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Abstract

The self-organizing map (SOM) is an unsupervised learning algorithm that attempts

to form a compact representation of a data set via a set of prototype vectors that

exist in the same space. Dynamic subset selection (DSS) is a genetic programming

(GP) based method of selecting the particularly difficult-to-learn patterns from a

data set, where difficulty is a GP-specific measure. In this work, the dynamic subset

selection self-organizing map (DSSSOM) is presented. It is the application of DSS to

the SOM, with modifications to both. It is able to handle very large data sets, and

has a DSS-based built-in stopping mechanism. The performance of the new algorithm

is measured over five data sets via an original implementation, and compared to the

SOM and other learning algorithms. Results show that the DSSSOM achieves a

performance on par with the SOM with training time reduced by a factor of up to

nearly five hundred.
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1 Introduction

The dynamic subset selection self-organizing map (DSSSOM) is the application of

dynamic subset selection (DSS) to the self-organizing map (SOM). The result is a

new learning algorithm that is much faster than the SOM, and that performs at an

equal level. The correct operation of the algorithm is determined via experiments

that have been conducted on five distinct data sets.

The motivation for work on the DSSSOM stems from the continual need for learn-

ing algorithms that perform better and operate more quickly than existing algorithms.

In particular, a motivating situation was encountered within the context of intrusion

detection. There, the network devices on which intrusion detection was to take place

were found to have insufficient computational ability to support an SOM-based in-

trusion detection system. This need ultimately led to the formation of the DSSSOM

idea. It was during the development of the DSSSOM idea that it was recognized that

the algorithm had the potential to replace the SOM in many applications outside of

intrusion detection. The motivation for this work then became the enormous poten-

tial of the new learning algorithm: much faster learning coupled with a performance

that is no worse than that of the SOM.

The SOM is an unsupervised learning algorithm that attempts to build a compact

representation of a data space represented by the individual examples, or patterns,

found in a given input data set. This representation is achieved by the ideal position-

ing of the SOM’s prototype vectors, which exist in the same space as the input data.

Traditionally, the entire data set is learned by the SOM in an iterative, sequential

fashion. Ideally, groups of patterns in the data set represent regions of the input

space that are linearly-separable from one another. Most data sets are unbalanced,

that is, there is considerable variation in the sizes of the groups of patterns. The

SOM is in essence a clustering algorithm, and as such, the allocation of resource to a

particular group is dependent on its size. Thus, smaller groups often suffer from poor

representation, and thus can be considered difficult to represent.

DSS effectively evens out the resource allocated to the different separable groups,

but more specifically, it assigns more resource to difficult patterns. The input to the

1
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algorithm is a data set for which each pattern has been labeled with a difficulty and

an age. It then selects a subset of the data consisting of the oldest and most difficult

patterns. The concepts of difficulty and age are defined by the learning algorithm to

which DSS is applied. In the case of the SOM, pattern difficulty is defined in this

work to be the distance from the pattern to the nearest SOM prototype vector. Age is

defined to be the number of subset selections that have taken place since the pattern

has actually been selected to the subset. Within the iterative operation of the SOM,

instead of processing the entire data set each iteration, only the selected subset is

processed. A pattern’s difficulty refers to the difficulty with which the SOM is having

forming a representation of it. Thus, the more difficult a pattern, the more often it

is seen, and the more likely it is that a good representation of it will ultimately be

achieved. The purpose of pattern age is to prevent pattern difficulty from completely

dominating pattern selection; all patterns should be seen occasionally, no matter how

low their difficulty.

The nature of the interaction between DSS and the SOM makes it impossible to

simply place an implementation of DSS on top of an implementation of the SOM

for use. The DSSSOM is therefore an original implementation of modified versions

of both algorithms. DSS is modified for use with the SOM and large data sets.

The SOM is modified to take advantage of a new training stopping condition that

is based on pattern difficulty. The original implementation includes the traditional

SOM algorithm for comparison purposes.

The enormous potential of the DSSSOM is explored via experiments conducted on

five data sets: the adult data set, the forest covertype data set, NASA’s space shuttle

data set, the complete 41-feature KDD-99 data set, and a six-feature version of the

KDD-99 data set. In each original experiment, predictive accuracies and training

times are recorded for single DSSSOMs and SOMs, as well as for DSSSOM hierarchies.

Predictive accuracies are measured over both seen (training) and unseen (testing) data

sets. The predictive accuracies and training times, where available, of other learning

algorithms are reported. The experimental objectives are four-fold: to show that

the DSSSOM performs no worse, as measured by predictive accuracy over a labeled

data set, than the traditional SOM; to show that the DSSSOM requires less training
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time than the traditional SOM; to demonstrate that the DSSSOM achieves good

predictive accuracy when compared to other (comparable) learning algorithms; and

to demonstrate the generalization ability of the DSSSOM, that is, its ability to carry

a good predictive accuracy over to an unseen data set after training.

The contribution of this work is the DSSSOM algorithm. In particular, it is an

algorithm that

• learns, or trains, faster than the traditional SOM;

• performs at least as well as the traditional SOM;

• does not require experimentation to determine an ideal training length; and

• is able to learn much larger data sets than existing SOM implementations.

It is the firm belief of the author that the potential of the DSSSOM is such that it

will one day be often used in place of the SOM.



2 Background

2.1 The Self-Organizing Map

The self-organizing map (SOM) is an unsupervised learning algorithm conceived by

Kohonen in 1976 [9]. An SOM consists of an n-dimensional network lattice of nodes

(called neurons). Most commonly, and in this work, two-dimensional hexagonal net-

works are used. A hexagonal network is one in which a neuron has at most six

neighbours. Rectangular (four-neighbour) networks are also common.

To be learned is a set of m-dimensional vectors (or patterns) of real values, com-

prising the input (or training) data set. These vectors exist in the input space, while

the n-dimensional positions of the neurons exist in the output space. Each neuron has

associated with it an m-dimensional vector, called a prototype vector. The SOM is

an example of competitive learning, as neurons compete to represent input patterns,

with only one neuron winning each competition. As training (the learning of the

training data set) proceeds, the neurons become tuned to various patterns (or groups

of patterns), ultimately ordering themselves such that their locations are indicative

of the features of the training data set [5]. Furthermore, the SOM is topology pre-

serving, i.e., similar patterns are mapped to similar positions in the trained network.

The topology of the network therefore is a visualization of the input data, no matter

what its dimension.

The SOM algorithm has two phases: initialization and training. Initialization, the

assigning of initial values to the prototype vectors, must take place before training

can occur. This can easily be achieved by assigning them small random numbers.

However, to give the SOM an added advantage, initialization is often based upon the

training data. Here, the ith value of a prototype vector is taken (or computed) from

the set S of values comprising the ith feature of the patterns in the training data

set. Two popular initialization methods involve simply choosing values from S, or

choosing values over the range of S. The latter method is used in this work.

Training may begin once initialization is complete. It involves the sequential pre-

sentation of the patterns in the training data set to the SOM, for each of which two

processes occur: competition and adjustment. Let the prototype vectors and the pat-

4
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tern to be learned be given by pi = [pi1, pi2, ..., pim]T ∈ R
m and x = [x1, x2, ..., xm]T ∈

R
m, respectively. Neuron competition is then based on the distances between the pi

and x. In this work, the Euclidean distance function is used. The winning neuron w,

called the best-matching unit (BMU), is the neuron that satisfies the following:

||x − pw|| = min
i

||x − pi|| (1)

The process of adjustment refers to the altering of the prototype vectors caused

by the presentation of x. The alteration is described by

pi(t + 1) = pi(t) + hwi(t)[x − pi(t)] (2)

where t is a discrete time during training and hwi(t) is called the neighbourhood kernel

function. The kernel function satisfies two important properties: its highest value is

at w, and its value decreases monotonically with increasing lateral distance [5]. This

distance can be observed in figure 2.1. There, neurons are represented as hexagons

in a two-dimensional hexagonal four-by-six network. The neuron labeled w is the

current BMU; the other neurons are labeled with their lateral distances from w.

w 1

11

1

1 1 2

2

222

2

2

23

3

3

3

4

4

4

45

Figure 2.1: A 2-D hexagonal SOM network topology with lateral distances to
BMU w.

The direction of prototype vector adjustment is toward x, in an attempt to better

represent it. The kernel function is defined as

hwi(t) = exp(−
||lw − li||

2

2σ2(t)
α(t)) (3)

where li is the position of neuron i in the network lattice, σ(t) is the neighbourhood
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radius function and α(t) is the learning rate function. These two functions are simple

decay functions dependent on a time and an initial value. The decay is most often ex-

ponential, as it is in this work. The initial values are either implementation-dependent

defaults, or values supplied by a human.

The discreet time t is normally measured in passes through the entire training

data set. One such pass is called an epoch, and a number of epochs is a common

SOM algorithm parameter used to define the training length. Training may also be

stopped by monitoring the magnitude of the adjustments to the prototype vectors.

Small adjustments are a good indication of a training data set that has been well-

learned.

Training time is generally split into two phases: ordering and convergence. The

ordering phase proceeds as described above. During convergence, however, the neigh-

bourhood radius and learning rate are kept at fixed, low values. The duration of

convergence is generally at least twice that of ordering. Its purpose is to fine-tune

the network to the training patterns, and thus it is often referred to as fine-tuning

(as it shall be henceforth here). Once fine-tuning has been completed, testing can

begin. Testing involves feeding patterns into an SOM and identifying their BMUs.

Evaluation depends on the application, though common evaluations are input space

distance between a pattern and its BMU (and perhaps the other neurons as well),

known as quantization error, or the comparison of pattern class labels with neuron

labels. A neuron n can be labeled by testing an SOM with its training data set and

observing the majority class of the patterns having BMU n (see section 2.3 below).

The SOM is essentially a clustering algorithm, with the prototype vectors repre-

senting the computed cluster centres. However, because the prototypes are connected

together in a neural network, it can happen that, after training, some prototypes lie

in the spaces between clusters. This is often seen as the biggest drawback of the SOM,

as such prototypes do not represent the input data at all. Clearly, the ideal here is

to have no prototypes at all in the spaces between clusters. However, suppose that

the input space consists of several very large and several very small clusters. During

training, the neural network will stretch to represent the dominant clusters, again

leaving several prototypes in the regions between the large clusters. This time it is
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desirable to have prototypes between the large clusters, and ideally they represent

the small clusters. Unfortunately, the large clusters have too great an effect on such

prototypes; they are yanked back and forth between the large clusters as the various

patterns are processed during training, ultimately winding up potentially anywhere

in between.

The SOM will perform well if the clusters in the given data set are linearly separable

and of similar size. Non-separable data sets cannot be learned by the SOM and thus

by the DSSSOM. It is in the situation of an unbalanced data set that a modification

to the SOM algorithm is needed. For example, intrusion detection data sets often

consist of one or more large clusters (normal traffic and perhaps common attacks)

as well as many smaller clusters (uncommon attacks). It is vitally important that

the smaller clusters be represented well to ensure a good rate of attack detection in

a deployed SOM intrusion detection system. Active learning can be employed to do

just this.

2.2 SOM Visualization

2.2.1 Hit Histograms

SOM visualizations are useful because from them information can be drawn that

cannot be drawn (easily) from quantitative data. Of particular interest in this work

are the hit histogram and the pattern label visualizations. Hit histograms are useful

in demonstrating network ordering with respect to pattern class. To construct a

series of hit histograms for an SOM, counts are maintained during testing at each

neuron for each pattern class. The count for class c at neuron n is incremented if a

pattern of class c has BMU n. Then, a histogram can be plotted for each class over

all neurons. Ideally, there will be separation of different classes over the neurons. If

there is not, the performance of the SOM will suffer. A hit histogram is a qualitative

way of determining the performance of an SOM.

The most effective visualization of a hit histogram in this context can be seen in

figure 2.2. There, neuron counts for a single class are represented by hexagon size for

a 3x3 network. Larger hexagons indicate larger counts of the class at that neuron.
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Figure 2.2: An example hit histogram.

2.3 Pattern Label Visualization

As was mentioned in section 2.1, a neuron can be labeled by testing an SOM with a

data set and assigning the majority label of the patterns having it as BMU. If this is

done for all neurons, a visualization can be formed. The simplest form of a pattern

label visualization can be seen in figure 2.3, where labels have been affixed to each of

the neurons. Labels can also be affixed to other types of visualizations, such as hit

histograms.
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Figure 2.3: An example pattern label visualization.

2.4 Active Learning

Active learning [10] refers to the scenario in which a learner has some control over the

data input to it. Presumably, this control involves selecting data that is expected to
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yield the most positive desired result (e.g., a decreased error rate). Active learning is

normally a two-phase process; the first phase involves selecting data into a training

data set, while second involves training the learner on this data set. Though there

are no known examples (other than those directly using dynamic subset selection, as

described below), a one-phase version of active learning is to have the learner learn

pattern subsets as they are built in an iterative fashion. Perhaps this version has not

been used because it requires modification of the learning algorithm itself.

In the context of the SOM, the one-phase version of active learning involves having

the SOM play some role in the selection of patterns from the training data set to be

learned during the next epoch. Thus, returning to the example of an unbalanced data

set above, smaller clusters can effectively made larger by increasing the frequency with

which their patterns are selected. The result is a trained SOM that is better able to

represent the data set as a whole. Dynamic subset selection applied to the SOM is a

particular incarnation of active learning that is the focus of this work.

2.5 Dynamic Subset Selection

Dynamic subset selection (DSS) [4] was introduced by Gathercole and Ross in 1994

as an aid to genetic programming: it focuses a genetic program on difficult patterns,

those that are often misclassified, while being careful not to completely avoid any

patterns.

In the context of a genetic program (GP), a generation is a pass over the training

data set followed by subsequent testing of the GP’s individuals (independent classifi-

cation units). With DSS applied, each generation involves two passes. The first pass

is used to compute weights for the patterns in the training data set. The sum of the

weights S is also computed. The weight of pattern i at generation g is defined as

Wi(g) = Di(g)d + Ai(g)a, Di(0) = Ai(0) = 0 (4)

where D and A are the difficulty and age of pattern i, and d and a are customizable

exponents. During the second pass, each pattern i is assigned a probability Pi of
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being selected into the dynamic subset, as described by

Pi(g) =
Wi(g) ∗ T

S
(5)

where T is the desired size of the resulting subset. Patterns selected into the sub-

set have their difficulties and ages reset, while those not selected have their ages

incremented by 1. During genetic program testing, the difficulty of a pattern is in-

cremented by 1 each time it is misclassified by an individual. Note that the actual

subset size is not fixed, and in fact it averages slightly above T . Gathercole and Ross

felt that this might improve GP performance. They also point out that the selection

of T , d, and a is arbitrary and depends on the properties of the training data set.

Good values can only be determined through experimentation.

DSS requires access to the entire data set to which it is applied. This is impossible

in the case of data sets too large to be stored in memory. The KDD-99 data sets

used in this work are examples of such data sets. A common solution to this problem

involves breaking a large data set up into subsets of contiguous patterns. Song does

just this in his work on GP intrusion detection [16]. There, the subsets of patterns

are called blocks and are of equal size (with the exception of the last block). DSS is

applied to individual blocks read into memory; these blocks are selected at random

with replacement.

Song also made two relevant changes to the DSS algorithm itself. The first elimi-

nates selection of patterns by pattern weight, and replaces it with selection by diffi-

culty or age alone, where there is a probability p (1 − p) that the next pattern will

be selected by difficulty (age). The second fixes subset size; patterns are selected

until the subset is full. This version of the algorithm does not have a, d and T as

parameters, and thus, the need for experimentation to determine their ideal values is

eliminated.

Clearly DSS cannot be as effective on large data sets. It cannot control the selection

of blocks, and therefore it cannot guarantee the selection of difficult patterns into its

subsets. The following example serves to illustrate the effect of this shortcoming on

this work. The KDD-99 10% data set contains 1925 patterns of the attack class

warezclient. The warezclient patterns all occur in a section of the data set smaller
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than two percent of its entire length. With a block size of 5000 patterns (as is used

in this work), the patterns occur in only two blocks. Since warezclient patterns make

up only 0.4 percent of the data set, DSS is required to help the SOM focus on the

patterns. However, random block selection does not permit DSS to do this; only 1 in

50 blocks contain warezclient patterns, and so only two percent of the time will DSS

be able to focus the SOM on warezclient patterns. Therefore, random block selection

is not desirable; blocks containing uncommon (and thus difficult) patterns must be

selected more often.

DSS in general is not directly applicable to other learning algorithms because

pattern difficulty is computed using a GP-specific measure (the number of individuals

incorrectly classifying the pattern). Of interest in this work is its applicability to

the SOM. Since feedback must be obtained from the learning algorithm in order to

compute pattern difficulty, and thus form the subset on which subsequent training

takes place, DSS cannot be used with the traditional SOM in its current form.

2.6 Methods of Speeding Up Self-Organizing Map Training

The main benefit of applying DSS to the SOM is the resulting speed-up in training.

Thus, other training speed-up methods are now presented. It shall be seen that DSS

is quite unique.

2.6.1 Initialization by Clustering

A fast clustering algorithm can often be used to determine good initial values for

the SOM prototype vectors. Su [17] presents an SOM training algorithm, hereafter

referred to as the clustering SOM, or CSOM, that employs the k-means algorithm to

do just this.

CSOM training proceeds in three stages. The first stage applies k-means to the

training data set to obtain a set C of cluster centres of size N2. The well-known

k-means algorithm is given in [17], and shall not be reproduced here.

The second stage uses the discovered centres to initialize the prototype vectors

of an NxN SOM, a procedure detailed in the subsequent listing. There, d refers to

the Euclidean distance function, (x, y) refers to the prototype vector of the neuron at
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output space location (x, y) in the neural network, and the selection of a centre implies

its removal from C (and further consideration). Note that a rectangular topology is

assumed.

1. For i = 1 to ⌈N
2
⌉,

(a) Select u and v from C such that d(u, v) is maximized, and assign them each

to one of (N − i + 1, i) and (i, N − i + 1).

(b) Select w such that d(u,w) + d(v, w) is maximized, and assign it to (i, i).

(c) Select x such that d(u, x) + d(v, x) + d(w, x) is maximized, and assign it to

(N − i + 1, N − i + 1).

(d) Select the N − 2 ∗ i centres with the N − 2 ∗ i largest combined distances to

u and z, and assign them to the remaining unassigned prototypes in row i

of the network, in order, with the centre closest to w adjacent to w and the

centre furthest from w adjacent to v.

(e) Repeat step 4 for row N − i + 1, and columns i and N − i + 1.

(f) If |C| = 0, return.

(g) If |C| = 1, assign the remaining centre to (i, i) and return.

The algorithm, while concise, is difficult to understand directly. Figures 2.4(a)-(f)

describe the algorithm in a visual manner. The figures are snapshots of the neural

network at different points in the algorithm. The neurons are represented by a grid

of squares, with a black square indicating that the particular neuron has had its

prototype initialized. Figures 2.4(a)-(e) are taken during the first iteration of the

algorithm: (a) is taken following step 1(a), (b) is taken following step 1(b), and so

on. Figure 2.4(f) is taken during the second iteration of the algorithm, after step 1(e).

The figures show that the action of the algorithm is somewhat like the peeling of an

onion: the outer layer or (in the two-dimensional case here) ring of neurons have their

prototypes initialized first, followed by the next outermost ring, and so on, until the

core is reached and all prototypes are initialized.

The third stage of the algorithm is traditional SOM training. Su claims that the

CSOM has the ability to achieve an improved representation of the training data
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Figure 2.4: The operation of Su’s k-means self-organizing map in assigning cluster
centres to prototype vectors.

set in a shorter period of time. While a reasonable assumption, he neglected to run

any experiments for which training time was measured. The experiments that were

run focused on demonstrating an improved data representation. Three simple data

sets were used: an artificial data set of two-dimensional points, the Iris data set,

and the Animal data set. On each of these were trained three versions of the SOM

algorithm: an SOM with random initialization, an SOM initialized using the data set,

and the CSOM. Patten label visualizations (described in section 2.3) were used to

report the results. From these visualizations, the CSOM appears to achieve greater

separation over the pattern labels (classes) for the two-dimensional and Animal data

sets, though this cannot be confirmed for certain without quantitative measures. The

three algorithms yield nearly identical results in the case of the Iris data set.

There are several drawbacks to the CSOM. First, the neural network in use must

be of square (NxN) dimension. Second, the network topology must be square (where

each neuron has four neighbours). The cluster centre assignment listing above could

however be modified for use with a hexagonal topology. Third, the CSOM focuses

even more (than the SOM) on regions of high density in the input space, and even less

on regions of low density. While this is desirable in some situations, it is undesirable in

others. For example, in intrusion detection, entire classes of attack patterns often lie

in regions of low density (there are very few patterns in these classes), and therefore

are ignored by the CSOM. The resulting CSOM will not be able to detect such future
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attacks.

2.6.2 Shortcut Winner Search

Kohonen proposes three SOM speed-up methods in [9], the first of which is the

shortcut winner search. The general idea is to use the BMUs computed (and stored)

at the previous SOM iteration to predict the BMUs at the current iteration. This

scenario is only valid during fine-tuning, however, as during ordering the SOM can

be quite unstable (leading to poor predictions).

Specifically, at iteration i during fine-tuning, each pattern p in the training data

set is processed and its BMU bp,i is computed and stored. Then at iteration i + 1 the

BMU of p, bp,i+1, is computed as follows.

1. Form the subset Ni+1 of neurons consisting of bp,i and its immediate neighbours.

2. Compute the BMU bNi+1
for p over Ni+1, in the traditional manner.

3. If bNi+1
= bp,i, then bp,i+1 = bp,i.

4. Otherwise, let bp,i = bNi+1
and return to step 1.

Note that, if step 4 is reached, the computation of bNi+2
in iteration i + 2 is greatly

simplified. As bNi+1
and bNi+2

are neighbours, Ni+1 ∩ Ni+2 6= ∅. In particular, for

a hexagonal topology, |Ni+1| = 7 and |Ni+1 ∩ Ni+2| = 4, and so only three distance

computations need be undertaken. If all newly-computed distances are stored, even

fewer computations may be necessary in future iterations.

Kohonen conducted an experiment to demonstrate the speed-up in SOM training

when the above is applied. He measured the fine-tuning training time of two SOMs:

a traditional SOM, and one with the above applied. Both had 768 neurons and were

trained on a data set of size 9907 with pattern dimensionality 315. The sped-up SOM

trained sixteen times faster (during fine-tuning) than did the traditional SOM. SOM

performance on the given data set was not measured, however, and it is thus unclear

as to whether good performance is sacrificed for speed.
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2.6.3 Large SOM Estimation

This speed-up method, also proposed by Kohonen [9], applies mainly to situations

in which a large number of neurons is required. The idea is quite simple: use the

prototype vectors of a small, trained SOM to initialize the prototype vectors of a much

larger SOM. If done properly, the large SOM will require much less training time. A

requirement here is a smooth input space, so that the prototype vectors in the large

SOM can be reasonably extrapolated from those of the small SOM. Unfortunately,

no experiments that demonstrated increased training speed were reported.

2.6.4 SOM Smoothing

The final speed-up method proposed by Kohonen [9] is most applicable to situations

in which there is insufficient training data to approximate the input space (as is re-

quired to build an accurate representation of it). Here, the desired SOM resolution (or

representation accuracy) cannot be achieved. However, it may be possible to achieve

the desired accuracy by stopping SOM training before fine-tuning, and applying a

smoothing method instead. Smoothing aims to reduce random variation in the pro-

totype vectors caused by the lack of training data. In a two-dimensional setting,

the effect of smoothing can be seen in figure 2.5. There, the prototype vectors are

denoted by x’s. After SOM smoothing, notice that they are moved in the direction

of the drawn line (approximately), which is the desired representation of the input

space.

2.6.5 Hardware Implementation

Another method of speeding up SOM training is to train using a specialized hard-

ware implementation of the SOM algorithm. One such implementation is presented

by Lightowler in [14]. There, a scalable, modular, parallel implementation is pre-

sented requiring only two changes to the traditional software algorithm: input space

distance metric and parameter quantization. Manhattan distances are used in place

of Euclidean distances in order to significantly reduce hardware implementation ex-

pense. Parameter quantization occurs in the adjustment of prototype weight vectors;

the value of the learning rate is restricted to negative powers of two. This quantiza-
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Figure 2.5: Two-dimensional prototype vectors (a) before SOM smoothing, and
(b) after SOM smoothing.

tion then allows for a neuron to be implemented in hardware as a reduced instruction

set computer (RISC) with three operations: addition and subtraction for computing

Manhattan distances, determining neighbourhood sizes, and adjusting weight vec-

tors; and the shift operation to adjust the learning rate during SOM training. The

shift operation is far less expensive to implement than is the multiplication operation,

which would be required if the learning rate was unrestricted.

An 8x8 grid of neurons forms a modular map, or a module. Modules can be

combined to make larger maps, though Lightowler suggests that steps be taken to

minimize inter-module communication, such as restricting the output of a module

to two eight-bit values (sufficient to indicate the position of a neuron). A module

is restricted to learning input data of dimension sixteen or less. However, higher

dimensional data can be learned by setting up a module hierarchy. Since the output

dimension of a module is two, up to eight modules at a lower level may have their

outputs fed as input to a single module at a higher level. Thus, a two-level hierarchy

may accept input data of dimension at most 128, by having each of the eight first-

level modules learn up to sixteen dimensions, and combining their outputs to form

the second-level input. Even larger data sets may be processed by adding levels to

the hierarchy.

Modular maps were trained on a human face recognition data set. The predictive

accuracy (the proportion of the data set patterns whose labels were correctly pre-
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dicted) was 96%, which compares favourably to the traditional SOM’s accuracy of of

94%. Modular map training times were also reported to be lower, though no figures

were given.

2.7 Data Sets

2.7.1 The Adult Data Set

Description. The adult data set, first used by Kohavi in [8], was extracted from

the United States government’s census bureau database, and contains 45222 labeled

patterns. Each pattern has 14 features (or attributes) that describe a person, and one

of two labels indicating a personal income of more than $50000 per year or otherwise.

Traditionally, the first 30162 patterns form the training partition, while the remaining

15060 patterns form the testing partition. The data set is quite skewed, with only

twenty-five percent of the patterns belonging to the > $50k class. The distribution

of patterns in the two partitions can be seen in table A.1.

Goal. Given a pattern, to correctly predict the income of the described person.

Predictive accuracy is measured over the testing partition.

Previous Results. Supplied with the adult data set are the classification accuracies

attained by several existing learning algorithms on the testing partition. An accuracy

is computed as the number of patterns correctly predicted divided by the total number

of patterns seen. They are summarized in table 2.1.

Table 2.1: Previous adult testing partition classification accuracies.

Algorithm Accuracy

NBTree 0.859
C4.5 0.845
Voted ID3 0.844
Naive Bayes 0.839
Nearest-Neighbour 0.796

2.7.2 The Forest Covertype Data Set

Description. The Forest Covertype data set was built by Blackard [1] out of the

need for descriptive data of forested land to support decision making in ecosystem

management. The entire data set contains 581012 labeled patterns, each of which
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describes the forest cover of a specific piece of forest, belonging to one of seven classes,

and using 54 measured attributes. The first 11340 patterns traditionally form the

training partition. The next 3780 and 565892 patterns form the validation and testing

partitions, respectively. The compositions of the three partitions, by pattern class,

can be seen in table A.2. This partitioning of the covertype data set shall hereafter

be referred to as covertype-a.

Goal. To correctly predict the cover type of the piece of forest described by a given

pattern. Predictive accuracy is measured over the testing partition.

Previous Results. Only three classification results on the covertype data set are cur-

rently available, summarized in table 2.2. The results listed, in order, were attained by

Blackard’s neural network (backpropagation network), Cawley’s SVM [2], and Rule-

quest’s C5.0. The latter result was achieved with a training time of 679 seconds using

a different data partitioning. There, half of the entire data set was used for training,

while the other half was used for testing. The compositions of the two halves was not

reported. This partitioning of the covertype data set shall hereafter be referred to as

covertype-b.

Table 2.2: Previous Covertype testing partition classification accuracies.

Algorithm Partitioning Accuracy

Backpropagation Network covertype-a 0.706
SVM covertype-a 0.703
C5.0 covertype-b 0.941

2.7.3 The Shuttle Data Set

Description. The StatLog project [7] compared classification algorithms on large

real-world problems. One of the data sets on which this comparison took place is

the NASA-supplied shuttle control (or simply shuttle) data set. The data features

describe a set of conditions during a space shuttle flight; pattern labels represent

correct actions to take given the conditions.

There are 58000 labeled patterns, the first 43500 of which are commonly used

as the training partition, with the remainder acting as the testing partition. Each

pattern is described by nine features and one of seven labels. The data set is quite
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skewed, with eighty percent of the patterns belonging to a single class. The pattern

counts over the seven classes for both data sets are in table A.3.

Goal. To correctly predict the label of a given pattern. The testing partition is used

to determine predictive accuracy.

Previous Results. The StatLog project obtained testing partition results using a

number of learning algorithms. The most common and successful of these are listed

in table 2.3.

Table 2.3: Previous shuttle data set classification accuracies.

Algorithm Accuracy

NewID 0.100
CN2 0.100
C4.5 0.100
Nearest-Neighbour 0.996
Naive Bayes 0.954
Backpropagation Network 0.951

2.7.4 The KDD-99 Data Set

Description. The Fifth International Conference on Knowledge Discovery and Data

Mining (KDD-99) included the Third International Knowledge Discovery and Data

Mining Tools Competition, for which an intrusion detection data set was constructed.

Raw TCP dump data was recorded over seven weeks of simulated traffic on a local-area

network designed to simulate a military network. This data was processed into five

million labeled connection records (patterns) forming the training partition. Similarly,

two weeks’ worth of data were collected forming the testing partition. Two data sets

used frequently in this work were derived from this data. The 10% KDD-99 data

set is a subset of the training partition of approximate size 500000. The corrected

KDD-99 data set is a subset of the testing partition with approximate size 310000.

The data sets are made up of connections (patterns) comprising five general class

types: normal, denial of service (DoS), probe, root-to-local (R2L) and user-to-root

(U2R). The latter four are attack types, each containing a number of individual attack

classes. The testing (and corrected) partitions contain 17 attack classes not found in

the training (and 10%) partitions. The exact sizes of the partitions, as well as their

compositions by pattern class and type, is summarized in tables A.4-A.9.



20

Each KDD-99 pattern is described by 41 features and a class label (normal or one

of the 39 attack types). The first nine features are referred to as the basic features.

The latter 32 features are the derived features. Temporal information is encoded in

the derived features, and thus the order of the patterns in the KDD-99 data sets need

not be maintained.

Goal. To correctly predict whether a pattern is normal or an attack. Ideally a minimal

false-positive rate and a maximal detection rate are achieved. A false positive is a

normal pattern labeled as an (any) attack. A detection is an attack pattern labeled as

an (any) attack. A secondary goal is to achieve these in as short a time as possible,

a goal that applies to all time-critical prediction tasks. The corrected partition is

traditionally used to measure success.

Previous Results. The following table summarizes results on the KDD-99 data set

with the corrected partition used for testing. Both false positive and detection rates

are included. The two co-winners of the Third International Knowledge Discovery

and Data Mining Tools Competition, Pfahringer [15] and Levin [12], are listed first.

Listed third is Kayacik’s [6] result using an SOM. Listed fourth is Song’s [16] genetic

programming result. Eskin [3] obtained results using variants of three additional

learning algorithms: the SVM, cluster-based estimation, and nearest neighbour; these

are listed next. The origin of the final nearest-neighbour approach is unknown; it was

one of the submissions to the KDD competition.

Table 2.4: Previous KDD-99 corrected data set detection and false positive rates.

Algorithm Detection Rate False Positive Rate

Pfahringer’s C5 Ensemble 0.918 0.005
Levin’s Kernel Miner 0.918 0.006
Kayacik’s SOM 0.906 0.016
Song’s GP 0.900 0.009
Eskin’s SVM 0.980 0.100
Eskin’s Estimation Clusterer 0.930 0.100
Eskin’s Nearest-Neighbour 0.910 0.080
Other Nearest-Neighbour 0.909 0.005
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2.7.5 The KDD-99 Six-Feature Data Set

Description. The six-feature version of the KDD-99 data set was first constructed

and used by Kayacik [6]. As its name suggests, only the first six features in the

data set are retained. Each of the features is used to construct a separate data set,

with the idea being that a learning algorithm will be employed to learn each feature

individually.

To regain temporal information lost in pruning the derived features of the patterns,

a shift register is built for each of the six features, through which the values of the

features are passed. Equidistant taps are placed along the register, and after each

shift, the values at the taps form the next pattern in the feature-specific data set being

constructed. The label of the original pattern, from which the most recent value to

enter the register is taken, is used to label the newly-generated pattern. By processing

the first six features of the 10% and corrected partitions in this way, six data sets are

created for each that are used for training and testing purposes, respectively. The

dimension of the patterns in the data sets depends on the number of shift register

taps in use.

Previous Results. To this point, only Kayacik has run experiments on the KDD-99

six-feature data set. He achieved a false positive rate of 0.046 and a detection rate of

0.890 on the corrected data set, using an SOM hierarchy.



3 Dynamic Subset Selection Applied to

Self-Organizing Maps

To make DSS applicable to the SOM, feedback from the SOM must be used to assign

difficulties to the training patterns. The SOM prototype vectors are natural choices

to provide this feedback. During training, prototype vectors are constantly being

adjusted to better represent (be more similar to) the training patterns. A pattern is

therefore represented well if it is similar (close, in the input space) to one or more

prototype vectors. A pattern not being represented well is dissimilar to all prototype

vectors, and can therefore be considered difficult. The dynamic subset selection self-

organizing map (DSSSOM) defines the difficulty d of pattern x selected to a subset

for the vth time as

d(v) = α||x − pi|| + (1 − α)d(v − 1) (6)

where α is the current learning rate, and pi is the prototype vector of the BMU of

x. Thus, the current difficulty is dependent upon the distance from x to pi and x’s

previous difficulty, with more weight going to the latter as training proceeds.

3.1 Block Selection for Large Data Sets

To solve the problem discussed in section 2.5 concerning large data sets, blocks of data

for learning must be selected in a non-random fashion. Fortunately the DSS concept

of pattern difficulty allows for a simple solution: use the difficulties of the patterns

within a block to compute a block difficulty. The simplest way of computing a block’s

difficulty is to compute the mean of the difficulties of its patterns. Another possibility

is to use the median pattern difficulty. However, using means or medians alone can be

misleading for different data distributions. In this work, a block’s difficulty is defined

as the difference in the mean and median difficulties of its patterns.

As with DSS, selection solely by difficulty is not a desirable property. To ensure

that there is a very high probability of all blocks being seen during training, block

age is kept track of. Selection of a block is then identical to the selection of a pattern

into a DSS subset (see section 2.5).
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3.2 A New Stopping Condition

The traditional SOM is normally trained until a specified number of epochs has

been reached. Alternatively, the error on a validation data set can be used to stop

training. The previous approach requires experimentation to determine the ideal

number of epochs, while the latter is computationally expensive in implementation.

In an attempt to solve both problems, the DSSSOM uses a stopping condition based

on block difficulty that neither requires a specified training length, nor a validation

set requiring expensive computation. The idea behind the stopping condition is that

block difficulties are good indicators as to how well a data set has been learned. The

average block difficulty can be expected to decline fairly sharply at first, and then level

out as fewer patterns remain difficult. Training can be stopped when this leveling out

occurs.

There are two problems to be solved before the described stopping condition can

be used in practice: the lack of a specified training duration needed to compute the

learning rate and neighbourhood radius, and the lack of a guarantee that training will

stop. The learning rate and radius are traditionally computed using an exponential

decay function. Such a function takes as arguments the current training time as

well as the training duration. Fortunately, preliminary experimentation determined

that the decay of the average block difficulty is roughly exponential. Thus, a linear

mapping from the difficulty can be used to compute the learning rate and radius.

Even better, a linear mapping means that it is possible for the learning rate and

radius to increase, if the SOM’s representation of the input patterns deteriorates

during training. This allows the SOM to more quickly adapt and return to a state

of better representation. SOM ordering is stopped when the learning rate (or radius)

crosses a specified threshold. The learning rate is the more suitable choice as its value

is a floating-point number. The chosen threshold is thus the fine-tuning learning rate.

Once reached, SOM fine-tuning takes place for twice as many epochs as were spent on

ordering. Note that in the context of the DSSSOM, an epoch is one block selection.

To solve the second problem, a mechanism needs to be in place to detect the

leveling out of the average block difficulty (before the fine-tuning learning rate is

reached). Indeed, there are difficult data sets for which the average block difficulty will
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drop very little. One solution is to continually raise the fine-tuning learning rate (each

change requires that training be restarted) until training successfully stops. However,

in addition to being time-consuming, this solution will degrade SOM performance as

the effectiveness of fine-tuning is reduced with higher fine-tuning learning rate values.

An equally simple solution involves entering fine-tuning once the difficulty has leveled

out. However, this could mean a sudden and very large drop in the learning rate and

the radius, which again will have a negative effect on SOM performance. The two-

pronged solution used in this work, although slightly more complex, avoids these large

drops and does not require training restarts. The first idea is to reduce the learning

rate and radius by a small amount each time the average block difficulty levels out (it

will happen more than once if the data set is particularly difficult). Whereas during

normal training the values of the learning rate and radius may increase, here maxima

for both must be enforced. Otherwise, the SOM could return to its pre-reduction

state. The second idea is to recompute the average block difficulty to learning rate

and radius mapping when the average block difficulty reaches a new maximum. This

will make it easier for the fine-tuning learning rate to be reached in the future.

In determining whether the average block difficulty has leveled out, a history of

past average block difficulty values is kept. Leveling out is said to have occurred only

if the average of the values is lower than the current value.

3.3 The Algorithm

The DSSSOM algorithm is concisely given here. Given for training is a large data

set T containing t patterns. A block size of b is in use, and for each selection of a

block B, n iterations of DSS are performed, each of which results in the selection of

a subset S of size s. Recall the definitions of pattern and block difficulty and age.

The current SOM learning rate is lr, and the fine-tuning learning rate is lrft. The

current neighbourhood radius is r. There is a probability pb (1 - pb) of a block being

selected in proportion to the block difficulties (ages), and a probability pp (1 - pp) of

a pattern being selected in proportion to the pattern difficulties (ages). The current

linear mapping from the average block difficulty to the learning rate and radius is m.

1. Initialize the difficulties and ages of the patterns in T by performing several
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epochs of traditional SOM training on T .

2. Initialize the block ages. Using the pattern difficulties, initialize the block diffi-

culties.

3. While lr > lrft,

(a) Compute a random number rb in [0, 1).

(b) If rb ≤ pb, select a block B with probability in proportion to the block

difficulties. Otherwise, select B by block age.

(c) Read B in from disk.

(d) For n iterations,

i. Perform DSS on B. For s iterations,

A. Compute a random number rp in [0, 1).

B. If rp ≤ pp, select a pattern p from B with probability in proportion

to the difficulties of the patterns in B. Otherwise, select p by pattern

age.

C. Add p to S and remove it from further consideration.

ii. Increment the ages of all patterns in B not selected to S.

iii. For each pattern p in S,

A. Train the SOM on p.

B. Update the difficulty of p as per equation 6, and reset its age to 1.

(e) Re-compute the difficulty of B given the updated pattern difficulties. Incre-

ment the ages of all blocks other than B.

(f) If the average block difficulty has reached a new maximum, recompute m.

(g) Use m together with the average block difficulty to update lr and r.

3.4 The Implementation

As the application of DSS to the SOM requires that changes be made to both, an

original implementation was undertaken. It allows for the use of both the DSSSOM

and the traditional SOM algorithms. It was used to run all original DSSSOM and

SOM experiments in this work.
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3.5 Properties of the DSSSOM

The testing partition accuracy of a given pattern class is largely determined by three

factors: the content of that class in the training partition, the separability of the class

from the other classes, and the number of patterns in the class. First, if the patterns

of a class in the training partition are not representative of that class’ patterns in

the entire data set, the representation formed by the SOM will not be complete,

leading to poor accuracy. Second, it is impossible for the SOM to form an accurate

representation of a class that is not linearly separable from the other classes. Third,

if there are too few patterns of a particular class in the training partition, those

patterns are seen by the SOM algorithm too infrequently to have a lasting effect on

the prototype vectors. The application of DSS to the SOM relieves this latter problem

(to a degree that is controlled by the user) by effectively enlarging small classes via the

concept of pattern difficulty. The other two problems cannot be alleviated without

changing the SOM algorithm itself; in fact, DSS hampers the second problem by

producing pattern difficulties that are deceivingly low. Two linearly non-separable

patterns may be separated by a nonlinear boundary; this does not imply that the

patterns are very different from one another; they may in fact be very similar (or

near to) one another. Completely non-separable patterns may be even more similar.
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4.1 Experimental Setup

All experiments were run on a server running Mac OS X, with two 1.33 GHz G4

processors and 2 GB of RAM. Below, the experiments are divided by data set. The

data sets in use have all been partitioned into training and test partitions (and possibly

validation partitions as well). Of interest here are three general measures: training

time, test partition accuracy, and training partition predictive accuracy. Training

time refers to the amount of processor time spent completely training the architecture

on which testing took place. Test and training partition definitions and characteristics

were discussed in section 2.7.

Within each data set, the experiments are further divided into two types: DSSSOM-

SOM comparison experiments, and DSSSOM predictive accuracy experiments. The

former type of experiment aims to show that the DSSSOM achieves predictive accu-

racies that are on par with SOM predictive accuracies, but in less training time. The

latter type of experiment aims to achieve the best DSSSOM predictive accuracy pos-

sible. The DSSSOM-SOM comparison experiments train single DSSSOMs and SOMs

for comparison; there is no need to construct hierarchies of either for this task. How-

ever, preliminary experimentation showed that DSSSOM hierarchies achieved better

predictive accuracies than did single DSSSOMs in most cases; thus, hierarchies are

utilized in trying to achieve the best predictive accuracies. The hierarchical architec-

tures in use are based on those first devised by Lichodzijewski in [13] and then more

recently and relevantly used by Kayacik in [6].

Two-level hierarchies are built for all data sets, with the exception of the KDD-

99 six-feature data set. The first level of the two-level hierarchy is simply a single

DSSSOM trained on the entire training partition in the usual fashion. The training

partition is then used to test the built DSSSOM, during which counts for each pattern

class are maintained at each neuron. The count for class c at neuron n is incremented

when a pattern of class c has BMU n. Neurons having significant counts for multiple

classes contribute to classification error, because of the way in which patterns are

labeled (a neuron takes the label of the majority class). In order to reduce this error,

27
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second-level DSSSOMs are trained, one per such neuron, on only the patterns having

that neuron as BMU. The selection of neurons for which this is done is manual

at present, though it could easily be automated. To obtain the overall predictive

accuracy of the hierarchy, the testing partition is run through, and its pattern labels

compared to those of their BMUs at either the first or second-level, the latter being

reserved for patterns having a BMU for which a second level has been built.

The three-level hierarchy is designed specifically for use with the KDD-99 six-

feature data set described in section 2.7.5. Recall that the six-feature data set actually

consists of six individual data sets, one for each of the first six attributes in KDD-99.

At the first level, one DSSSOM is trained for each of these six parts; effectively each

DSSSOM learns a single attribute. After training has been completed, the k-means

clustering algorithm is used to cluster the prototype vectors of the six DSSSOMs

into six clusters each. The six prototypes nearest to the six cluster centres effectively

become the new set of prototype vectors for the network. Then, the DSSSOM is

tested with the training partition and the quantization errors, or the distances to the

(six) prototype vectors, for each pattern, are stored in an output file. An output

file is simply a matrix of size px6, where p is the number of patterns in the training

partition. The second-level training data set is a combination of the six first-level

output files: the xth pattern is built by concatenating the xth rows of each of the

six output files, as well as a pattern label. The second and third levels of the three-

level hierarchy then exactly correspond to the first and second levels of the two-level

hierarchy, the only difference being in the data used to train the lower of the two

levels. In the case of the two-level hierarchy, it is the original training partition.

In the case of the three-level hierarchy, it is the first-level combined output file. It

should be noted that the first two levels of the three-level hierarchy are constructed

and tested for DSSSOM-SOM comparison, as comparison at the first level is not as

meaningful here as it is in the case of a two-level hierarchy.

Training times were recorded for all (originally) constructed maps and map hierar-

chies, and test partition accuracies were measured. Training partition accuracies were

measured over the constructed DSSSOMs, as an indication of generalization ability.

They were not measured over the constructed SOMs, as the generalization ability of
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the SOM is not in question here. Validation partition accuracy, where applicable,

was not measured.

Several parameters were kept constant across all experiments. These parameters,

the algorithm to which they are applicable (SOM , DSSSOM , or BOTH), and their

respective values, are listed in table 4.1. In the table, the acronym ABD refers to

Table 4.1: Parameters kept constant over all experiments.

Parameter Algorithm Value

Initial learning rate BOTH 0.3
Fine-tuning learning rate BOTH 0.01
Fraction of total training time spent fine-tuning BOTH 0.67
Minimum training length DSSSOM 100 block selections
Prob. of block selection by difficulty DSSSOM 0.9
Prob. of pattern selection by difficulty DSSSOM 0.7
Size of ABD history DSSSOM 100
Effect of ABD leveling out DSSSOM radius reduced by 1
Top-level network dimension DSSSOM 10x10
Trials performed per parameter set DSSSOM 20
Trials performed per parameter set SOM 1

the average block difficulty. It should be noted that when the neighbourhood radius

is reduced after the average block difficulty levels out, the learning rate is reduced

correspondingly. Also, the top-level network dimension refers to the size of the neural

networks trained at the highest level of a DSSSOM hierarchy. The sizes of the maps

trained at the lower level(s) of a hierarchy were not fixed.

Only one trial was performed per unique set of parameters in the case of the

traditional SOM, though many different training lengths were used. The SOM will

arrive at a fairly consistent solution given a data set that it is able to learn well. The

same, however, cannot be said for the DSSSOM with certainty. Therefore, multiple

DSSSOM trials are run per unique set of parameters.

The DSSSOM stopping condition in use does not guarantee a minimum training

length. This can be a problem for particularly easy data sets, where training may

stop before the average difficulty reaches its minimum value. To prevent this from

happening, a minimum ordering training length of 100 epochs is enforced for all

DSSSOM experiments (100 ordering epochs implies 200 fine-tuning epochs, for a

total of 300 epochs). This limit potentially lengthens training time unnecessarily for

some easy data sets, but it also prevents the poor performance that can occur as a
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result of insufficient training for other data sets.

In the following sections, the network dimension of a first-level SOM or DSSSOM

shall be referred to simply as its size. Testing partition predictive accuracy and

training partition predictive accuracy shall sometimes be referred to simply as testing

accuracy and training accuracy, repsectively.

4.2 Block and Pattern Selection Experiments

Early experimentation on the DSSSOM focused on showing that the algorithm did

indeed select difficult and old patterns and blocks with a greater frequency than the

others. The KDD-99 10% partition serves to demonstrate this. The data set was

first ordered by class type, with the types containing the most patterns appearing

first. Thus, the patterns were ordered as follows: DoS, normal, probe, R2L, U2R.

A block size of 5000 was selected, resulting in the following distribution (in order):

78 blocks of DoS, one block of DoS and normal, 18 blocks of normal, one block of

normal and probe, and finally a block of probe and all of R2L and U2R (99 blocks

total). A DSSSOM was trained on this ordered data set, with block selection counts

maintained. The counts are visualized in figure 4.1 as a histogram. Clearly, the latter

blocks are selected more often. This is because the SOM has difficulty learning their

patterns given the overwhelming majority of DoS and normal patterns. DSS age

prevents normal and DoS from being shut out completely.

A similar experiment was conducted to demonstrate weighted pattern selection.

A subset of the KDD-99 10% partition was created containing (in order) 93 DoS

patterns, 2 probe patterns, 2 R2L patterns, and 3 U2R patterns for 100 patterns

total. The block size, DSS subset size, and the number of subset selections per block

selection were set at 100, 10, and 50, respectively. Pattern selection was based on

difficulty (age) with probability 0.7 (0.3). A DSSSOM was trained for 400 epochs over

which pattern selection counts were computed. The individual selection frequencies

of the patterns can be seen in figure 4.2. In the figure, it is easy to see that the latter

7 patterns are slightly favoured, as would be expected. There are, however, some

favoured DoS patterns; this is to be expected, as there are differences in difficulty over

the individual classes that make up the DoS class type. The differences between the
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Figure 4.1: DSSSOM block selection frequency for the KDD 10% partition
(ordered).

DoS and the other selection frequencies are smaller than one might expect because of

the small data set size and the use of random selection to obtain the data set patterns.

4.3 Data Set Experiments

4.3.1 The Adult Data Set

An SOM was trained for each of six different training lengths and three different sizes.

Twenty DSSSOM hierarchies were trained for each of three sizes. The DSSSOM

parameters block size, DSS subset size, and number of subset selections per block

selection were set at 500, 50 and 10, respectively. Table 4.2 presents the testing

accuracies and training times for the SOM of each size with the best overall accuracy.

It should be noted that the parameter set of each SOM trial is unique; the accuracies

and training times of the other SOM trials are therefore made available in table B.1.

Table 4.3 presents the testing accuracies and training times for the best DSSSOMs.

Since the parameter sets were kept constant over the twenty DSSSOM trials for each

size, additional DSSSOM results are omitted.

Second-level DSSSOMs were trained to form DSSSOM hierarchies for the three

DSSSOMs in table 4.3. The training times and testing accuracies for the hierarchies
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Figure 4.2: DSSSOM pattern selection frequency for a subset of the KDD-99 10%
partition.

Table 4.2: SOM training times and predictive accuracies for the adult testing
partition.

Training Length Accuracy Time
Size (epochs) ≤ $50k > $50k Overall (s)

10x10 1000 0.997 0.089 0.774 2509
8x8 4000 0.995 0.083 0.771 6890
6x6 50 0.999 0.033 0.762 55

Table 4.3: DSSSOM training times and predictive accuracies for the adult testing
partition.

Accuracy Time
Size ≤ $50k > $50k Overall (s)

10x10 0.996 0.103 0.776 141
8x8 0.995 0.087 0.772 96
6x6 0.997 0.071 0.770 73

can be seen in table 4.4. The corresponding training accuracies can be seen in table

4.5.

Hit histograms were generated for the first SOM in table 4.2 and for the first

DSSSOM in table 4.3. They can be seen in figures 4.3 and 4.4, respectively.

Looking at tables 4.2 and 4.3, it is clear that neither the SOM nor the DSSSOM can

achieve a good testing accuracy. Though the largest DSSSOM achieves the highest

accuracy, it is only marginally higher than the other DSSSOM and SOM accuracies.
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Table 4.4: DSSSOM hierarchy training times and predictive accuracies for the
adult testing partition.

Accuracy Time
Size ≤ $50k > $50k Overall (s)

10x10 0.870 0.332 0.738 3648
8x8 0.918 0.291 0.764 2767
6x6 0.952 0.259 0.782 1587

Table 4.5: DSSSOM hierarchy predictive accuracies for the adult training
partition.

Accuracy
Size ≤ $50k > $50k Overall

10x10 0.952 0.433 0.823
8x8 0.962 0.361 0.812
6x6 0.973 0.295 0.804

(a) (b)

Figure 4.3: For an SOM trained on the adult data set, (a) the hit histogram for
class ≤ $50k, and (b) the hit histogram for class > $50k.

(a) (b)

Figure 4.4: For a DSSSOM trained on the adult data set, (a) the hit histogram for
class ≤ $50k, and (b) the hit histogram for class > $50k.

In fact, the SOM results are comparable at all training lengths down to ten epochs,

and to the DSSSOM results; all however are poor in comparison to the results achieved

by the other learning algorithms in table 2.1. Clearly the SOM cannot build a good

enough representation of the adult data set to be able to differentiate between the

two classes. Since the application of DSS makes little difference, the problem is likely

not the imbalanced nature of the data set, but rather that the two classes are not

easily separable. The hit histograms support this hypothesis, as both classes have
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significant counts for the same neurons. Finally, although it is difficult to compare

training times in this context unless good results are achieved, it is promising to note

that no DSSSOM took longer to train than did an SOM trained for (a relatively

short) 250 epochs.

Next, in comparing the accuracies of the individual DSSSOMs to the DSSSOM

hierarchies (tables 4.3 and 4.4), it is clear that the construction of a hierarchy worsens

the result. It shall be seen that this behaviour is limited to the adult data set. Building

a second level had the effect of decreasing the ≤ $50k accuracy while increasing the

> $50k accuracy. The net result was a decrease in accuracy attributable to the large

size of the ≤ $50k class. It was noted that at nearly every neuron (regardless of

hierarchical level), the distribution of the pattern classes closely resembled that of

the adult data set as a whole. In an attempt to gain some separation over the two

classes, several small experiments were conducted in which third levels were built on

top of the second-level DSSSOMs. The third-level DSSSOMs were built in the same

way as were the second-level DSSSOMs on top of the first level. Unfortunately no

class separation was achieved. The best adult testing accuracy is therefore achieved

by a single DSSSOM.

Finally, in comparing the testing and training partition accuracies of the DSSSOM

hierarchies (tables 4.4 and 4.5), it is notable that there is a significant difference in

both the class accuracies and the overall accuracy. As one would expect, the training

partition accuracy is better, though still not good. There is little point in discussing

the generalization ability of the DSSSOM here, as the data set must first be learned

properly before good generalization can take place.

During DSSSOM training, the average block difficulty was consistently observed

to drop from a very large value to a very small value, at which it leveled out. Further-

more, neither adult class was considered difficult relative to the other, as evidenced

in figure 4.5. There, the two classes are observed to have had similar selection fre-

quencies, despite the difference in size. A selection frequency for a particular class is

computed by counting the number of times the patterns of the class are selected to

DSS subsets, and dividing by the class size. The selection frequencies of small and/or

difficult classes should be higher. Based on these observations alone, one would natu-
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rally conclude that good representations of both classes have been formed. However,

the observed training and testing accuracies, as well as the identical pattern distribu-

tions for the two classes (figure 4.4), strongly indicate that this is not the case. This

contradiction can only be explained by poor linear separability. In such a scenario, it

is possible for both classes to have very low pattern difficulties, as both classes may

be very near to the same neurons. Predictive accuracy, however, will be very poor,

as an SOM neuron is labeled by the majority class; the patterns of the other class,

though having the neuron as BMU, have their labels predicted incorrectly. Figure 4.6

shows the pattern label visualization for the first DSSSOM in table 4.3. Notice that

although the > $50k class has significant counts on many of the neurons (figure 4.4),

the vast majority of those neurons are labeled as ≤ $50k.
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Figure 4.5: DSSSOM pattern selection frequency, by pattern class, for the adult
data set.

4.3.2 The Covertype Data Set

The experiments performed on the adult data set were exactly repeated for the the

covertype-a data set, and the results are presented in the same fashion.

As with the adult data set, the overall accuracies of both architectures on the

covertype-a data set are quite poor (tables 4.6 and 4.7). The accuracies of the SOM
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Figure 4.6: For a DSSSOM trained on the adult data set, the neuron label
assignments.

are again inconsistent due to its inability to learn the data set. Evidence of this

inability is easy to spot; the best accuracy achieved by a 10x10 SOM required a mere

ten epochs (including fine-tuning) of training time, certainly not enough to ensure

either proper ordering or fine-tuning, especially on a data set as large as covertype-

a. The best SOM accuracies were better than the best DSSSOM accuracies, though

it is impossible to tell whether this is a result of a weakness of the DSSSOM or of

random chance. The DSSSOM accuracies were much more consistent, likely due to

the enforced minimum training length of 300 epochs (total). In any case, the SOM

algorithm cannot learn the covertype-a data set, and again a comparison of training

times would have little meaning.

Table 4.6: SOM training times and predictive accuracies for the covertype-a
testing partition.

Tr.Len. Accuracy Time
Size (epochs) S/F LPine PPine C/W Asp DFir Krum Overall (s)

10x10 10 0.371 0.231 0.241 0.709 0.526 0.370 0.696 0.306 24
8x8 50 0.396 0.206 0.414 0.671 0.446 0.193 0.538 0.303 76
6x6 250 0.280 0.081 0.306 0.719 0.396 0.295 0.536 0.194 233

Unlike the adult data set, the covertype-a data set enjoys a significant improve-

ment in accuracy when a two-level DSSSOM hierarchy is used, as seen in table 4.8.
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Table 4.7: DSSSOM training times and predictive accuracies for the covertype-a
testing partition.

Accuracy Time
Size S/F LPine PPine C/W Asp DFir Krum Overall (s)

10x10 0.359 0.174 0.296 0.658 0.616 0.253 0.613 0.272 191
8x8 0.372 0.157 0.398 0.647 0.564 0.277 0.613 0.274 120
6x6 0.242 0.179 0.000 0.809 0.460 0.277 0.601 0.213 54

The training times are (not surprisingly) significantly longer, but the accuracies are

more than twice as good. The improvement is not restricted to a single class, but

rather spread evenly over the classes. The lodgepole pine class continues to have the

lowest accuracy, and because of the large number of patterns in that class, the overall

accuracy remains poor (relative to the other learning algorithms presented in table

2.2). Table 4.9 presents a confusion matrix corresponding to the first DSSSOM hier-

archy in table 4.8. The value at position (x, y) in the table corresponds to the number

of patterns of label x that have had their labels predicted by the hierarchy as y. It

can be seen that the bulk of the overall error is attributable to the large number of

lodgepole pine patterns misclassied as spruce/fir, and vice versa. The two classes are

also often misclassifed as aspen, douglas fir, and krummholz.

Table 4.8: DSSSOM hierarchy training times and predictive accuracies for the
covertype-a testing partition.

Accuracy Time
Size S/F LPine PPine C/W Asp DFir Krum Overall (s)

10x10 0.784 0.375 0.601 0.809 0.747 0.583 0.750 0.563 6130
8x8 0.748 0.366 0.602 0.860 0.815 0.577 0.778 0.547 3863
6x6 0.661 0.398 0.579 0.848 0.821 0.579 0.802 0.530 1908

Table 4.9: A DSSSOM hierarchy confusion matrix for the covertype-a testing
partition.

S/F LPine PPine C/W Asp DFir Krum Overall

S/F 164428 27446 766 0 4387 511 12142 209680
LPine 138817 105462 8968 176 18505 6021 3192 281141
PPine 5900 711 20201 2334 407 4038 3 33594
C/W 41 0 56 475 0 15 0 587
Asp 1199 384 192 0 5481 77 0 7333
DFir 2387 373 2293 1034 259 8861 0 15207
Krum 4293 278 0 0 15 0 13764 18350
Overall 317065 134654 32476 4019 29054 19523 29101 565892
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The performance of a DSSSOM hierarchy on the training partition is presented in

table 4.10. It was much better than was the performance on the testing partition.

The biggest improvement comes by way of the lodgepole pine class, which accounts

for the majority of the overall increase. Clearly the DSSSOM does not generalize well

here, though this is to be expected in the case of a data set that has not been learned

well to begin with.

Table 4.10: DSSSOM hierarchy predictive accuracies for the covertype-a training
partition.

Accuracy
Size S/F LPine PPine C/W Asp DFir Krum Overall

10x10 0.942 0.826 0.894 0.942 0.949 0.840 0.970 0.909
8x8 0.898 0.733 0.813 0.941 0.937 0.765 0.941 0.861
6x6 0.804 0.669 0.711 0.887 0.921 0.707 0.908 0.801

The histograms in figures 4.7 and 4.8 show some separation over the classes. Still,

all of the histograms show significant counts at many neurons, though the distribution

is not as even as it was for the adult data set. The DSSSOM histograms for the

spruce/fir, lodgepole pine and krummholz classes are very similar, as are those of the

ponderosa pine, cottonwood/willow and douglas fir classes. The aspen class is a mix of

the two groups. The spruce/fir, lodgepole pine and krummholz group indeed accounts

for most of the predictive error seen in table 4.9. Most of the remaining error is caused

by misclassification amongst the three classes of the other group. The poor predictive

accuracies achieved were caused by the DSSSOM’s inability separate the classes within

these groups. The pattern label visualization in figure 4.9 is an agglomerative form

of the class-specific hit histograms, with the majority class labeling each neuron. It

can be seen there that the classes within the groups tend to be near to one another,

as they compete to occupy the same regions of the map.

Not surprisingly, given the discovered predictive accuracies, the DSSSOM pattern

selection frequency chart in figure 4.10 shows that there is little variation in selection

frequencies over the classes (much more variation shall be seen later). The DSSSOM

therefore finds no class particularly difficult, though it does find the class on which

the worst predictive accuracy was achieved to be the most difficult (lodgepole pine).

Even though lodgepole pine is the largest class, it perceived by the DSSSOM to be
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(e) (f) (g)

Figure 4.7: For an SOM trained on the covertype-a data set, hit histograms for
the classes (a) spruce/fir, (b) lodgepole pine, (c) ponderosa pine, (d)
cottonwood/willow, (e) aspen, (f) douglas fir, and (g) krummholz.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.8: For a DSSSOM trained on the covertype-a data set, hit histograms for
the classes (a) spruce/fir, (b) lodgepole pine, (c) ponderosa pine, (d)
cottonwood/willow, (e) aspen, (f) douglas fir, and (g) krummholz.

difficult because separation could not be achieved from the spruce/fir and krummholz

classes.
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Figure 4.9: For a DSSSOM trained on the covertype-a data set, the neuron class
labels.
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Figure 4.10: DSSSOM pattern selection frequency, by pattern class, for the
covertype-a data set.
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4.3.3 The Shuttle Data Set

The same experiments were again repeated for the shuttle data set. Tables 4.11 and

4.12 clearly show that the DSSSOM requires far less training time than does the SOM

to achieve the best possible overall accuracy. Table B.3 presents the entire set of SOM

results. There, it can be seen that the results are good even when the training length

is severely restricted. However, it is not until the training length is restricted to fifty

epochs or less that the DSSSOM and SOM training times become comparable. The

histograms in figures 4.11 and 4.12 give good reasoning for the high accuracies. Unlike

the adult and covertype data sets, the pattern classes in shuttle are easily separable.

The separation is quite obvious in the figures. There is still some overlap, mostly in

the larger classes (rad flow, fpv open, high), which prevents even higher accuracies

from being achieved.

Table 4.11: SOM training times and predictive accuracies on the shuttle testing
partition.

Tr.Len. Accuracy Time
Size (epochs) RFlow FClose FOpen High Byp BClose BOpen Overall (s)

10x10 1000 0.981 0.154 0.231 0.871 0.994 0.000 0.000 0.963 2826
8x8 4000 0.981 0.308 0.000 0.762 0.994 0.000 0.000 0.946 7525
6x6 1000 0.951 0.000 0.000 0.771 0.989 0.000 0.000 0.923 1150

Table 4.12: DSSSOM training times and predictive accuracies on the shuttle
testing partition.

Accuracy Time
Size RFlow FClose FOpen High Byp BClose BOpen Overall (s)

10x10 0.989 0.077 0.000 0.869 0.991 0.000 1.000 0.968 145
8x8 0.981 0.154 0.000 0.808 0.948 0.000 0.000 0.950 64
6x6 0.967 0.000 0.000 0.699 0.947 0.000 0.000 0.923 24

The pattern label visualization in figure 4.13 summarizes the DSSSOM hit his-

tograms in figure 4.12. The rad flow class, having significant counts at many neurons,

dominates the SOM landscape. The neurons labeled high clearly correspond to the

most densely populated neurons of the high hit histogram. The largest concentrations

of bypass and bpv open also correspond to labeled neurons. Notice that the fpv open

and bpv close have no labeled neurons, explaining the zero accuracies in the first row

of table 4.12. Notice also that the fpv close class has very poor accuracy because the
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Figure 4.11: For an SOM trained on the shuttle data set, hit histograms for the
classes (a) rad flow, (b) fpv close, (c) fpv open, (d) high, (e) bypass, (f) bpv close,

and (g) bpv open.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.12: For a DSSSOM trained on the shuttle data set, hit histograms for the
classes (a) rad flow, (b) fpv close, (c) fpv open, (d) high, (e) bypass, (f) bpv close,

and (g) bpv open.

neurons for which its class count is highest are dominated by other classes, though

it is difficult to see this given that the sizes of the hexagons from one histogram to

the next are not comparable (a larger class size means that smaller hexagon sizes

will represent higher counts). The smaller classes (fpv close, fpv open, bpv close and

bpv open) do not affect the overall accuracy very much. The bulk of the predictive

error comes from neurons with significant counts for two of the three large classes;

the addition of a second layer of DSSSOMs achieves the desired separation for these

neurons, as shall be seen.

The bar chart in figure 4.14 attempts to quantify the difficulty of the shuttle classes

by presenting their pattern selection frequencies. All of the classes have comparable
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Figure 4.13: For a DSSSOM trained on the shuttle data set, the neuron class
labels.
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Figure 4.14: DSSSOM pattern selection frequency, by pattern class, for the shuttle
data set.

frequencies, with the two smallest classes (bpv close and bpv open) having the highest

frequencies; still, none of the small classes are selected often enough to overcome the

much larger rad flow, high and bypass classes. Since the DSSSOM fails to see the
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smaller classes as being particularly difficult, it is reasonable to assume that they

are at least somewhat similar to the larger classes. It is also very possible that the

DSSSOM stopping condition caused training to stop before the smaller classes had

been learned; their relatively few patterns would contribute little to the average block

difficulty measure used to stop training.

The addition of a second level of DSSSOMs improves the overall testing accuracies

significantly, as shown in table 4.13. The largest percentage improvements come in

the smaller classes, which were not well learned at the first level. However, the bulk

of the improvement can be attributed to the three larger classes, as good separation

between them was achieved at the second-level. The confusion matrix for the first

DSSSOM hierarchy in table 4.13 is presented in table 4.14. There, it can be seen that

most of the predictive error resulted from high being misclassified as rad flow and vice

versa; furthermore, almost all of the remaining error was caused by the other classes

being misclassified as one of the two. This is not surprising, given that large classes

often have relatively small counts at neurons that are relatively large compared to

smaller classes, resulting in misclassification.

Table 4.13: DSSSOM hierarchy training times and predictive accuracies on the
shuttle testing partition.

Accuracy Time
Size RFlow FClose FOpen High Byp BClose BOpen Overall (s)

10x10 0.999 0.308 0.615 0.975 0.991 0.500 0.000 0.993 797
8x8 0.997 0.385 0.385 0.968 0.986 0.500 0.000 0.990 693
6x6 0.999 0.538 0.769 0.983 0.994 0.250 0.500 0.995 876

Table 4.14: A DSSSOM hierarchy confusion matrix for the shuttle testing
partition.

RFlow FClose FOpen High Byp BClose BOpen Overall

RFlow 11464 0 1 13 0 0 0 11478
FClose 5 4 0 4 0 0 0 13
FOpen 13 0 24 1 1 0 0 39
High 52 0 0 2101 2 0 0 2155
Byp 7 0 0 0 802 0 0 809
BClose 2 0 0 0 0 2 0 4
BOpen 2 0 0 0 0 0 0 2
Overall 11545 4 25 2119 805 2 0 14500

The overall predictive accuracies change little when the training partition is used
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in testing. This is to be expected given the high testing accuracies. The improvement

is spread quite evenly over the classes, though the percentage difference is again the

highest for the smaller classes. The DSSSOM generalizes well in the cases of the larger

classes, but not very well in the cases of the smaller classes. The smaller classes are

either too similar to the larger classes, or simply too small. If the latter is true, the

DSSSOM stopping method must be changed such that more weight is given to smaller

classes during average block difficulty computation. This will have no effect, however,

if the small classes are indeed too similar to (and thus not easily separable from) the

larger ones.

Table 4.15: DSSSOM hierarchy predictive accuracies on the shuttle training
partition.

Accuracy
Size RFlow FClose FOpen High Byp BClose BOpen Overall

10x10 1.000 0.757 0.644 0.986 0.996 1.000 1.000 0.996
8x8 0.998 0.811 0.591 0.976 0.995 1.000 0.909 0.993
6x6 0.998 0.784 0.735 0.990 0.996 1.000 0.909 0.996

The performance of DSSSOM on the shuttle data set is as good as any of the non-

decision tree-based algorithms presented in table 2.3. With a training time of only

about fifteen minutes for the best hierarchical DSSSOM result (comprised of twenty-

five DSSSOMs), a very good predictor with overall accuracy 0.995 can be constructed

in a very short time.

4.3.4 The KDD-99 41-Feature Data Set

It shall be seen that the KDD-99 data set is a good data set on which to demonstrate

the abilities of the DSSSOM. It is neither too difficult nor too easy to learn, and the

large size of the commonly used 10% and corrected partitions serves to illustrate the

DSSSOM effect on training time. The pattern classes of the KDD-99 data set can

be broken up into three partitionings: normal and attack ; normal, DoS, probe, U2R,

and R2L (the latter four are referred to as attack types); and of course the individual

classes themselves. Experimental results are largely reported in terms of the second

partitioning. A correct classification in the case of an attack type (e.g., DoS ) is said

to have taken place if the pattern in question is classified as any of the four attack
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types. Of interest here is the ability to classify an attack as attack and normal traffic

as normal ; the correct prediction of attacks as particular attack types or individual

classes is secondary, though the results in this respect are easily seen below.

Twenty two-level DSSSOM hierarchies of three different first-level sizes (10x10,

8x8 and 6x6) were trained on the 10% partition. The DSS block size, subset size,

and number of subset selections were set at 5000, 250 and 20, respectively. Tables

4.16 and 4.17 present the false positive and detection rates of the best hierarchies

of each size, on the 10% and corrected partitions, respectively. The accuracies are

summarized by class type. A more complete version of the results is presented in

tables B.4-B.9. There, individual class accuracies are reported for both the 10%

and corrected partitions. For each class c, the three other classes most commonly

predicted for the patterns of class c (the most common misclassifications of class c)

are given. Table B.9 is a summarizing confusion matrix for the class types.

Table 4.16: DSSSOM hierarchy training times and predictive accuracies on the
KDD-99 41-feature corrected partition.

Accuracy Time
Size Normal DoS Probe R2L U2R FP Det. (s)

10x10 0.995 0.972 0.704 0.008 0.000 0.005 0.904 10544
8x8 0.980 0.970 0.692 0.008 0.043 0.020 0.902 12697
6x6 0.995 0.970 0.709 0.008 0.029 0.005 0.903 12161

Table 4.17: DSSSOM hierarchy predictive accuracies on the KDD-99 41-feature
10% partition.

Accuracy
Size Normal DoS Probe R2L U2R FP Det.

10x10 0.999 0.999 0.784 0.885 0.192 0.001 0.996
8x8 0.993 0.999 0.632 0.876 0.250 0.007 0.995
6x6 0.993 0.999 0.780 0.825 0.173 0.007 0.996

Table 4.16 shows that the DSSSOM compares nicely with Kayacik’s SOM result

in table 2.4. The detection rate is slightly lower (0.002), but the false positive rate

is reduced by sixty-eight percent (0.011). In order to compare the training times of

the two architectures, a two-level SOM hierarchy was trained on the KDD-99 10%

partition. The training length and network size were set at 4000 and 6x6, as they were

in Kayacik’s work. The measured training time was 33.4 hours, or about ten times

as long as a two-level DSSSOM hierarchy of the same size that achieves comparable
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accuracies.

The DSSSOM performs very well on the 10% partition, especially for size 10x10.

All attack types as well as normal experience improvement, with the biggest per-

centage improvement being R2L. The DSSSOM does not have any trouble learning

the normal or DoS types. The other three types are, however, problematic. The

R2L accuracy is fairly good in the case of the 10% partition, but it drops to virtually

zero in the case of the corrected partition. The U2R type performs poorly over both

partitions. The probe performance is mediocre in both cases.

To determine the approximate difficulty associated with each class type, a DSS-

SOM was trained and counts kept for the class labels as patterns were selected to

DSS subsets for presentation to the SOM algorithm. In figure 4.15, each bar repre-

sents the count of a particular type (all four attack types and normal), divided by

the number of patterns of that type, for the 10% partition. One would expect to see

higher values for the smaller (and presumably more difficult) types, and this is very

nearly the case. The frequency with which normal patterns are selected is higher

than one would expect. As there are many normal patterns in the 10% partition,

this suggests that the patterns are not entirely separable from the patterns of the

other classes. This is a reasonable assumption as the goal of any attack is to appear

normal. The most common normal misclassifications are neptune (DoS ), portsweep

(probe) and teardrop (probe) (see table B.4).

The DoS frequency of selection is exactly what one would expect. It is made up

of two very large classes and four smaller classes. Figure 4.16 is a reproduction of

figure 4.15, except that the types are now divided into their individual classes. There,

the bars correspond to (normal : normal); (DoS : neptune, smurf, pod, teardrop, land,

back); (probe: portsweep, ipsweep, satan, nmap); (U2R: bufferoverflow, loadmodule,

perl, rootkit); and (R2L: guesspasswd, ftpwrite, imap, phf, multihop, warezmaster,

warezclient, spy), in that order. Neptune and smurf dominate DoS, comprising

ninety-nine percent of all DoS patterns, and in fact almost eighty percent of the

entire training partition. They are allocated plenty of resources by the SOM and are

easily learned. The other four DoS classes have their selection frequencies on par with

the other non-DoS attack classes. Nearly all of the DoS corrected partition predic-
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Figure 4.15: DSSSOM pattern selection frequency, by pattern type, for the
KDD-99 41-feature data set.

tive error is caused by the unseen (in the 10% partition) mailbomb, processtable, and

apache2 classes, suggesting that these DoS attacks are quite different from the oth-

ers. All three are most commonly misclassifed as normal (see figure B.5). It relation

to training time, it is interesting to note that the average smurf or neptune pattern

is seen only a few times during training, whereas it is seen 4000 times in Kayacik’s

SOM. This is a clear demonstration of the effect of DSS and the training time wasted

by the SOM. The U2R frequency of selection is exactly what one might expect given

that U2R patterns comprise only 0.01% of the 10% partition. All U2R patterns are

misclassifed as normal (see table B.8), suggesting that the class type is simply too

small to be learned by the DSSSOM (even with the added emphasis of DSS). It is

also possible that the patterns are too similar to normal to be differentiated from

normal by the SOM.

The R2L patterns are relatively easy compared to probe and U2R, given their

respective selection frequencies. Still, the DSSSOM achieves very poor R2L predictive

accuracies. One might assume that R2L is simply too similar to normal, but the good

R2L 10% partition accuracy suggests that the R2L patterns in the 10% partition are

not representative of the KDD-99 R2L patterns in general. This hypothesis is backed
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Figure 4.16: DSSSOM pattern selection frequency, by pattern class, for the
KDD-99 41-feature data set.

up by the distribution of the pattern classes over the 10% and corrected partitions

(see table B.7). There, it can be seen that over ninety percent of R2L patterns in the

10% partition are in classes that do not appear at all in the corrected partition. In

fact, the 16347 R2L patterns appearing in the corrected partition belong to classes

of which there are only 104 (of 1126) patterns in the 10% partition. Table B.7 shows

that all of the 7741 patterns in the snmpgetattack class (which only appears in the

corrected partition) are misclassified as normal. The same is true for the 2406 patterns

in snmpguess. A similar situation is also true for warezmaster and guesspassword

(which appear in the 10% partition with very low frequency, and in the corrected

partition with much higher frequency). The only exception to the poor performance

is the httptunnel class (which has no patterns in the 10% partition); two-thirds of the

158 patterns are classified as an attack (though none are classified as R2L).

Mediocre probe accuracies were achieved for both the 10% and corrected parti-

tions. It appears that although the SOM is able to differentiate some of the probe

patterns from normal, the remaining patterns are simply not separable. No good

probe accuracies (higher than those reported) were achieved during experimentation.

The nmap, mscan and ipsweep classes prevent such accuracies from being achieved.
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Mscan is not seen in the 10% partition; the other two however are seen in decent

numbers, yet they are not learned well. Saint also does not appear in the 10% par-

tition, yet the saint accuracy is good. Thus, saint must be similar to another attack

(likely satan, as shall be seen in the following subsection), while nmap is not. Mscan

and ipsweep are not differentiated from normal. In table B.6, it can be seen that the

vast majority of misclassification is indeed as normal.

The hit histograms for the first level of the first DSSSOM in table 4.16 can be

seen figure 4.17. Figure 4.18 is a pattern label visualization that summarizes the hit

histograms. The hit histograms show good separation over the classes. Most notably,

notice that a large portion of U2R is very separable from normal. However, normal

has small counts (relative to its class size, but large relative to the U2R class size)

at many neurons, including the U2R neurons. Therefore, if there were more U2R

patterns in the data set, a good U2R predictive accuracy could likely be achieved.

The KDD-99 data set simply has too few U2R patterns even with the demonstrated

added emphasis of DSS, and ultimately only one neuron is labeled U2R.

R2L does not achieve as clean a separation. However, it has already been demon-

strated that the R2L accuracies suffer because of poor training data set representation.

If this representation were better, higher testing accuracies would be achieved, as it

appears that the R2L patterns are at least partially-separable from normal.

The separation between normal and DoS is good. Notice that the largest DoS

count is away from the normal -dominated portion of the map, and that both class

types have smaller counts in different areas on the right-hand side of the map (both

form an ”E” shape, and the shapes do not overlap).

Probe is not very separable from normal. It can be seen that the most populous

regions of the probe hit histogram overlap with normal. However, the probe predictive

accuracies are saved to an extent by the domination of DoS over normal for the two

neurons having the highest probe counts (see figure 4.18). If all DoS patterns were

removed from the data set, probe would not perform well at all. It is simply too

similar to normal. In fact, early experimentation was performed on a KDD-99 10%

subset consisting of only normal and probe for which the probe predictive accuracies

were much worse.
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Figure 4.17: For a DSSSOM trained on the KDD-99 41-feature data set, hit
histograms for the class types (a) normal, (b) DoS, (c) probe, (d) R2L and (e)

U2R.

A constant observed over all KDD-99 41-feature experimentation was the inverse

relationship that exists between normal and the attack class types. Building a second

level in a DSSSOM hierarchy invariably meant a trade-off between the false positive

and detection rates. Lower false positive rates and higher detection rates than those

reported were achieved individually, but never in the same experiment.

4.3.5 The KDD-99 Six-Feature Data Set

Twenty DSSSOMs were trained for each of the six KDD-99 10% partition features.

Twenty second-level DSSSOMs were then trained on top the 120 first-level DSSSOMs,

with six distinct first-level DSSSOMs feeding each second-level DSSSOM. The first-

level shift register size was set at 96, with taps at every fifth location, for a first-level

input pattern dimension of 20. Third levels were built on top of the twenty second-

level DSSSOMs, in the same fashion as were the second-level DSSSOMs for the 41-

feature version of the data set. This was repeated for three second-level DSSSOM

sizes, namely 10x10, 8x8 and 6x6. The first-level DSSSOMs were uniformly of size

6x6, and the third-level DSSSOMs were uniformly of size 10x10. The construction of

a KDD-99 six-feature three-level hierarchy was described in section 4.1. The third-

level results are presented here in the same fashion as were the 41-feature second-level
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Figure 4.18: For a DSSSOM trained on the KDD-99 41-feature data set, the
neuron label assignments.

results.

Tables 4.18 and 4.19 present the class type predictive accuracies for the best DSS-

SOM hierarchies of each size, on the corrected and 10% partitions, respectively. The

first thing to note is that the performance on the six-feature data set is poor with

respect to detection rate. However, it is unreasonable to expect good results given

that a large portion of the training data set has been removed. The 6x6 corrected

partition result is good compared to Kayacik’s SOM result. The detection rate is

0.013 higher, but the false positive rate is 0.034 lower. It is important to have a very

low false positive rate here because in intrusion detection, the end users of a detection

system cannot be expected to respond to an overwhelming number of false alarms.

Thus, it is wise to take a poorer detection rate in exchange for a better false positive

rate. Having said that, the result achieved here is actually quite a bit better than

Kayacik’s result.
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Table 4.18: DSSSOM three-level hierarchy training times and predictive
accuracies on the KDD-99 six-feature corrected partition.

Accuracy Time
Size Normal DoS Probe R2L U2R FP Det. (s)

10x10 0.956 0.943 0.470 0.027 0.043 0.044 0.875 36303
8x8 0.992 0.933 0.409 0.006 0.000 0.008 0.863 30846
6x6 0.989 0.946 0.446 0.008 0.000 0.011 0.877 16340

Table 4.19: DSSSOM three-level hierarchy predictive accuracies on the KDD-99
six-feature 10% partition.

Accuracy
Size Normal DoS Probe R2L U2R FP Det.

10x10 0.950 0.996 0.739 0.248 0.629 0.050 0.993
8x8 0.983 0.995 0.545 0.330 0.000 0.017 0.988
6x6 0.979 0.995 0.588 0.299 0.000 0.021 0.988

(a) (b) (c) (d) (e)

Figure 4.19: For a DSSSOM trained on the KDD-99 six-feature data set, hit
histograms for the class types (a) normal, (b) DoS, (c) probe, (d) R2L and (e)

U2R.
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Figure 4.20: For a second-level DSSSOM trained on the KDD-99 six-feature data
set, the neuron label assignments.
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Hit histograms were generated for the second-level DSSSOM belonging to the

three-level DSSSOM hierarchy from the first row of table 4.18. They are presented

in figure 4.19. There, it can be seen that all five class types tend to have high counts

toward the bottom-right of the map. Note that for the large DoS and normal classes,

even the small hexagons represent relatively high counts. A pattern label visualization

for the same DSSSOM is shown in figure 4.20. There, it can be seen that normal

dominates nearly the entire map. The two neurons having the highest DoS counts are

indeed labeled DoS, as are several to the bottom-left of the map, where the normal

patterns are relatively sparse. The other three class types do not have high enough

counts at any of the neurons to warrant labels. Fortunately, the third level of the

hierarchy achieves more separation over the class types, allowing for very limited

detection of the three types. An example of this separation can be seen in figure 4.21.

There, the third-level DSSSOM built on top of the 97th neuron (the third neuron

from the right in the last row of figure 4.20) can be seen. The second-level neuron is

labeled normal, however, at the third level, the map is successfully split into normal,

DoS, and probe sections. This is the case for most of the third-level maps, which

allows modest probe and better DoS predictive accuracies to be achieved.

Figure 4.22 presents the selection frequencies of the class types for DSSSOM from

which the hit histograms and pattern label visualization were generated. The order

of the classes in the figure is the same as it was in figure 4.16. Figure 4.23 summarizes

the individual frequencies by class type. It can be seen that the relative frequencies of

all five class types are identical to those of the 41-feature data set in figure 4.15. This

suggests that the latter 35 features have little, if any, effect on the relative difficulties

of the class types.

The individual class accuracies on the 10% and corrected six-feature partitions

are available in tables B.10-B.15. In table B.10, it can be seen that normal is most

often misclassified as neptune. This makes sense given the size of the neptune class.

However, smurf is even larger and has no normal misclassifications. Thus, it can be

said that normal is more similar to neptune than it is to smurf.

The DoS accuracies can be seen in table B.11. The accuracies are lower than those

achieved with the 41-feature data set. Again, the smurf and neptune accuracies are
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Figure 4.21: For a third-level DSSSOM trained on the KDD-99 six-feature data
set, the neuron label assignments.

the highest, while the unseen classes (those with no patterns in the 10% partition)

are the lowest. However, whereas the DSSSOM was able to achieve good back and

pod accuracies with the 41-feature data set, it was not with the six-feature data set.

Almost all DoS misclassification was as normal, which is hardly surprising given that

the other three class types have very few labeled neurons over the entire three-level

hierarchy.

Table B.12 presents the six-feature probe accuracies. There it can be seen that

again the six-feature accuracies are lower than the 41-feature accuracies. Saint and

satan again performed well, but the other classes did not. Of note is portsweep,

on which a good 41-feature accuracy was achieved, but on which a poor six-feature

accuracy was achieved. The bulk of the probe misclassifications were as normal,

though a significant number were as neptune. Saint and satan were particularly

susceptible to being classified as neptune. The two classes are (though their names

would not suggest) undoubtedly similar to one another in both the input and output

spaces, and to a lesser extent to neptune.
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Figure 4.22: DSSSOM pattern selection frequency, by pattern class, for the
KDD-99 41-feature data set.

The only R2L class for which a good 41-feature predictive accuracy is achieved

is the unseen httptunnel. Unfortunately, none of the R2L classes achieve good six-

feature accuracies, as table B.13 shows. Nearly all misclassifications are as normal,

with several neptune and ipsweep misclassifications. The same is nearly true for U2R

in table B.14, where all accuracies are zero, and all misclassifications are as normal

(this is exactly what happened for the 41-feature data set).

Finally, though no SOM experimentation was performed on the six-feature data

set, it is still possible to compare training times. Each SOM in Kayacik’s three-level

hierarchy was trained for 4000 epochs. Given a data set of size approximately 494021

(KDD-99 10% partition), the total number of patterns seen at the first level is just

below two billion per SOM, or about twelve billion in total. The first level of the

DSSSOM hierarchy in the third row of table 4.18 saw a total of just over 70 million

patterns, or a factor of 168.5 fewer patterns. Training at the first level is therefore

much faster for the DSSSOM, allowing for the added expense of DSS computation

(which, through time experimentation on the DSSSOM implementation, was seen

to add less than one percent to the overall program computation). At the second

level, a constructed SOM trained for 4000 epochs sees about two billion first-level
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Figure 4.23: DSSSOM pattern selection frequency, by pattern class type, for the
KDD-99 41-feature data set.

outputted patterns. The DSSSOM hierarchy saw 4.08 million such patterns, a factor

of about 484 fewer. There is relatively little computation involved in constructing

the third-level, and as the number of patterns learned by the SOM at the third level

is unknown, speed-up estimates at that level are not possible. However, it is already

plain to see that the DSSSOM is much faster than the SOM. In fact, the three-level

DSSSOM trains in just over 4.5 hours, which is a factor of 7.3 faster than the two-level

41-feature SOM reported in the previous section. Though the two- and three-level

hierarchies cannot be compared directly, this is a good indication of just how much

training is sped up by the addition of DSS. Consider finally one further statistic: in

order for the SOM training times to be brought on par with the DSSSOM training

times, the first level of an SOM hierarchy would need to be trained for no more than

24 epochs, and the second level for no more than eight epochs. A good representation

of the KDD-99 data set cannot be achieved in such a short amount of time by the

SOM.



5 Conclusions and Future Work

The DSSSOM is the marriage of DSS and the SOM, facilitated by modifications

to both. DSS is a method of focusing a GP on the particularly difficult-to-learn

patterns in a given data set, without ignoring any non-difficult patterns completely.

Two pattern measures are key: difficulty and age. The DSS algorithm is iterative,

where in each iteration a subset of the data set is formed consisting of the most

difficult and old patterns. The subset is fed to the GP, and the difficulties and ages of

the applicable patterns are updated. Pattern difficulty is a GP-specific measure and

is updated only when selection to a subset has taken place; pattern age is incremented

each time a pattern is not selected to the current subset, and reset to one when the

pattern is selected.

In applying DSS to the SOM, pattern difficulty is redefined to be the Euclidean

distance from a pattern to its BMU. In order for this to be meaningful early in

SOM training, a brief period of initialization is needed during which the SOM is

trained in the traditional fashion. Pattern age remains unchanged. As BMU distances

are retrieved during training and used to influence the selection of the next subset,

DSS cannot be simply laid on top of the SOM algorithm. A traditional SOM was

implemented into which DSS was integrated, and with which all original SOM and

DSSSOM experimentation took place.

DSS made possible the use of a new SOM training stopping condition. As the

average difficulty of the patterns in the data set can be expected to decrease as the

SOM prototype vectors are adjusted to better represent them, the ordering phase

of training can be stopped when a linear mapping from the average difficulty to

the learning rate and neighbourhood radius yields a learning rate below a specified

threshold. To ensure that the threshold is achieved, average difficulty leveling out

is detected and the learning rate and radius forced lower in small incremental steps.

After the threshold is reached, fine-tuning takes place for twice as many epochs as

were spent on ordering. This mechanism inherently provides a way of computing the

learning rate and radius, for the computation of which a specified training length is

traditionally used.

58
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As DSS requires access to the entire training data set at all times, very large data

sets that cannot fit into memory cannot be learned. To solve this problem, blocks of

such a data set are read in one at a time. DSS is then performed only on the current

block, for a specified period of time, after which a new block is read in. Whereas

the selection of blocks is traditionally random, here DSS is also used to select blocks.

The difficulty of a block is simply the average difficulty of the patterns within it; age

is defined as before.

Preliminary experiments were conducted that demonstrated the higher frequency

of selection of less common and more difficult patterns and blocks for the KDD-99

41-feature data set. Having verified the correctness of the DSSSOM, the purpose of

further experimentation was to show that it performs as well as the traditional SOM

while requiring less training time. Experiments were performed on five data sets:

adult, covertype, shuttle, KDD-99 41-feature, and KDD-99 six-feature. Performance

was measured as overall predictive accuracy for the previous three data sets, and as

a combination of the false positive and detection rates for the latter two.

The adult and covertype data sets served to demonstrate two things: that DSS

cannot help the SOM to represent data that it is inherently unable to represent, and

that the two algorithms achieve very similar predictive accuracies. On the adult data

set, the SOM achieved a predictive accuracy of 0.774, while the DSSSOM achieved

0.776. On the covertype-a data set, the respective values were 0.306 and 0.274.

DSSSOM hierarchies were unable to attain accuracies on par with other learning

algorithms in either case, though only one other clustering result is available between

them for comparison. DSS determined that the two classes in the adult data set have

the same difficulty, largely due to the fact that high counts of both classes fell on

most neurons. There was some variation over class difficulty for covertype-a; oddly,

the largest class was found to be the most difficult, and a good accuracy for that class

(and therefore the entire data set) was not achieved. Even though DSS focused the

SOM on the difficult patterns and classes, the SOM could not achieve good separation

over the classes.

The shuttle data set also served to demonstrate that the DSSSOM performs as

well as the SOM. There, the SOM achieved an overall accuracy of 0.963, while the
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DSSSOM achieved 0.968. The best DSSSOMs had training times far below those of

the best SOMs. SOMs trained for much shorter times, however, enjoyed accuracies

that were not far below 0.963. Still, the DSSSOM training times were impressive

in that they were lower than SOMs trained for only fifty epochs. The best overall

accuracy achieved by a DSSSOM hierarchy was 0.995, which is within 0.001 of the

best existing clustering result.

Unlike the previous three data sets, the KDD-99 41-feature data set serves to

demonstrate all of the benefits of using the DSSSOM. First, previous work has demon-

strated that it is learnable by the SOM. Second, it has been demonstrated that it

is not a simple data set to learn. No algorithm has ever achieved a detection rate

higher than 0.920 nor a false positive rate lower than 0.005. Third, the data set is

large, and as such it can be used to demonstrate DSSSOM block and pattern selection

characteristics. Kayacik’s SOM hierarchy achieved false positive and detection rates

of 0.906 and 0.016; a DSSSOM hierarchy respectively achieved 0.904 and 0.005. For

time comparison purposes, a single SOM hierarchy was trained using the same param-

eters as were used by Kayacik. The DSSSOM was found to require a factor of ten less

training time than the SOM. The DSSSOM is shown to select the smaller and more

difficult pattern classes (e.g., nmap) with much greater frequency than the largest

and easiest classes (e.g., smurf and neptune). It was shown that the most common

misclassification of attack classes is as normal. The R2L patterns in the 10% data

set were shown to not be representative of all R2L patterns in KDD-99 41-feature.

The U2R classes were found to be too small to learn, even with the demonstrated

added impact of DSS. Most probe classes were either poorly represented in the 10%

partition, or too similar to normal to yield good accuracies. Smurf, neptune, back

and pod account for all of DoS ’ excellent performance. The other DoS classes were

underrepresented in either the 10% or corrected partition.

The KDD-99 six-feature data set is a pruned version of the 41-feature data set.

Kayacik achieved detection and false positive rates of 0.890 and 0.046, respectively.

The DSSSOM respectively achieved rates of 0.877 and 0.011. For both data sets, the

DSSSOM had a much better false positive rate, and in both cases the detection rate

was slightly worse. The DSSSOM was found to require a factor of over 150 times less
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patterns seen during first-level training, and a factor of over 450 less at the second-

level. The class type selection frequencies were observed to be the same as those of

the DSSSOM on the 41-feature data set. In general, the individual class accuracies

were similar to those achieved for the 41-feature data set, though good accuracies on

the six-feature data set were not achieved for the back, pod, portsweep and httptunnel

classes, whereas they were for the 41-feature version. The relative performances of the

other classes and the reasoning behind the individual class (and type) performances

were found to be the same for the six-feature data set.

Despite the immense promise of DSS applied to the SOM, there is still a great deal

of experimentation that needs to be conducted to determine exactly how and when it

should be used. How a DSSSOM is used is determined by its parameter set. When it

is used is determined by the data set to be learned. The parameter set of the DSSSOM

was kept very narrow in this work. In particular, the probabilities with which patterns

and blocks were selected by difficulty were kept constant. Better predictive accuracies

might be achieved for the shuttle and KDD-99 data sets if alternate probabilities

had been tried. For example, even with a 0.9 probability of pattern selection by

difficulty, the KDD-99 SOMs saw far more smurf, neptune and normal patterns than

the patterns of the other classes, due to their extremely large sizes. DSSSOM map

sizes were kept within a small range to ensure feasible traditional SOM training times

and valid comparison with previous work. However, the fast DSSSOM algorithm

affords the use of larger map sizes, especially at the higher levels of the DSSSOM

hierarchies.

The DSSSOM has been shown to be most suited to large, non-trivial data sets, such

as the KDD-99 data sets. It would be of great use to demonstrate the ability of the

DSSSOM on other such data sets. It is still uncertain as to whether the DSSSOM can

yield significantly better performance (e.g., predictive accuracy) than the SOM. None

of the data sets on which experiments were performed were truly ideal for DSSSOM

experimentation. Ideally, an unbalanced data set is needed that is neither simple nor

impossible for the SOM algorithm to learn, yet has good representation in its training

and test partitions. It should not be difficult to find such a data set, but unfortunately

none are known to be publicly available at this time. Clearly, such data sets will be
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plentiful in the future, as more data sets become available. Experimentation on such

data sets would prove invaluable.

It would be interesting to demonstrate the effectiveness of the DSSSOM as a data

reduction tool. After the completion of DSSSOM training, the patterns of the training

data set are all associated with particular difficulties. These difficulties can be used

to generate a smaller data set. Ideally, all patterns beyond a certain difficulty are

selected to the new data set, as well as a small subset of the easy patterns. The

easy patterns must be included to ensure good representation of the entire data set.

Alternatively, frequency of selection to a DSS subset can be used in place of pattern

difficulty. Either of these effectively act as measures of a pattern’s importance in

forming a good representation of the particular data set. Importance is of course

biased toward the SOM, but the generated data sets will lead to faster training times

and perhaps better results for other learning algorithms. It might be worthwhile to

train another DSSSOM on the generated data set to determine whether the results

improve given a more concise data set.

Future work should also focus on the DSSSOM stopping mechanism. While the

mechanism presented in this work is shown to work well, it might stand to benefit from

some tweaking. There are three avenues down which to proceed. The first involves

determining the ideal number of epochs over which the average block difficulty is

examined in determining whether it has leveled out. In this work, this number was

arbitrarily set at 100 epochs. Reducing this number will result in lower DSSSOM

training times for difficult data sets. Increasing the number will slow training times

but perhaps lead to better predictive accuracies.

The second avenue involves determining the ideal minimum training time. In this

work, the minimum number of DSSSOM epochs was set arbitrarily at 100. Decreasing

this number will speed up training without reducing the predictive accuracy for very

small and very easy data sets. Increasing this number will result in more realistic

pattern and block difficulty values early during DSSSOM training, and further ensure

that all patterns in the training data set are seen. It might be a good idea to base

the minimum number of epochs on the size of the data set in use. This is particularly

applicable to training the upper level of a DSSSOM hierarchy, where the data sets
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may vary immensely in size.

The third avenue involves changing the way in which the average block difficulty is

computed. In order to ensure that all classes are learned, it might be a good idea to

weight the contribution of each class to the average block difficulty. As an example,

suppose the data set in use is dominated by a single class. Suppose then that the large

class is easy to learn. Then, during training, the average block difficulty will plummet,

and training will quickly stop. Even if the average difficulties of the patterns in the

other classes are high, their contribution to the overall average difficulty may be too

small to stop training. Thus, it may be desirable to compute the average difficulty

as a weighted sum of the average class difficulties. Then, even after a particular class

has been learned well, training will continue to learn the remaining classes.

A promising avenue of future work would be to investigate the combination of the

DSSSOM with another SOM speed-up technique. For example, a clustering-based

initialization mechanism would serve the DSSSOM well. Pattern difficulty has very

little meaning early during training, because the DSSSOM has not yet achieved a good

ordering of its prototype vectors. Traditional SOM initialization is currently used to

try to obtain a crude ordering. However, clustering-based initialization can achieve

a better ordering in a shorter amount of time. After the DSSSOM has achieved a

good ordering (and the ordering phase of training has completed), a shortcut winner

search such as the one described by Kohonen in section 2.6, can be employed to

speed up fine-tuning. In practice, fine-tuning generally consumes two-thirds of the

total training time. Thus, a speed-up in fine-tuning would significantly speed-up

training as a whole.

In this work, the application of DSS to the SOM has been investigated. DSS has not

previously been applied to any learning algorithms other than GP. The exploration

of its application to other algorithms should be explored; if it can speed up those

algorithms as well, the exploration would be very worth-while. The only requirement

for any algorithm is a method of computing a pattern’s difficulty.

The DSSSOM is a fast learning algorithm based on the SOM. It has been shown

to achieve predictive accuracies on par with the SOM with less training time. The

accuracies are slightly better than those of the SOM for data sets that are well-
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learned by both algorithms. The DSSSOM, given a large and not too difficult data

set, is shown to achieve training times far below those associated with the SOM.

The DSSSOM is not limited by data set size through the use of DSS-powered block

selection. It also does not require a specified training length, as it uses the DSS

concept of difficulty to stop training at the proper time. It is highly configurable,

with numerous parameters that can be tweaked to achieve the desired result in any

learning situation. The DSSSOM it is an extremely promising technology that has

the potential to replace the traditional SOM in most of its applications.



Appendix A

Table A.1: Adult data set compositions.

Number of Patterns
Pattern Label Training Test

≤ 50k 22654 11360
> 50k 7508 3700

TOTAL 30162 15060

Table A.2: Covertype data set compositions.

Number of Patterns
Pattern Label Training Validation Test

Spruce/Fir 1620 540 209680
Lodgepole Pine 1620 540 281141
Ponderosa Pine 1620 540 33594
Cottonwood/Willow 1620 540 587
Aspen 1620 540 7333
Douglas Fir 1620 540 15207
Krummholz 1620 540 18350

TOTAL 11340 3780 565892

Table A.3: Shuttle data set compositions.

Number of Patterns
Pattern Label Training Testing

Rad Flow 34108 11478
Fpv Close 37 13
Fpv Open 132 39
High 6748 2155
Bypass 2458 809
Bpv Close 6 4
Bpv Open 11 2

TOTAL 43500 14500

Table A.4: KDD-99 data set normal composition.

Number of Patterns
10% Corrected

97278 60593
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Table A.5: KDD-99 data set DoS composition.

Pattern Number of Patterns
Label 10% Corrected

apache2 0 794
back 2203 1098
land 21 9
mailbomb 0 5000
neptune 107201 58001
pod 264 87
processtable 0 759
smurf 280790 164091
teardrop 979 12
udpstorm 0 2

total 391458 229853

Table A.6: KDD-99 data set probe composition.

Pattern Number of Patterns
Label 10% Corrected

ipsweep 1247 306
mscan 0 1053
nmap 231 84
portsweep 1040 354
saint 0 736
satan 1589 1633

total 4107 4166

Table A.7: KDD-99 data set R2L composition.

Pattern Number of Patterns
Label 10% Corrected

ftpwrite 8 3
guesspassword 53 4367
httptunnel 0 158
imap 12 1
multihop 7 18
named 0 17
phf 4 2
sendmail 0 17
snmpgetattack 0 7741
snmpguess 0 2406
spy 2 0
warezclient 1020 0
warezmaster 20 1602
worm 0 2
xlock 0 9
xsnoop 0 4

total 1126 16347
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Table A.8: KDD-99 data set U2R composition.

Pattern Number of Patterns
Label 10% Corrected

bufferoverflow 30 22
loadmodule 9 2
perl 3 2
ps 0 16
rootkit 10 13
sqlattack 0 2
xterm 0 13

total 52 70

Table A.9: KDD-99 data set overall composition.

Number of Patterns
Category 10% Corrected

normal 97278 60593
DoS 391458 229853
probe 4107 4166
R2L 1126 16347

U2R 52 70
total attack 396743 250436

grand total 494021 311029



Appendix B

Table B.1: SOM training times and predictive accuracies for the adult testing
partition.

Training Length Accuracy
Size (epochs) ≤ $50k > $50k Overall Time (s)

10x10 4000 0.993 0.095 0.772 10136
8x8 4000 0.995 0.083 0.771 6890
6x6 4000 0.997 0.040 0.762 4350
10x10 1000 0.997 0.089 0.774 2509
8x8 1000 0.995 0.085 0.771 1721
6x6 1000 0.996 0.025 0.758 1107
10x10 250 0.996 0.080 0.771 622
8x8 250 0.996 0.076 0.770 428
6x6 250 0.995 0.044 0.761 275
10x10 50 0.996 0.087 0.773 125
8x8 50 0.995 0.079 0.770 86
6x6 50 0.999 0.033 0.762 55
10x10 10 0.989 0.099 0.770 25
8x8 10 0.993 0.084 0.770 17
6x6 10 0.999 0.025 0.760 11
10x10 1 0.994 0.031 0.757 2
8x8 1 0.999 0.019 0.758 2
6x6 1 1.000 0.005 0.755 1

Table B.2: SOM training times and predictive accuracies for the covertype-a
testing partition.

Tr.Len. Accuracy Time
Size (epochs) S/F LPine PPine C/W Asp DFir Krum Overall (s)

10x10 4000 0.370 0.187 0.288 0.652 0.529 0.459 0.615 0.287 9067
8x8 4000 0.388 0.191 0.422 0.668 0.450 0.197 0.552 0.293 6185
6x6 4000 0.281 0.081 0.305 0.719 0.436 0.260 0.537 0.193 4006
10x10 1000 0.417 0.163 0.288 0.656 0.529 0.459 0.589 0.292 2292
8x8 1000 0.401 0.164 0.408 0.687 0.535 0.185 0.475 0.282 1567
6x6 1000 0.274 0.095 0.217 0.796 0.431 0.228 0.539 0.191 1004
10x10 250 0.384 0.183 0.366 0.670 0.610 0.337 0.644 0.294 555
8x8 250 0.382 0.107 0.396 0.676 0.472 0.224 0.596 0.250 370
6x6 250 0.280 0.081 0.306 0.719 0.396 0.295 0.536 0.194 233
10x10 50 0.407 0.206 0.334 0.797 0.413 0.219 0.619 0.305 109
8x8 50 0.396 0.206 0.414 0.671 0.446 0.193 0.538 0.303 76
6x6 50 0.281 0.081 0.305 0.719 0.436 0.260 0.537 0.193 46
10x10 10 0.371 0.231 0.241 0.709 0.526 0.370 0.696 0.306 24
8x8 10 0.378 0.073 0.346 0.683 0.515 0.316 0.618 0.233 14
6x6 10 0.246 0.070 0.412 0.514 0.430 0.274 0.583 0.183 10
10x10 1 0.006 0.000 0.008 0.416 0.011 0.234 0.979 0.041 2
8x8 1 0.001 0.000 0.007 0.450 0.012 0.247 0.981 0.040 1
6x6 1 0.000 0.001 0.037 0.394 0.010 0.284 0.963 0.042 1
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Table B.3: SOM training times and predictive accuracies for the shuttle testing
partition.

Tr.Len. Accuracy Time
Size (epochs) RFlow FClose FOpen High Byp BClose BOpen Ovr. (s)

10x10 4000 0.965 0.154 0.026 0.896 0.989 0.000 0.000 0.952 11281
8x8 4000 0.981 0.308 0.000 0.762 0.994 0.000 0.000 0.946 7525
6x6 4000 0.951 0.000 0.000 0.771 0.989 0.000 0.000 0.923 4610
10x10 1000 0.981 0.154 0.231 0.871 0.994 0.000 0.000 0.963 2826
8x8 1000 0.956 0.000 0.000 0.878 0.991 0.000 0.000 0.943 1883
6x6 1000 0.951 0.000 0.000 0.771 0.989 0.000 0.000 0.923 1150
10x10 250 0.988 0.000 0.128 0.807 0.993 0.000 0.000 0.957 706
8x8 250 0.962 0.231 0.487 0.797 0.975 0.000 0.000 0.936 474
6x6 250 0.924 0.000 0.000 0.667 0.995 0.000 0.000 0.886 288
10x10 50 0.975 0.154 0.256 0.877 0.991 0.000 0.000 0.958 141
8x8 50 0.976 0.000 0.026 0.783 0.979 0.000 0.000 0.943 94
6x6 50 0.943 0.000 0.000 0.698 0.995 0.000 0.000 0.906 58
10x10 10 0.970 0.077 0.282 0.879 0.994 0.000 0.000 0.955 28
8x8 10 0.955 0.231 0.000 0.781 0.892 0.000 0.000 0.922 18
6x6 10 0.947 0.000 0.000 0.669 0.995 0.000 0.000 0.905 11
10x10 1 0.978 0.000 0.000 0.395 0.269 0.000 0.000 0.848 3
8x8 1 0.999 0.000 0.000 0.747 0.000 0.000 0.000 0.902 2
6x6 1 0.995 0.000 0.000 0.820 0.000 0.000 0.000 0.910 1

Table B.4: DSSSOM hierarchy normal predictive accuracies and three most
common misclassifications on the KDD-99 41-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

normal 97278 0.999 60593 0.995 neptune(116) portsweep(109) teardrop(34)

Table B.5: DSSSOM hierarchy DoS predictive accuracies and three most common
misclassifications on the KDD-99 41-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

apache2 0 - 794 0.349 normal(517) back(277) -
back 2203 0.989 1098 0.973 normal(30) - -
land 21 0.000 9 0.222 normal(7) portsweep(2) -
mailbomb 0 - 5000 0.000 normal(5000) - -
neptune 107201 0.999 58001 0.998 teardrop(133) normal(127) portsweep(91)
pod 264 0.981 87 0.931 normal(6) - -
processtable 0 - 759 0.020 normal(744) neptune(15) -
smurf 280790 1.000 164091 1.000 normal(77) - -
teardrop 979 0.854 12 0.250 normal(9) neptune(1) -
udpstorm 0 - 2 0.000 normal(2) - -
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Table B.6: DSSSOM hierarchy probe predictive accuracies and three most
common misclassifications on the KDD-99 41-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

ipsweep 1247 0.490 306 0.258 normal(227) smurf(3) -
mscan 0 - 1053 0.256 normal(783) neptune(151) portsweep(71)
nmap 231 0.403 84 0.024 normal(82) teardrop(2) -
portsweep 1040 0.915 354 0.924 normal(27) teardrop(4) neptune(1)
saint 0 - 736 0.856 satan(570) normal(106) neptune(26)
satan 1589 0.984 1633 0.994 neptune(297) portsweep(47) normal(10)

Table B.7: DSSSOM hierarchy R2L predictive accuracies and three most common
misclassifications on the KDD-99 41-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

ftpwrite 8 0.000 3 0.000 normal(3) - -
guesspassword 53 0.962 4367 0.005 normal(4344) warezmaster(16) rootkit(1)
httptunnel 0 - 158 0.671 portsweep(77) normal(52) neptune(29)
imap 12 0.000 1 0.000 normal(1) - -
multihop 7 0.000 18 0.000 normal(18) - -
named 0 - 17 0.000 normal(17) - -
phf 4 0.000 2 0.000 normal(2) - -
sendmail 0 - 17 0.000 normal(17) - -
snmpgetattack 0 - 7741 0.000 normal(7741) - -
snmpguess 0 - 2406 0.000 normal(2406) - -
spy 2 0.000 0 - - - -
warezclient 1020 0.912 0 - - - -
warezmaster 20 0.800 1602 0.004 normal(1596) neptune(4) teardrop(2)
worm 0 - 2 0.000 normal(2) - -
xlock 0 - 9 0.111 normal(8) ipsweep(1) -
xsnoop 0 - 4 0.000 normal(4) - -

Table B.8: DSSSOM hierarchy U2R predictive accuracies and three most common
misclassifications on the KDD-99 41-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

bufferoverflow 30 0.300 22 0.000 normal(22) - -
loadmodule 9 0.000 2 0.000 normal(2) - -
perl 3 0.000 2 0.000 normal(2) - -
ps 0 - 16 0.000 normal(16) - -
rootkit 10 0.100 13 0.000 normal(13) - -
sqlattack 0 - 2 0.000 normal(2) - -
xterm 0 - 13 0.000 normal(13) - -
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Table B.9: DSSSOM hierarchy confusion matrix for the KDD-99 41-feature
corrected partition.

Normal DoS Probe U2R R2L Overall
Normal 60285 174 115 5 14 60593
DoS 6519 223166 168 0 0 229853
Probe 1235 527 2395 0 9 4166
R2L 16211 35 78 1 22 16347
U2R 70 0 0 0 0 70

Overall 84320 223902 2756 6 45 311029

Table B.10: DSSSOM hierarchy normal predictive accuracies and three most
common misclassifications on the KDD-99 six-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

normal 85457 0.950 60521 0.956 neptune(1688) ipsweep(192) back (162)

Table B.11: DSSSOM hierarchy DoS predictive accuracies and three most
common misclassifications on the KDD-99 six-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

apache2 0 - 794 0.186 normal(646) neptune(109) back(37)
back 1964 0.974 1098 0.586 normal(455) ipsweep(1) -
land 16 0.500 9 0.000 normal(9) - -
mailbomb 0 - 5000 0.002 normal(4988) ipsweep(12) -
neptune 106930 0.996 58001 0.911 normal(5151) ipsweep(6) satan(6)
pod 239 0.096 87 0.000 normal(87) - -
processtable 0 - 759 0.042 normal(727) warezclient(15) neptune(14)
smurf 280645 0.999 164091 0.993 normal(1177) satan(71) portsweep(3)
teardrop 763 0.419 12 0.000 normal(12) - -
udpstorm 0 - 2 0.000 normal(2) - -

Table B.12: DSSSOM hierarchy probe predictive accuracies and three most
common misclassifications on the KDD-99 six-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

ipsweep 916 0.612 306 0.085 normal(280) neptune(12) smurf(10)
mscan 0 - 1053 0.100 normal(948) neptune(64) smurf(16)
nmap 124 0.492 84 0.012 normal(83) ipsweep(1) -
portsweep 816 0.501 354 0.037 normal(341) neptune(9) ipsweep(3)
saint 0 - 736 0.686 neptune(501) normal(231) phf(2)
satan 1463 0.969 1633 0.784 neptune(1280) normal(353) -
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Table B.13: DSSSOM hierarchy R2L predictive accuracies and three most
common misclassifications on the KDD-99 six-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

ftpwrite 6 0.500 3 0.000 normal(3) - -
guesspassword 43 0.023 4367 0.010 normal(4325) ipsweep(28) neptune(7)
httptunnel 0 - 158 0.114 normal(140) neptune(14) ipsweep(3)
imap 12 0.000 1 0.000 normal(1) - -
multihop 4 0.750 18 0.056 normal(17) smurf(1) -
named 0 - 17 0.000 normal(17) - -
phf 4 0.250 2 0.000 normal(2) - -
sendmail 0 - 17 0.000 normal(17) - -
snmpgetattack 0 - 7718 0.024 normal(7529) neptune(63) ipsweep(63)
snmpguess 0 - 2406 0.014 normal(2373) smurf(15) neptune(9)
spy 2 0.000 0 - - - -
warezclient 478 0.259 0 - - - -
warezmaster 8 0.750 1602 0.025 normal(1562) neptune(20) ipsweep(16)
worm 0 - 2 0.000 normal(2) - -
xlock 0 - 9 0.000 normal(9) - -
xsnoop 0 - 4 0.000 normal(4) - -

Table B.14: DSSSOM hierarchy U2R predictive accuracies and three most
common misclassifications on the KDD-99 six-feature corrected partition.

10% Corrected
Class Count Acc. Count Acc. Top Misclassifications

bufferoverflow 20 0.700 22 0.000 normal(22) - -
loadmodule 3 0.000 2 0.000 normal(2) - -
perl 3 0.333 2 0.000 normal(2) - -
ps 0 - 16 0.000 normal(16) - -
rootkit 9 0.778 13 0.000 normal(13) - -
sqlattack 0 - 2 0.000 normal(2) - -
xterm 0 - 13 0.000 normal(13) - -

Table B.15: DSSSOM hierarchy confusion matrix for the KDD-99 six-feature
corrected partition.

Normal DoS Probe U2R R2L Overall
Normal 57845 2133 447 96 0 60521
DoS 13197 216521 117 18 0 229853
Probe 2206 1900 43 17 0 4166
R2L 15889 201 216 18 0 16324
U2R 67 2 1 0 0 70

Overall 89204 220757 824 149 0
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