 46.75
7.04 74.56 0.7073 0.1315 74.44 0.7057 0.1288 151 70.5
8.52 76.14 0.7351 0.1561 76.02 0.7372 0.1555 201 111.5

30/70 – 10/90
5.92 71.64 0.6593 0.1107 71.72 0.6604 0.1080 119 48.25
7.45 73.32 0.6892 0.1288 73.49 0.6897 0.1259 159 74
9.83 75.04 0.7211 0.1493 75.34 0.7172 0.1436 225 108.5

30/70 – 0/100
6.06 72.63 0.6777 0.1239 72.77 0.6786 0.1199 127 52.75
7.71 75.26 0.7175 0.1378 75.40 0.7197 0.1366 167 72
9.69 76.96 0.7444 0.1681 77.20 0.7454 0.1666 231 112.25

10/90 – 30/70
5.34 72.83 0.6774 0.1184 73.03 0.6797 0.1151 117 47.75
7.13 75.05 0.7155 0.1390 75.27 0.7143 0.1376 163 72.5
8.33 77.11 0.7471 0.1580 77.13 0.7482 0.1575 187 107

10/90 – 10/90
5.35 71.77 0.6607 0.1111 71.93 0.6623 0.1074 115 36.75
7.11 74.89 0.7124 0.1343 75.14 0.7140 0.1311 159 69.5
9.34 76.53 0.7374 0.1564 76.57 0.7384 0.1572 215 98.75

10/90 – 0/100
5.70 71.43 0.6558 0.1096 71.59 0.6574 0.1070 117 52.25
7.06 74.38 0.7028 0.1301 74.47 0.7030 0.1276 163 67.5
9.38 76.00 0.7298 0.1578 76.35 0.7341 0.1505 207 96

0/100 – 30/70
5.01 71.50 0.6573 0.1087 71.67 0.6583 0.1049 109 38.25
6.98 74.32 0.7016 0.1283 74.35 0.7032 0.1259 151 65.5
8.84 76.94 0.7432 0.1573 76.94 0.7434 0.1561 189 110

0/100 – 10/90
5.68 71.62 0.6584 0.1081 71.75 0.6592 0.1036 119 51.75
7.33 73.01 0.6803 0.1262 73.05 0.6789 0.1199 159 75.5
9.01 75.12 0.7164 0.1464 75.38 0.7195 0.1482 195 92.5

0/100 – 0/100
5.40 71.37 0.6546 0.1087 71.47 0.6559 0.1037 117 47.5
7.06 74.53 0.7043 0.1275 74.32 0.7043 0.1250 163 75
9.28 76.13 0.7351 0.1553 75.94 0.7334 0.1503 211 94
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Table A.5 DSS-DSS Sorted Adult Dataset
Hits Metric

Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final
Hits Metric

1000
1.55 76.70 0.9584 0.7708 77.24 0.9585 0.7891 63 11.25
2.03 76.81 0.9588 0.7921 77.48 0.9587 0.7892 99 34
2.86 77.42 0.9700 0.8051 77.62 0.9695 0.8066 167 65.25

5000
5.37 76.93 0.9584 0.7708 77.49 0.9585 0.7892 87 21.25
6.78 77.41 0.9620 0.7921 77.92 0.9618 0.7892 131 51
9.53 78.09 0.9810 0.8237 78.58 0.9817 0.8224 205 93.75

TNR+TPR Metric
1000

1.45 70.29 0.6395 0.1052 70.30 0.6391 0.1005 61.25 9.25
2.34 70.91 0.6597 0.1424 71.05 0.6618 0.1399 111 24.5
3.15 70.91 0.6616 0.1477 71.05 0.6633 0.1446 167 53.25

5000
5.38 70.28 0.6391 0.1052 70.29 0.6389 0.1005 85 18
7.38 70.42 0.6410 0.1052 70.48 0.6415 0.1005 143 41.5
9.65 70.98 0.6538 0.1085 71.10 0.6542 0.1039 201 76.5
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Table A.6 Manually Mixed Adult Datasets
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
Mixed 1

6.69 77.29 0.9513 0.7324 77.49 0.9513 0.7326 95 27
8.68 77.44 0.9586 0.7876 77.77 0.9586 0.7892 143 46

10.38 78.54 0.9737 0.7969 78.73 0.9723 0.8000 183 80.5
Mixed 2

9.36 78.50 0.8873 0.4393 78.66 0.8865 0.4347 109 50.25
11.81 79.69 0.9424 0.6120 79.70 0.9413 0.6073 151 71
13.83 80.67 0.9700 0.7892 80.85 0.9724 0.7909 191 86

Mixed 3
3.88 77.29 0.9584 0.7876 77.49 0.9585 0.7892 103 28
4.89 77.55 0.9587 0.7876 77.71 0.9586 0.7892 135 63.5
7.21 78.03 0.9720 0.8006 78.30 0.9723 0.8028 215 95.5

Mixed 4
5.75 78.03 0.9293 0.5630 78.25 0.9297 0.5652 101 42.25
7.73 79.03 0.9578 0.7159 79.15 0.9569 0.7215 151 62.5
9.91 80.95 0.9719 0.7965 81.03 0.9732 0.7999 195 102.5

TNR+TPR Metric
Mixed 1

6.43 70.29 0.6394 0.1052 70.32 0.6393 0.1005 83 26
8.58 70.55 0.6431 0.1059 70.64 0.6439 0.1011 135 33

10.19 71.32 0.6536 0.1074 71.41 0.6541 0.1030 163 69.5
Mixed 2

9.57 72.03 0.6656 0.1139 72.22 0.6674 0.1112 111 48.5
12.02 74.49 0.7048 0.1341 74.73 0.7056 0.1315 151 73.5
13.98 76.36 0.7337 0.1535 76.49 0.7363 0.1506 191 101

Mixed 3
3.93 70.38 0.6396 0.1052 70.41 0.6391 0.1005 103 27
5.02 70.98 0.6493 0.1064 71.11 0.6506 0.1014 151 59
7.25 71.61 0.6587 0.1115 71.69 0.6599 0.1076 223 78

Mixed 4
5.95 71.21 0.6525 0.1079 71.28 0.6527 0.1036 103 26
7.88 72.61 0.6750 0.1233 72.62 0.6746 0.1208 151 56
9.96 74.69 0.7080 0.1349 74.59 0.7077 0.1335 207 98.5
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Table A.7 Balanced Block - Block Partition Ratios
Hits Metric

Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final
10/90

5.99 77.88 0.9275 0.5593 78.23 0.9269 0.5552 87 15.5
8.33 78.79 0.9587 0.7638 78.94 0.9586 0.7600 127 49.5
10.80 80.62 0.9716 0.7959 80.56 0.9710 0.7974 185 89

15/85
4.45 78.06 0.9340 0.5537 78.37 0.9338 0.5557 85 33
6.47 78.95 0.9617 0.7724 79.18 0.9615 0.7735 151 57.5
9.07 80.65 0.9808 0.8079 80.68 0.9829 0.8122 207 103.25

25/75
5.48 77.81 0.9441 0.6346 78.24 0.9429 0.6338 135 43.75
7.14 78.83 0.9641 0.7876 79.03 0.9642 0.7892 167 69.5
8.43 80.53 0.9824 0.8145 80.43 0.9832 0.8188 207 95

30/70
4.00 78.20 0.9346 0.6894 78.57 0.9341 0.6916 88 27.5
6.20 78.99 0.9772 0.8015 79.12 0.9787 0.8035 151 58
8.14 79.33 0.9943 0.8163 79.57 0.9945 0.8205 200 97

37.5/62.5
4.48 78.41 0.9244 0.5757 78.65 0.9243 0.5780 101.25 32.25
7.03 79.20 0.9458 0.6682 79.45 0.9473 0.6703 171 61
8.88 80.52 0.9667 0.7886 80.90 0.9669 0.7907 215 104.25

50/50
3.80 77.81 0.9258 0.5891 78.24 0.9250 0.5868 79 32.5
5.67 78.87 0.9601 0.7757 79.21 0.9607 0.7746 131 49
7.27 80.50 0.9808 0.8099 80.32 0.9829 0.8130 171 77

62.5/37.5
5.87 78.24 0.9246 0.5648 78.52 0.9251 0.5631 100.75 31
7.58 79.21 0.9587 0.7328 79.37 0.9586 0.7381 159 73
8.87 79.72 0.9840 0.8056 79.89 0.9836 0.8094 191 94
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TNR+TPR Metric
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

10/90
5.99 70.32 0.6393 0.1052 70.29 0.6388 0.1005 87 21.75
8.33 71.28 0.6532 0.1057 71.39 0.6536 0.1008 127 42
10.80 74.25 0.7048 0.1297 74.51 0.7059 0.1277 185 86

15/85
4.45 70.58 0.6429 0.1052 70.58 0.6427 0.1005 93 27.75
6.47 71.66 0.6586 0.1093 71.74 0.6598 0.1049 151 56.5
9.07 74.06 0.7021 0.1317 74.34 0.7069 0.1286 207 102.5

25/75
5.48 70.78 0.6477 0.1064 70.83 0.6482 0.1019 135 46.5
7.14 71.62 0.6587 0.1095 71.70 0.6597 0.1053 167 76.5
8.43 74.01 0.6957 0.1250 74.06 0.6966 0.1224 207 112

30/70
4.14 70.34 0.6395 0.1052 70.30 0.6390 0.1005 91 17
6.21 71.68 0.6582 0.1078 71.71 0.6591 0.1036 147 53.5
8.01 71.99 0.6641 0.1154 72.06 0.6645 0.1102 196.5 88.75

37.5/62.5
4.48 70.88 0.6483 0.1069 70.84 0.6483 0.1021 101.25 28.75
7.03 71.65 0.6588 0.1099 71.73 0.6598 0.1059 171 72
8.88 74.39 0.7019 0.1315 74.27 0.7037 0.1300 215 105.75

50/50
3.78 70.48 0.6417 0.1052 70.43 0.6409 0.1005 79 20.5
5.82 71.45 0.6558 0.1076 71.53 0.6563 0.1027 135 39
7.36 72.43 0.6701 0.1165 72.37 0.6685 0.1123 175 81.5

62.5/37.5
5.93 70.44 0.6403 0.1052 70.42 0.6400 0.1005 107 31.75
7.99 71.61 0.6578 0.1092 71.64 0.6585 0.1051 163 64
9.15 71.86 0.6614 0.1110 71.96 0.6629 0.1085 191 93.5
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Table A.8 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
RSS-DSS

5.58 78.55 0.9136 0.4634 78.76 0.9128 0.4721 109 36.75
7.46 79.30 0.9502 0.7041 79.43 0.9505 0.7091 139 56.5
9.34 80.74 0.9749 0.7910 80.62 0.9758 0.7957 199 98.75

DSS-DSS
8.25 77.96 0.9023 0.4934 77.98 0.9006 0.4916 93 28.25
11.13 78.98 0.9519 0.7593 79.08 0.9515 0.7645 135 55.5
13.77 80.07 0.9773 0.8028 80.08 0.9781 0.8061 169 83.75

Balanced (30/70)
4.00 78.20 0.9346 0.6894 78.57 0.9341 0.6916 88 27.5
6.20 78.99 0.9772 0.8015 79.12 0.9787 0.8035 151 58
8.14 79.33 0.9943 0.8163 79.57 0.9945 0.8205 200 97

TNR+TPR
RSS-DSS

5.58 71.34 0.6542 0.1076 71.37 0.6543 0.1029 109 36.75
7.68 71.95 0.6635 0.1133 72.05 0.6648 0.1105 147 64.5
9.88 76.55 0.7394 0.1511 76.42 0.7356 0.1505 201 102.5

DSS-DSS
8.20 71.36 0.6546 0.1080 71.43 0.6553 0.1038 89 26
11.13 73.76 0.6906 0.1207 73.82 0.6915 0.1141 135 46
13.80 75.98 0.7323 0.1573 75.90 0.7297 0.1509 173 74.75

Balanced (30/70)
4.14 70.34 0.6395 0.1052 70.30 0.6390 0.1005 91 17
6.21 71.68 0.6582 0.1078 71.71 0.6591 0.1036 147 53.5
8.01 71.99 0.6641 0.1154 72.06 0.6645 0.1102 196.5 88.75
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Appendix B 10% KDD’99 Dataset Results

Table B.1 Balanced Block – Block Partition Ratios
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
50/50

16.00 98.61 0.9882 0.0116 90.64 0.8881 0.0171 141 20.5
18.09 98.76 0.9888 0.0154 90.84 0.8914 0.0202 179 52
20.87 98.92 0.9895 0.0226 91.01 0.8953 0.0332 215 85.25

(25/75)
13.90 98.34 0.9880 0.0089 90.65 0.8879 0.0157 109 24.5
16.71 98.78 0.9886 0.0144 90.76 0.8900 0.0194 159 44
19.97 98.91 0.9894 0.0318 91.02 0.8942 0.0296 209 69

(20/80)
15.98 98.04 0.9886 0.0124 90.67 0.8893 0.0170 133 30.25
18.71 98.33 0.9892 0.0406 90.93 0.8928 0.0208 167 66.5
21.75 98.89 0.9902 0.0569 91.18 0.8985 0.0327 225 103

(10/90)
14.42 97.97 0.9885 0.0147 90.58 0.8897 0.0172 101 18.25
21.83 98.53 0.9893 0.0342 90.80 0.8939 0.0238 195 44.5
24.64 98.85 0.9901 0.0626 91.06 0.9003 0.0369 215 74

TNR+TPR Metric
50/50

16.00 98.61 0.9879 0.0092 90.60 0.8878 0.0154 141 27
18.09 98.75 0.9886 0.0138 90.77 0.8907 0.0192 179 48
20.87 98.90 0.9892 0.0226 90.94 0.8936 0.0303 215 85.25

25/75
13.90 98.22 0.9877 0.0075 90.55 0.8875 0.0147 109 20
16.71 98.78 0.9884 0.0139 90.74 0.8893 0.0169 159 42
19.97 98.90 0.9890 0.0318 91.00 0.8933 0.0251 209 58.25

20/80
15.98 97.98 0.9878 0.0101 90.64 0.8884 0.0163 133 30.25
18.71 98.33 0.9889 0.0324 90.84 0.8916 0.0208 167 65.5
21.75 98.83 0.9901 0.0569 91.09 0.8978 0.0304 225 103

10/90
14.42 97.84 0.9873 0.0109 90.47 0.8878 0.0151 101 18.75
21.83 98.52 0.9889 0.0231 90.73 0.8921 0.0228 195 49
24.64 98.81 0.9896 0.0419 91.01 0.8973 0.0362 215 79
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Table B.2 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
RSS-DSS

8.53 98.44 0.9873 0.0117 90.54 0.8899 0.0165 93 30
11.95 98.68 0.9882 0.0174 90.89 0.8945 0.0223 179 62
13.54 98.80 0.9891 0.0341 91.11 0.8985 0.0398 215 105.5

DSS-DSS
10.19 98.63 0.9880 0.0077 90.72 0.8887 0.0160 103 30.5
13.56 98.85 0.9886 0.0127 90.89 0.8922 0.0186 171 64.5
18.51 98.95 0.9898 0.0204 91.21 0.8986 0.0296 215 94

Balanced Block (25/75)
13.82 98.34 0.9880 0.0089 90.65 0.8879 0.0157 109 24.5
16.65 98.78 0.9886 0.0144 90.76 0.8900 0.0194 159 44
19.91 98.91 0.9894 0.0318 91.02 0.8942 0.0296 209 69

TNR+TPR Metric
RSS-DSS

8.53 98.41 0.9863 0.0088 90.53 0.8899 0.0136 93 34.25
11.95 98.66 0.9881 0.0157 90.86 0.8917 0.0208 179 64
13.54 98.79 0.9888 0.0341 91.14 0.8977 0.0366 215 100.25

DSS-DSS
10.19 98.60 0.9870 0.0053 90.54 0.8878 0.0134 103 27.5
13.56 98.79 0.9878 0.0090 90.77 0.8905 0.0166 171 60.5
18.51 98.91 0.9882 0.0155 91.08 0.8937 0.0289 215 90.25

Balanced Block (25/75)
13.82 98.22 0.9877 0.0075 90.55 0.8875 0.0147 109 20
16.65 98.78 0.9884 0.0139 90.74 0.8893 0.0169 159 42
19.91 98.90 0.9890 0.0318 91.00 0.8933 0.0251 209 58.25
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Table B.3 Algorithm Comparison on KDD Attack Categories
Training

Probe
Training

DoS
Training

U2R
Training

R2L
Test

Probe
Test
DoS

Test
U2R

Test
R2L

Hits Metric
RSS-DSS

76.96 99.23 0.00 6.94 51.36 95.21 9.21 1.37
79.17 99.26 4.81 24.64 56.58 95.49 12.72 2.23
83.53 99.29 31.25 38.95 62.57 95.78 17.76 4.42

DSS-DSS
77.46 99.26 0.00 7.17 50.12 95.19 9.10 1.25
80.17 99.28 2.88 20.80 55.92 95.39 11.18 1.67
84.25 99.32 21.15 37.03 61.53 95.76 16.67 2.66

Balanced Block (25/75)
77.39 99.24 0.00 24.16 48.42 95.13 7.46 1.23
79.57 99.26 1.92 31.28 53.83 95.27 9.65 1.75
83.92 99.30 4.81 48.46 58.44 95.62 13.82 2.99

TNR+TPR Metric
RSS-DSS

76.56 99.13 0.00 2.67 50.70 95.19 9.21 0.78
78.67 99.23 3.85 23.10 53.82 95.39 12.06 2.17
82.45 99.28 27.88 34.15 59.19 95.67 16.67 4.08

DSS-DSS
76.66 99.18 0.00 3.89 48.33 95.08 8.22 0.68
78.63 99.24 1.92 13.16 54.18 95.22 9.87 1.37
81.20 99.28 18.27 27.19 60.83 95.58 15.57 1.98

Balanced Block (25/75)
77.03 99.22 0.00 23.30 47.77 95.06 7.46 1.14
78.71 99.24 1.92 30.92 52.20 95.21 9.43 1.62
82.71 99.28 3.85 43.13 56.80 95.43 11.73 2.75
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Appendix C Census Income Dataset Results

Table C.1 Balanced Block – Block Partition Ratios
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

TNR+TPR Metric
5/95

4.84 69.14 0.6809 0.1278 69.35 0.6823 0.1230 85 19.75
6.97 72.46 0.7190 0.1661 72.51 0.7203 0.1746 151 50.5
8.49 78.54 0.7830 0.2066 78.29 0.7807 0.2064 199 94

10/90
4.42 70.00 0.6902 0.1423 70.21 0.6929 0.1458 69 20
6.02 75.38 0.7503 0.1664 75.27 0.7493 0.1718 119 53
9.07 79.30 0.7920 0.2153 79.13 0.7907 0.2160 201 76.75

20/80
4.56 69.09 0.6818 0.1303 69.36 0.6843 0.1241 71 22
6.52 72.79 0.7213 0.1585 73.03 0.7231 0.1569 119 42.5
7.95 79.26 0.7925 0.2226 79.27 0.7913 0.2193 161 80

25/75
4.54 70.55 0.6957 0.1399 70.77 0.6987 0.1431 63 18.75
5.95 74.32 0.7375 0.1612 74.38 0.7384 0.1703 103 35
9.91 79.08 0.7917 0.2177 78.95 0.7893 0.2180 199 69.25

50/50
5.42 71.90 0.7112 0.1309 72.00 0.7125 0.1294 77 24
8.83 75.73 0.7528 0.1585 75.64 0.7518 0.1629 171 66.5
11.17 79.29 0.7920 0.2030 79.24 0.7910 0.2050 231 117.25
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Table C.2 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

TNR+TPR Metric
RSS-DSS

6.26 75.80 0.7546 0.1743 75.59 0.7523 0.1737 103 34.5
8.57 78.72 0.7858 0.1924 78.60 0.7850 0.1970 167 65

10.15 80.97 0.8102 0.2328 80.80 0.8088 0.2381 201 88.5
DSS-DSS

10.18 77.81 0.7791 0.1788 77.89 0.7804 0.1834 109 45.5
13.70 80.51 0.8053 0.2168 80.35 0.8042 0.2156 175 66
15.96 82.44 0.8298 0.2516 82.32 0.8287 0.2509 215 89

Balanced (10/90)
4.42 70.00 0.6902 0.1423 70.21 0.6929 0.1458 69 20
6.02 75.38 0.7503 0.1664 75.27 0.7493 0.1718 119 53
9.07 79.30 0.7920 0.2153 79.13 0.7907 0.2160 201 76.75
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Appendix D Shuttle Dataset Results

Table D.1 Shuttle 1 Balanced Block – Block Partition Ratios
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
50/50

2.66 96.84 0.9778 0.0076 96.72 0.9761 0.0062 71 19
4.19 98.75 0.9909 0.0132 98.73 0.9906 0.0124 127 38.5
5.35 99.80 0.9996 0.0183 99.82 0.9997 0.0175 169 90

37.5/62.5
2.45 96.49 0.9605 0.0074 96.44 0.9597 0.0065 53.25 20
3.95 99.29 0.9949 0.0129 99.30 0.9945 0.0116 111 31.5
5.43 99.80 0.9996 0.0183 99.84 0.9997 0.0175 193 64.25

25/75
2.76 96.54 0.9713 0.0070 96.50 0.9699 0.0060 79 21.75
3.84 99.70 0.9992 0.0094 99.72 0.9993 0.0084 103 42
4.74 99.83 0.9998 0.0156 99.85 0.9998 0.0149 157.5 65

TNR+TPR Metric
50/50

2.66 96.61 0.9607 0.0073 96.53 0.9599 0.0060 71 25.5
4.19 98.75 0.9881 0.0101 98.73 0.9881 0.0094 127 38.5
5.35 99.80 0.9996 0.0150 99.82 0.9997 0.0149 169 87.75

37.5/62.5
2.45 96.38 0.9600 0.0073 96.31 0.9590 0.0065 53.25 19.75
3.95 99.29 0.9949 0.0105 99.30 0.9945 0.0094 111 34
5.43 99.80 0.9996 0.0183 99.84 0.9997 0.0175 193 64.25

25/75
2.76 96.50 0.9604 0.0070 96.46 0.9596 0.0060 79 22
3.84 99.70 0.9986 0.0089 99.70 0.9980 0.0083 103 37.5
4.74 99.82 0.9998 0.0146 99.83 0.9998 0.0142 157.5 66
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Table D.2 Shuttle 3 Balanced Block – Block Partition Ratios
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric (TNR+TPR Metric the same)
70/30

4.55 86.40 0.4470 0.0272 86.45 0.4381 0.0280 79 22
6.13 87.80 0.5553 0.0662 87.87 0.5592 0.0674 111 39
9.15 91.51 0.9932 0.0735 91.46 0.9926 0.0740 191 64

50/50
4.18 87.49 0.5514 0.0513 87.44 0.5531 0.0529 63 20.5
5.53 88.72 0.5864 0.0668 88.60 0.5916 0.0680 87 33
6.85 90.26 0.7940 0.0756 90.25 0.8019 0.0772 123 56.5

62.5/37.5
4.06 85.89 0.3296 0.0353 85.94 0.3096 0.0366 85 34.75
6.31 87.49 0.4529 0.0632 87.69 0.4548 0.0648 111 46
8.18 91.29 0.8774 0.0727 91.19 0.8784 0.0751 145 60.25

Table D.3 Shuttle 4 Balanced Block – Block Partition Ratios
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric (TNR+TPR Metric the same)
62.5/37.5

2.90 96.45 0.5315 0.0006 96.34 0.5439 0.0003 63 20
4.62 97.52 0.9714 0.0020 97.55 0.9691 0.0019 119 41
6.13 99.81 0.9983 0.0082 99.77 0.9988 0.0077 207 68

50/50
4.14 95.46 0.2745 0.0008 95.37 0.2565 0.0006 83 23
4.80 96.73 0.7251 0.0030 96.77 0.7367 0.0026 135 54
7.28 99.54 0.9932 0.0116 99.51 0.9913 0.0119 175 100.5
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Table D.4 Shuttle 1 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric
RSS-DSS

3.34 96.63 0.9607 0.0111 96.56 0.9599 0.0095 79 23.25
4.53 97.61 0.9800 0.0152 97.65 0.9794 0.0149 107 49.5
6.55 99.67 0.9990 0.0282 99.70 0.9990 0.0281 185 84.5

DSS-DSS
3.34 96.63 0.9607 0.0111 96.56 0.9599 0.0095 79 23.25
4.53 97.61 0.9800 0.0152 97.65 0.9794 0.0149 107 49.5
6.55 99.67 0.9990 0.0282 99.70 0.9990 0.0281 185 84.5

Balanced Block (25/75)
2.76 96.54 0.9713 0.0070 96.50 0.9699 0.0060 79 21.75
3.84 99.70 0.9992 0.0094 99.72 0.9993 0.0084 103 42
4.74 99.83 0.9998 0.0156 99.85 0.9998 0.0149 157.5 65

TNR+TPR Metric
RSS-DSS

3.34 96.59 0.9607 0.0081 96.51 0.9599 0.0071 79 23.25
4.53 97.29 0.9704 0.0130 97.13 0.9697 0.0124 107 43
6.55 99.67 0.9986 0.0172 99.70 0.9986 0.0169 185 84.5

DSS-DSS
2.94 97.10 0.9735 0.0073 97.01 0.9719 0.0066 61 26
3.78 98.90 0.9901 0.0125 98.89 0.9898 0.0116 95 41
6.08 99.74 0.9996 0.0179 99.79 0.9997 0.0173 175 73.75

Balanced Block (25/75)
2.76 96.50 0.9604 0.0070 96.46 0.9596 0.0060 79 22
3.84 99.70 0.9986 0.0089 99.70 0.9980 0.0083 103 37.5
4.74 99.82 0.9998 0.0146 99.83 0.9998 0.0142 157.5 66
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Table D.5 Shuttle 2 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric (TNR+TPR Metric the same)
RSS-DSS

4.17 99.73 0.7339 0.0013 99.70 0.6724 0.0014 74 12
6.83 99.77 0.7688 0.0016 99.74 0.7069 0.0018 135 37

10.44 99.77 0.9839 0.0020 99.76 1.0000 0.0023 199 70
DSS-DSS

3.28 99.72 0.7392 0.0013 99.68 0.6810 0.0013 42.5 14
6.80 99.77 0.7688 0.0016 99.76 0.7069 0.0017 119 37
9.13 99.79 1.0000 0.0020 99.77 1.0000 0.0021 191 61

Balanced Block (95/5)
7.28 99.59 0.2120 0.0005 99.61 0.2414 0.0006 39 9
8.97 99.60 0.2337 0.0007 99.63 0.2931 0.0008 71 37

16.80 99.72 0.5163 0.0009 99.67 0.4310 0.0012 119 49

Table D.6 Shuttle 3 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric (TNR+TPR Metric the same)
RSS-DSS

4.48 94.93 0.9781 0.0037 94.98 0.9759 0.0039 63 34.25
5.56 98.08 0.9967 0.0197 98.02 0.9974 0.0203 119 58
7.61 99.55 0.9996 0.0407 99.55 1.0000 0.0421 171 93

DSS-DSS
4.22 95.62 0.9810 0.0035 95.48 0.9813 0.0039 63 35.5
5.65 97.93 0.9981 0.0211 97.79 0.9981 0.0234 127 61
8.00 99.69 0.9997 0.0390 99.67 1.0000 0.0389 171 89.75

Balanced Block (50/50)
4.18 87.49 0.5514 0.0513 87.44 0.5531 0.0529 63 20.5
5.53 88.72 0.5864 0.0668 88.60 0.5916 0.0680 87 33
6.85 90.26 0.7940 0.0756 90.25 0.8019 0.0772 123 56.5
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Table D.7 Shuttle 4 Algorithm Comparison
Run Time Train Acc Train DR Train FPR Test Acc Test DR Test FPR Size Size Final

Hits Metric (TNR+TPR Metric the same)
RSS-DSS

2.94 99.99 1.0000 0.0000 99.99 1.0000 0.0001 76.75 17.5
4.89 100.00 1.0000 0.0000 99.99 1.0000 0.0001 139 29.5
6.24 100.00 1.0000 0.0001 99.99 1.0000 0.0001 181 74.5

DSS-DSS
3.10 99.99 0.9996 0.0000 99.99 1.0000 0.0001 77 17.25
5.20 100.00 1.0000 0.0000 99.99 1.0000 0.0001 147 41
6.22 100.00 1.0000 0.0001 99.99 1.0000 0.0001 183 68

Balanced Block (62.5/37.5)
2.90 96.45 0.5315 0.0006 96.34 0.5439 0.0003 63 20
4.62 97.52 0.9714 0.0020 97.55 0.9691 0.0019 119 41
6.13 99.81 0.9983 0.0082 99.77 0.9988 0.0077 207 68


