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Abstract

In this work, the performance of a Linear Genetic Programming (LGP) model in

the context of classification tasks is assessed with and without the use of indexed

memory. Using a virtual machine with a fixed instruction set, the model addresses

various classification problems. Read and Write instructions are introduced to the

model for accessing a single shared instance of memory. Ultimately, the incorporation

of indexed memory not only allows the model to achieve a more diverse distribution of

results, often corresponding to higher accuracy scores, but also reveals a significantly

task-dependent relationship between the volume and frequency of memory accesses.

Furthermore, the degree to which memory increases performance is also demonstrated

to be highly task-dependent, emphasizing the nuanced impact of memory on the

model’s adaptability and effectiveness in diverse classification scenarios.
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Chapter 1

Introduction and Background

This thesis examines the effect of introducing a representation of indexed memory

to a Linear Genetic Programming model designed to solve basic classification tasks.

Prior to the examination of this research, it is essential to establish several conceptual

paradigms. The following concepts were foundational to the experiments conducted

in this study, and are crucial for understanding the implementation of Linear Genetic

Programming that was used in this work.

1.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subsection of Machine Learning (ML) algorithms

that draw inspiration from the biological concept of evolution in order to address

a variety of problems [9]. Most notably, they employ aspects of ’survival of the

fittest’ and natural selection as described by Charles Darwin [4]. In EAs, a group of

individuals comprise a population of candidate solutions to a given task [9]. These

individuals are evaluated against some criterion to determine their ”fitness” and thus

decide their probability of reproduction. The fittest individuals in a population are

selected to undergo the process of reproduction, during which various operators of

mutation and recombination (crossover) are employed to introduce variation into

the produced ”offspring” [9]. Each iteration of this process can be referred to as a

”generation.” As a result, it is anticipated that the population will evolve towards an

optimized solution that aligns with the desired objective.

Evolutionary algorithms have been used to solve a variety of decision and opti-

mization problems. They have been applied in contexts such as data mining, image

processing, and game strategy optimization.

In this work, EAs will be employed to solve basic classification tasks.

1
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1.2 Genetic Programming

Genetic programming (GP) is an application of evolutionary algorithms that is specif-

ically characterized by the evolution of computer programs. In GP, the initial pop-

ulation is comprised of randomly generated computer programs that aim to solve a

given task when executed. Each individual’s fitness is determined by examining the

result of the execution of the program and evaluating its success against some prede-

fined criteria. Then, a new population is created by genetically manipulating copies

of existing programs and recombining their parts to create altered individuals [8].

There are several ways GP has been represented across previous works. The

traditional method of representing GP, as defined by John Koza, is known as Tree-

based genetic programming (TGP) [8]. In TGP, the evolution of a computer program

is depicted using a tree data structure containing the parse tree of the program,

with functions residing in inner nodes, and input values and constants comprising

the leaves [3] [9]. Mutation and recombination is performed by the manipulation of

subtrees.

Aside from Tree-based GP, other representations of GP have been documented,

such as Linear GP and Graph-based GP [2]. For these experiments, Linear GP was

used.

1.3 Linear GP

Linear GP (LGP) differs from TGP in that programs are depicted as sequences of

instructions in an imperative programming language [3]. This concept can be likened

to the execution of machine code on a CPU. Although the specific composition of these

imperative instructions may vary across LGP implementations, as a general formula

each imperative instruction contains an operation, operand(s), and a destination.

Typically, it is assumed these instructions will be executed on some representation of

a register-based machine [3]. The size of the set of registers allocated to a machine is

user-defined. One or more of these registers are designated as ”output registers” that

will store the result of the program’s execution. It is important to note that, given

the ability to assign several output registers, it is possible for a Linear GP program

to have multiple program outputs, whereas only one output is possible in Tree-based
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GP [3].

1.4 Crossover

During the reproduction phase of a generation, one of the genetic operators that is

applied to programs is crossover. Crossover entails selecting two ”parent” programs,

creating copies of them, and exchanging parts of each program with each other [2].

In Linear GP, this means selecting sequences of instructions from each parent and

swapping them between each other. The length of the exchanged sequences may be

fixed or randomly defined. The application of crossover

1.5 Mutation

Mutation is another genetic operator that is applied to programs during the reproduc-

tion phase. Unlike crossover, mutation operates on only one parent. Furthermore,

mutation allows for material that is not present in either parent to be introduced

into the population. This is distinct from crossover, which simply exchanges existing

material between offspring. Typically, mutation is applied to individuals after they

have already undergone crossover. Probability of mutation is user-defined, and may

vary among types of mutation operations [2]. In Linear GP, mutation is applied by

randomly selecting a single instruction from a program and altering its behaviour.

This may mean changing the source or destination registers, changing the operation,

or changing the addressing mode.

Specific details regarding mutation operators used in this work are explored in

Chapter 2.

1.6 Fitness Sharing

Fitness sharing is a method of balancing the performance of evolutionary algorithms

by encouraging diversity within the population. The basic principle of fitness sharing

is that individuals may receive a greater reward for certain problems based on the

perceived difficulty of the problem for the entire population. In the context of this

work, programs that could correctly classify patterns that other programs failed to

solve were favoured during the fitness evaluation. Rosin and Belew define a method
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wherein an individual’s ”simple fitness” (e.g. the number of correct classifications)

is divided by the sum of the simple fitness scores of the rest of the population [10].

Thus, individuals receive a higher reward for classifying items that others could not.

A similar function was used in this work, explored in Section 2.9. The objective of

fitness sharing is to prevent a population from converging upon a single behaviour,

and to promote unique solutions [10].

1.7 Memory

In this work, ”memory” refers to a data structure that is separate from the virtual

machines used in the Linear GP model. It is a collection, of user-defined size, of values

that are accessible by index. Programs in the population may access the memory

array using Read and Write instructions. Changes to the state of the memory array

are preserved between generations. In other words, memory is not cleared as the

population evolves. This is important as it introduces the possibility of ”shared”

values and inter-generational communication between programs, both of which are

not naturally present in traditional implementations of LGP.



Chapter 2

Experimental Environment

2.1 Tasks

Prior to exploring into the experimental setup, it is crucial to establish a clear un-

derstanding of the model’s designated tasks. The problems addressed by the model

involve categorizing individuals within a dataset into classes based on their input

values. When selecting tasks for this study, it was crucial to ensure sufficient di-

versity to test the model’s effectiveness across various classification contexts. Some

datasets featured binary outputs; the classification was a simple ’yes’ or ’no.’ Others

had several outputs, meaning the model made a distinct prediction from a range of

possible classes for each input. Furthermore, the number of features varied across

tasks, ranging from as few as 4 to as many as 34. A total of six different tasks were

attempted in these experiments:

Iris Dataset: This task involves classifying types of irises based on their petal

and sepal measurements [5]. It contains four features, and has three possible outputs.

There are 150 examplars, evenly distributed among the three categories. This dataset

is widely used for machine learning tasks, and is largely considered to be an ’easy’

classification task.

Ionosphere Dataset: With 34 features, this dataset contains the highest num-

ber of any other task chosen. It is a binary classification task that determines whether

radar data collected from the earth’s ionosphere can be considered ’good’ or ’bad’ [11].

It was chosen for these experiments because of its large number of features.

Breast Cancer Dataset: Like the Ionosphere dataset, this binary classification

task is characterized by its extensive feature set, comprising 30 features. It contains

data derived from images of breast masses and categorizes them as either ’malignant’

or ’benign’ [12].

Heart Dataset: Of the multi-output tasks, the Heart Disease dataset contains

the most features, with 13. The features consist of a variety of health data with the

5
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intention of predicting the presence of heart disease in a patient. Its five outputs

indicate the severity of heart disease, from 0 (not present) to 4 (significant presence)

[7]. It was chosen for this study because of its high feature count for a multi-output

task.

Glass Dataset: This task was selected for its high output count of seven. The

dataset uses nine features to define types of glass in terms of their oxide content,

and categorizes them into seven groups [6]. Benchmarking data for this task varies

significantly, indicating that this task can be considered more ’difficult’ than others.

Tictactoe Dataset: This binary classification task enumerates configurations

of a game of tictactoe where ’x’ is assumed to play first. The classification is ’true’

when x wins, and false otherwise. It contains 958 exemplars, which is almost double

the size of the next largest dataset used, with 569. Additionally, it is considered to be

more of a ’difficult’ task, based on benchmarking data from other machine learning

models [1].

2.2 Virtual Machines

This implementation of LGP first established Virtual Machines (VMs) capable of exe-

cuting groups of instructions (i.e. programs) in an imperative programming language.

Within each VM, an array of floating-point values was used to represent the array of

”registers.” When choosing a size for a register array, it is necessary to ensure that

the number of registers is at least as large as the maximum number of outputs for

any given task. This is because the state of the registers is used to determine the

result of the classification: each output corresponds to a register, and the highest

value indicates the ”result” of the classification function. A register array larger than

the number of outputs may be used, and will improve performance in many cases.

Thus, the ideal number of registers is variable for different tasks.

A single array size of 8 was selected for these experiments. This decision aimed

to maintain consistency across tasks, ensuring that additional alterations to the sim-

ulation would not obscure the impact of adding or removing indexed memory. This

particular size was selected because it meets the criteria of being at least as large as

the number of outputs for any task attempted, and demonstrated reasonable perfor-

mance in all cases. At initialization, all register values are set to 0.
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2.3 Patterns

The VM has access to a single data point (pattern) at a time while a program is

executing. These patterns are retrieved sequentially from an input file, and each

program completes execution once for every pattern in the dataset. Register values

are reset to 0 between executions, although values written to memory persist.

2.4 Instructions

Each instruction is represented as a group of four parameters: Mode, Target, Opcode,

and Source. These parameters describe the operations that are carried out on the val-

ues present in the VM’s registers, and dictate where the result should be stored. Each

field is represented by a single integer, and the instruction as a whole is represented

as an array of its components.

The ’Target’ parameter holds the index of the register used to store the result of

the instruction, and ’Source’ holds the index of the second operand of the instruction,

should it be necessary. The ’Opcode’ identifies the operation that is to be performed

on the two values. The ’Mode’ parameter indicates the addressing mode. The model

supports two addressing modes: ”register addressing” and ”pattern addressing.” In

register addressing, the model retrieves a value directly from the register indicated

by the Source parameter. Alternatively, in pattern addressing, the model retrieves a

value from the current pattern being tested at the specified index.

Thus, an instruction using register-addressing mode would produce the following

effect:

Registers[Target] <-- Registers[Target] <Operation> Registers[Source]

Similarly, an instruction using pattern addressing:

Registers[Target] <-- Registers[Target] <Operation> Datum[Source]

2.5 Program Generation

Upon initialization, the model generates a population of 100 random programs, each

comprising a random number of instructions. The number of instructions per program

is within the range of n*2 to n*n, where n is the number of registers. Individual

parameters are randomly generated and concatenated into a single line, forming the



8

array of instructions. This process is repeated 100 times until a full population has

been generated.

2.6 Instruction Set

For these experiments, the base instruction set consisted of four primitives: add,

subtract, multiply by two, and divide by two. Multiplication and division operators

were limited for simplicity and computational efficiency. Since multiplication and

division do not require a second operand, their execution will produce the following

effect on the registers:

Registers[Target] <-- Registers[Target] * 2

or

Registers[Target] <-- Registers[Target] / 2

2.6.1 Read and Write

When memory was enabled, the model added Read and Write instructions to the

pool of valid opcodes generated at the initialization stage.

Read instructions were executed according to the following structure:

Registers[Target] <-- Memory[Source]

Write instructions are performed as:

Memory[Target] <-- Source

Where ”Source” is either Registers[Source] or Datum[Source], depending on the

Mode.

2.7 Memory Structure

Memory for the model is simply represented as an array of 100 floating point values.

At the beginning of a simulation, each position in the array is initialized with a

value of 0. As the execution progresses, values will be written to and read from

memory. Unlike registers, the memory retains its contents between patterns and

persists through successive generations during the evolutionary progression of the

simulation.



9

2.8 Parsing and Execution

Once the population of programs is randomly generated, the VM proceeds to execute

each program on every pattern within the dataset. The simulation initiates by se-

lecting a pattern and a program and subsequently iterating through each instruction

within the chosen program. The registers will be manipulated according to the four

parameters of each instruction, and at the end of execution, the state of the regis-

ters will be examined for classification. The last n registers of the register array are

considered ”output registers,” where n is the number of outputs for the current task.

The output registers are then analyzed separately to determine which of them con-

tains the greatest value. The register that contains the maximum value corresponds

to the output that was selected by the execution of the program. For example, if the

classification registers were in the following state:

[0.34, 0, 6.45]

The index of the maximum value (6.45) is 2, indicating that output 2 was selected.

This result is compared with the expected output for the selected pattern, and if the

program’s classification aligns with the anticipated outcome, the program receives a

reward.

2.9 Reward

When a program correctly classifies a pattern, it receives a reward. Since this model

makes use of fitness sharing, a program’s fitness is discounted relative to the perfor-

mance of every other program on each pattern in the dataset before it is finalized.

The formula used to calculate fitness sharing for these experiments was as follows:

The initial reward, G, for an individual program gi in the population being exe-

cuted on an individual pattern pk in the dataset can be described by:

G(gi, pk) =

1 if gi classifies pk correctly

0 otherwise

This binary value is then discounted by the performance of the rest of the pop-

ulation on the same pattern. If a particular pattern is labelled correctly by the

entire population, then the classification of that pattern is not considered partic-

ularly ’valuable’ behaviour. To encourage diversity in the population, the highest
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reward is granted when a program correctly labels a pattern that few others can.

The discounted reward P is given by

Pik =
G(gi,pk)∑n

j=1 G(gj ,pk)

where n is the number of programs in the population.

The final fitness score Fi of the program is acquired by summing the discounted

reward for each pattern in the dataset, denoted by m.

Fi =
∑m

k=1 Pik

After calculating the final fitness sharing score for each individual program, the

population is sorted in descending order based on this value. Thus, the program

with the highest fitness sharing score is considered the ’best’ program in the current

population.
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Experiments

Now that it has been established how the simulation generates and executes pro-

grams, the next step is examining the experiments themselves. Two experiments

were conducted: one where the model was given access to an indexed memory struc-

ture and one where it was not. The following section will discuss the details of how

each experiment was executed.

3.1 Evolution

In these experiments, one ’run’ of the program included 300 generations of evolution

before a ’champion’ was selected. A generation consisted of executing each program

in the population on each pattern in the dataset once, followed by a cycle of cloning

and mutation. The result was a new population for the subsequent generation.

To create a new generation of programs, a subset of the highest performing indi-

viduals was chosen to ’breed’ new individuals. This process commenced by selecting

an eligible subset of ’parent’ programs, determined by a ’gap percent.’ The gap per-

cent indicates the percentile of the population above which a program is considered

eligible to be used for breeding. The lowest-performing individuals, those whose scores

fell outside the range of the gap percent, were discarded in favour of newly generated

’children.’ Each child underwent a mutation process wherein it had a chance of being

altered, thus introducing new behaviours than those of its parent. This approach

maintained a consistent population size while introducing novel behaviors in each

generation.

For these experiments, a gap percent of 80 was used. Since the population size

was 100, this meant that the bottom 20 programs were discarded at each generation.

Then, 20 ’parents’ were randomly selected and duplicated from the surviving portion

of the population. These programs then underwent a mutation process before being

reintroduced to the population.

11
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3.1.1 Mutation

During this phase, the children had the chance to be altered by crossover and mu-

tation. Each mutation operator had a ’threshold value’ indicating the probability of

that mutation being applied. Crossover was always applied in each generation. The

details of the five genetic operators used in these experiments are as follows:

Crossover: A random subsection of four consecutive instructions from one pro-

gram are exchanged with another. A threshold value was not used for crossover during

these experiments. Instead, crossover was always performed 30 times per generation,

with each call selecting two random programs to exchange instructions. Because of

this, it was possible that the same programs were selected to undergo crossover more

than once, and some not at all.

Replace Instruction: One randomly selected instruction in a program is re-

placed with a newly generated instruction. Threshold value: 0.7.

Remove Instruction: One randomly selected instruction is deleted from a pro-

gram. Threshold value: 0.5.

Add Two Instructions: Two newly generated instructions are inserted at a

randomly selected index This mutation operator is particularly significant because

it allows programs to increase in length. Increasing the length of a program may

increase its computational complexity. Threshold value: 0.5.

Modify Parameter: One randomly selected parameter of a randomly selected

instruction is regenerated. Any of the four parameters (Mode, Target, Opcode, or

Source) is eligible to be replaced. Threshold value: 0.7.

3.2 Champion Selection

After the model has finished its full ’run’ of 300 generations, a champion must be

selected from the population. While fitness sharing scores were the metric for selection

during training, the final champion was chosen based on accuracy. This is because

once the model is fully trained, evaluating programs in terms of their performance

relative to their peers becomes less relevant, and their overall success on the task

takes precedence.

To select champions from the population, each program was executed repeatedly
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on test partition of the dataset and its average performance was determined. In the

case of the memory-enabled experiment, to initiate this process, the state of memory

after training was preserved. The post-training state of memory was then used as

the initial state of memory for each program during the champion selection phase.

This was to ensure that any stored values ’used’ by the programs during training

remained available to them while they were executed on the test partition. Each

program was executed 20 times on the test partition and tested for raw accuracy (i.e.

number of correct classification). The individual with the best average accuracy after

20 executions was selected as the overall champion of that run.

3.3 Expectations

If memory is enabled on the model, some subset of each program’s instructions will

involve interacting with memory. In theory, this will allow the program to store useful

data statically for later access. The definition of ’useful’ is task-dependent, but some

possibilities include preserving significant features or storing constants beneficial to

calculations. It was hypothesized that high-performing programs would develop the

behaviour of storing and subsequently reading values that were found to be beneficial

to the task.

Since the programs are generated randomly, it was expected that not every read or

write to memory would be deemed ’useful’ to the execution of the program. However,

it was anticipated that programs that generated some degree of useful behaviour

would be favoured during the selection process, resulting in a population that could

be said to use memory in a meaningful way.

Since memory persisted between generations during training, there was also a

possibility that programs would find success by reading values that had been previ-

ously written to memory by other programs. This was acknowledged as acceptable

behaviour for the model.
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Results

4.1 Memory Usage

After the model had been trained, several patterns emerged from examining how

the champions interacted with memory. After the champions had been selected,

their instructions were examined to determine the frequency and locations of memory

accesses. The resulting data was visualized through a heat map of indexed memory,

illustrating the accessed locations and their corresponding frequencies. Interestingly,

the patterns that emerged in the memory accesses were vastly different across each

task.

There were, however, several elements that appeared to be consistent throughout

each task. Notably, each task displays a prominent spike in memory accesses at

index 0, which can be attributed to the initial state of each VM when programs are

executed. Given that register values are initialized with a value of 0, any early read

or write instruction in the program’s execution naturally targets index 0. As registers

gradually accumulate values from patterns and computation results, memory accesses

to other indices become more prevalent.

It was also observed that many tasks tended to exhibit a higher frequency of

memory access in the initial and final 10 locations in memory. This behaviour was

more pronounced in some tasks than in others. Figures 4.1 and 4.2 visually depict

this pattern, revealing that five out of the six attempted tasks exhibit a discernible

’hot spot’ near the beginning and end of the memory pool.

In the following sections, each task will be explored individually in order to high-

light specific patterns and behaviours that appeared during the experiments.

14
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Figure 4.1: Heatmap of write frequencies across all tasks
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Figure 4.2: Heatmap of read frequencies across all tasks
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Figure 4.3: Heatmap displaying read and write frequencies across all memory loca-
tions for the Iris task

4.1.1 Iris Dataset

The Iris task (found in Figure 4.3) displayed the aforementioned pattern of pro-

nounced memory usage concentrated in the initial and final 10 memory slots. No-

tably, there was very little memory usage outside of those locations. It is important

to note that the distribution of reads and writes is asymmetrical; the champions had

a tendency to write values more frequently than they were read.

4.1.2 Ionosphere Dataset

The pattern of memory usage in the Ionosphere task (Figure 4.4) closely resembles

that of the Iris task, characterized by a substantial frequency of both reads and writes

at the beginning and end of memory, with fewer accesses in the middle. The majority

of memory accesses were most concentrated within the first and last five spaces of

memory. Like the Iris task, champions of this task also performed writes at a much

higher frequency than reads.

4.1.3 Breast Cancer Dataset

The Breast Cancer task (Figure 4.5) exhibited the most extensive use of memory of

any other task. It is important to highlight that the location of the hot spots in the
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Figure 4.4: Heatmap displaying read and write frequencies across all memory loca-
tions for the Ionosphere task

read and write data indicate that the champions were accessing the same locations

with a high frequency for both operations. This illustrates some evidence of the model

storing and later accessing values deemed beneficial. Furthermore, the concentration

of read operations exceeded that of write operations in several locations. This could

potentially indicate the model’s behavior of establishing constants that are frequently

read from memory to enhance the classification process.

4.1.4 Heart Dataset

The pattern of memory accesses in the Heart task (Figure 4.6) exhibits similarities

with the previously examined tasks. Like Iris and Ionosphere, there are noticeable

hot spots near the beginning and end of memory. And, like Ionosphere, this task

displayed significant activity across a majority of memory addresses. Furthermore,

there is evidence of hot spots appearing in the same locations for both read and write

operations, indicating some level of association.

4.1.5 Glass Dataset

Interestingly, the Glass task (Figure 4.7) displayed distinctive asymmetry between

read and write patterns. Several ’read’ hot spots were observed in locations that were
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Figure 4.5: Heatmap displaying read and write frequencies across all memory loca-
tions for the Breast Cancer task

Figure 4.6: Heatmap displaying read and write frequencies across all memory loca-
tions for the Heart task
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Figure 4.7: Heatmap displaying read and write frequencies across all memory loca-
tions for the Glass task

written to very infrequently. This behaviour is interesting because it implies that

programs frequently accessing those locations were favoured despite the fact that the

value seldom changed.

4.1.6 Tictactoe Dataset

The Tictactoe task (Figure 4.8) followed the pattern observed in several other tasks

and displayed a preference for values at the beginning and end of memory. Notably,

in this instance, the magnitude of memory accesses in that range was particularly

striking. The memory locations within the initial and final 5 slots experienced re-

markably high-frequency access, ranging from triple digits to quintuple figures. The

middle portion of memory was mostly neglected. As seen in several other tasks, the

number of write operations exceeded the number of reads.

4.2 Performance

In terms of performance (number of correct classifications), there were several trends

that could be observed across all tasks. These trends can be seen in Figure 4.9, which

displays the distribution of accuracy scores among the champions of both experiments.

Most consistently, the introduction of indexed memory created a wider distribution
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Figure 4.8: Heatmap displaying read and write frequencies across all memory loca-
tions for the Tictactoe task

of performance scores across the population of champions. Where the experiments

without memory tended to cluster in certain niches, those with memory demonstrated

more diverse characteristics. In all but two cases, the highest performing champion

in the indexed-memory pool achieved a higher accuracy score than the corresponding

champion that did not use memory. Of the two cases where this observation does

not hold, one of them achieved 100 percent accuracy without memory and thus could

not be improved further. Similarly, in all cases except two, the worst performing

champion in the indexed-memory pool had a lower accuracy score than the worst of

the no-memory pool.

The following sections will outline the performance results of each task individu-

ally, to highlight unique and noteworthy behaviours.

4.2.1 Iris Dataset

For this task, the vast majority of champions across both pools were able to achieve

100 percent accuracy on the test data partition. This is unique to this task; there

were no others that achieved similar levels of performance.
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4.2.2 Ionosphere Dataset

The introduction of memory notably improved performance in this task. Leading

champions in the memory pool achieved an approximate accuracy of 90 percent,

with a significant portion of the remaining distribution scoring around 80 percent.

Notably, a substantial section of this pool surpassed the highest-performing individual

in the pool without memory. In the absence of indexed memory, the majority of

the champions scored below 80 percent, with the highest reaching approximately 82

percent. This was one of two tasks where the lower bound of performance was raised

following the introduction of indexed memory. This task saw the most improvement

with the introduction of indexed memory.

4.2.3 Breast Cancer Dataset

Similar to the Ionosphere task, the introduction of memory demonstrated an impact

on both the upper and lower performance bounds for the Breast Cancer dataset.

However, the magnitude of improvement was less pronounced compared to the afore-

mentioned task. The top performers in the memory-enabled pool attained an accu-

racy of approximately 93 percent, while their counterparts in the no-memory pool

achieved roughly 92 percent. Interestingly, the distributions are roughly the same

width in both pools, with similar shaped curves characterizing their distributions.

4.2.4 Heart Dataset

In this problem, the distribution was significantly wider after the introduction of

indexed memory. As observed in most other tasks, the top performers within the

memory-enabled pool surpassed their counterparts in the memory-disabled pool.

However, the number of individuals who achieved this was significantly smaller for

this task. It is noteworthy in this case that the pool without memory had a higher

average performance than the memory pool. Furthermore, the least successful in-

dividuals in the memory-enabled pool demonstrated significantly lower performance

than the lowest performers in the no-memory pool, achieving only around 43 percent

accuracy. The distribution in the no-memory pool was quite narrow, however, which

may indicate a low level of diversity between champions.
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4.2.5 Glass Dataset

Excluding the Iris task, which achieved 100 percent accuracy, the Glass dataset stood

out as the only task where the introduction of indexed memory failed to enhance

the upper limit of accuracy scores among the champions. Instead, the highest per-

forming champions in the memory pool achieved the same accuracy as their counter-

parts in the opposite group. The distribution of accuracy scores was much wider in

the memory-enabled experiment, with the lowest performers achieving approximately

only 30 percent accuracy. This behavior is not entirely unexpected, considering that

the Glass task is generally recognized as more challenging.

4.2.6 Tictactoe Dataset

Like the Ionosphere task, the Tictactoe task appeared to receive a significant boost

in performance from the addition of indexed memory. The highest-performing cham-

pions in the memory pool achieved significantly higher accuracy scores than their

no-memory counterparts. However, like the Heart task, the lower bound of perfor-

mance was also extended by the addition of memory.
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Figure 4.9: Violin plot illustrating accuracy scores of each task with and without
indexed memory



Chapter 5

Analysis

The results of the two experiments provide a variety of insights about the intricate

relationship between Linear GP and memory. Each task utilized memory in unique

ways, though several similarities shone through. This has some implications about

how memory was used for each task, as well as about the adaptability of the model.

Additionally, the exploration of the model’s performance during the experiments re-

vealed several patterns and provided insights into the influence of memory on the

model.

5.1 Memory Usage

The examination of memory access patterns revealed intriguing insights into the uti-

lization of memory across different tasks. One of the more interesting observations

was that some tasks, although very different in nature, displayed similar behaviours

in terms of memory access, notably Iris and Ionosphere. These two tasks are very

different; one is a small, balanced multi-output task with only four features, and the

other is a binary classification task with more features than any other task examined.

Yet, both tasks exhibited a pattern of a high frequency of reads and writes at either

end of the memory array, with minimal activity in between.

Furthermore, both demonstrated a higher overall concentration of writes compared

to reads. This behaviour was not uncommon; it was noted also in the Tictactoe, Glass,

and Heart tasks. This may indicate that the programs are frequently writing values

to memory that are not subsequently used. Since performing a ’write’ operation does

not alter the state of the registers, it has no immediate effect on the program when

executed. If the value written is not later referenced by the program, then that write

instruction can be considered effectively useless. Nevertheless, there is no penalty

for performing this action. Since there is no performance impact, programs that

exhibit this behaviour along with other beneficial behaviours are likely to remain in
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the population during the selection process. The result of this is a population of

programs who perform write operations more often than they perform reads.

In contrast, reading a value from memory has an immediate impact on the registers

and, consequently, the program’s execution path. As a result, programs that contain

excessive ’bad’ reads are more likely to be eliminated during the selection process.

Theoretically, the ideal behavior for a model using indexed memory is to write crucial

values to memory and subsequently retrieve them during execution. There was some

evidence of this behaviour throughout the tasks, with Breast Cancer being the most

notable example. Breast Cancer stood out as the sole task where the frequency of

read operations surpassed writes. Moreover, the hot spots in the data suggested that

the programs were frequently reading from the same indices that were being written

to.

Though there were indeed some similarities among the memory access patterns of

the tasks, each task ultimately exhibited its own unique characteristics. This high-

lights the key observation derived from these experiments: the model’s adaptability to

the specific task at hand. Throughout the evolution process, the survival of the most

beneficial behaviors, including memory operations, shapes the resulting population.

The result of this is a population that uses memory in a way that best suits the task

being attempted. Whether it involves utilizing only a few provided memory slots or

extensively exploiting the entire array depends entirely on what is demonstrated to

be most effective during the evolution process.

5.2 Performance

Most tasks saw some degree of improvement with the introduction of indexed mem-

ory. Those that did not display an explicit improvement had their peak performance

matched. Across all cases, the introduction of indexed memory led to a broader dis-

tribution of accuracy scores, potentially indicating an increased diversity within the

populations.

Interestingly, all three of the binary classfication tasks, Ionosphere, Breast Cancer,

and Tictactoe, appeared to derive the greatest benefit from the addition of indexed

memory. This observation may suggest that indexed memory may be particularly

effective in improving the performance of binary classification tasks compared to
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other contexts.

The examination of the performance of the model with and without indexed mem-

ory further solidifies the notion that the impact of memory is highly task-dependent.



Chapter 6

Conclusion

The most important observation that was produced from these experiments was that

the effect of memory on Linear GP varies significantly based on the attempted task.

In the binary classification tasks attempted during this study, introducing indexed

memory was demonstrated to improve performance significantly. Across all tasks,

introducing indexed memory was able to at least match the performance of models

without memory.

Across all tasks, the utilization of memory was unique and custom to the specific

requirements of the task. The evolutionary model is capable of converging on a way

to utilize memory that is most beneficial to its current task. The result of this is a

significant variance in the way memory is utilized for each task.

Ultimately, the behaviour of the model underscores the task-specific nature of

memory utilization, with each task manifesting a unique and discernible approach

aligned with its inherent computational demands in order to produce the best results.

6.1 Further Research

The scope of this study was confined to investigating the impact of enabling indexed

memory on performance and analyzing the location and frequency of memory usage.

This illuminated the ability of the model to tailor its memory usage to specific contexts

while maintaining positive performance outcomes. However, the observed patterns in

memory usage data open up various potential avenues for further research.

One such avenue involves delving deeper into the values written to and retrieved

from memory. Additional tracing of the execution path could reveal the flow of data

through the instructions in each program, potentially revealing the effects of each

operation. This would provide richer insights about how the model utilizes memory

to accomplish the given task.
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Another potential direction for further research is the observed imbalance be-

tween read and write instructions. Throughout the experiments, a prevalent pattern

emerged where models exhibited a higher frequency of write instructions compared

to read instructions. This suggests that many of these instructions may introduce

values into memory that are not subsequently accessed. It would be worthwhile to

investigate the degree to which these seemingly unused write instructions impact the

performance of the model, and if there is a way to prevent their occurrence.

In addition, a compelling area for further exploration involves understanding how

tasks influence the model. While a diverse range of tasks was chosen for these exper-

iments to assess the model’s performance across various contexts, there is an oppor-

tunity to delve deeper into the specific characteristics of each task that influence the

model’s behavior in terms of memory usage.

In summation, the results of this study may serve as valuable stepping stones

towards further studies in this field. The implications of indexed memory on Linear

GP present a rich opportunity for further exploration.
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