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Abstract 
 

Page-based Linear Genetic Programming (GP) is implemented with a new 

two-layer Subset Selection scheme to address the two-class intrusion detection 

classification problem on the KDD-99 benchmark dataset. By careful adjustment 

of the relationship between subset layers, over fitting by individuals to specific 

subsets is avoided. Unlike the current approaches to this benchmark, the learning 

algorithm is also responsible for deriving useful temporal features. Following 

evolution, decoding of a GP individual demonstrates that the solution is unique 

and comparative to hand coded solutions found by experts. Standard, dynamic 

and lexicographic fitness are implemented and compared.  

In summary, this work represents a significant advance over previous 

applications of GP in which evaluation is limited to relatively concise 

benchmark datasets (typically less than a thousand patterns). This work details a 

hierarchical extension to the Subset Selection scheme resulting in the successful 

application of GP to a training dataset consisting of over 494,021 patterns. 

Moreover, the computational requirements are less than decision tree solutions 

applied to the same dataset. 
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1

Chapter 1: Introduction 

 

The Internet, as well as representing a revolution in the ability to exchange and 

communicate information, has also provided greater opportunity for disruption and 

sabotage of data previously considered secure. The study of intrusion detection systems 

(IDS) provides many challenges. In particular the environment is forever changing, both 

with respect to what constitutes normal behavior and abnormal behavior. Moreover, 

given the utilization levels of networked computing systems, it is also necessary for such 

systems to work with a very low false alarm rate [Lippmann, 2000].  

In order to promote the comparison of advanced research in this area, the Lincoln 

Laboratory at MIT, under DARPA sponsorship, conducted the 1998 and 1999 evaluation 

of intrusion detection [Lippmann, 2000]. As such, it provides a basis for making 

comparisons of existing systems under a common set of circumstances and assumptions 

[McHugh, 2000]. Based on binary TCP dump data provided by DARPA evaluation, 

millions of connection statistics are collected and generated to form the training and test 

data in the Classifier Learning Contest organized in conjunction with the 5th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining 1999 

(KDD-99). The learning task is to build a detector (i.e. a classifier) capable of 

distinguishing between “bad” connections, called intrusions or attacks, and “good” or 

normal connections.  

There were a total of 24 entries submitted for the contest [Elkan, 2000] [Wenke, 

1999]. The top three winning solutions are all variants of decision trees. The winning
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entry is composed from 50×10 C5 decision trees fused by cost-sensitive bagged boosting 

[Pfahringer,2000]. The second placed entry consisted of a decision forest containing 755 

trees [Levin, 2000] The third placed entry consisted of two layers of voting decision trees 

augmented with human security expertise [Vladimir, 2000] There are other approaches, 

including data mining and statistical models. 

In this work, the first interest is to explore a Genetic Programming (GP) approach to 

produce computer programs with a much less complex structure, compared with the 

above data mining approaches, yet yielding satisfactory performance on the KDD-99 test 

set. The motivation for such a goal is twofold. Concise rules are much easier to interpret. 

This provides for a greater level of confidence in the user base and facilitates the 

identification of weaknesses and strengths of the discovered rule(s). In addition simple 

rules provide the basis for higher throughput once implemented, where this has 

significant impact on real time applications such as intrusion detection. Genetic 

Programming has the potential to achieve this as solutions take the form of computer 

programs identified as part of a supervised learning framework with minimal a priori 

knowledge. Moreover, a lot of empirical evidence suggests that solutions found are often 

unique e.g. Chapter 57 in [Koza, 1999]. Second interest, the training system must scale 

well on a comparatively large training data set (i.e. there are approximately half a million 

patterns in the 10% KDD-99 training set). Given the computationally expensive inner 

loop of fitness evaluation in GP, this represents a challenging requirement in itself; 

Chapter 57, [Koza, 1999]. Third interest, fitness measurement must guide the training 

process towards to solutions which are able to generalize on patterns previously unseen 

i.e. we wish to explicitly avoid the case of a template based IDS system as these do not 
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scale well as the number of attack scenarios increases. Finally, only the most basic 

feature set is to be utilized. That is to say, the KDD data set provides a total of 41 

connection features of increasing complexity. The utility of such a wide range of features 

makes the learning problem much easier, but has also been widely criticized [McHugh, 

2000]. In particular most of the additional features are used to represent temporal 

properties. Thus, learning systems based on such a set of features are not required to learn 

any temporal characteristics to solve the problem (only structural credit assignment is 

necessary). 

To this end, this work utilizes a Page-based Linear Genetic Program as the generic 

learning system. The training data ‘sizing’ problem is addressed through the use of 

Dynamic Subset Selection and Random Subset Selection [Gathercole, 1994] in 

combination with a new method for composing the problem as a hierarchy of subsets and 

preventing subset overlearning. The temporal feature-learning problem is addressed by 

letting GP index a ‘window’ of connection samples. Finally, generalization properties are 

investigated under three different fitness measures. In each case, best solutions are 

examined and compared with KDD-99 winning entries. Solutions developed from 

different fitness measurements are simplified by removing structural introns and 

analyzed. One solution is compared with rules extracted by domain experts on the same 

data set. 

In the following text, Chapter 2 summarizes the properties associated with the KDD-

99 IDS data set. Chapter 3 details the Genetic Programming (GP) approach taken, with a 

particular emphasis on the methodology used to address the size of the data set. Chapter 4 

details parameter settings and conducts an evaluation of generalization under the case of 
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a standard fitness metric. This work will appear at GECCO 2003 [Song, 2003].  Chapter 

5 details the methodology of dynamically weighting fitness for different attack classes 

and compares results with the standard metric. Chapter 6 details the methodology of 

lexicographic fitness measurement (hierarchical cost function) and compares all the 

results generated from different measurements. Finally, conclusions and future directions 

discussed in Chapter 7. 
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Chapter 2: Literature Survey and Background to Intrusion Detection 

 

Section 2.1: Intrusion Detection Problem 

As indicated in the introduction, from the perspective of the Genetic Programming 

(GP) paradigm, KDD-99 posted several challenges [Lippmann, 2000] [McHugh, 2000]. 

The amount of data is much larger than normally the case in GP applications. The entire 

training dataset consists of about 5,000,000 connection records. However, KDD-99 

provided a concise training dataset – which is used in this work – and appears to be 

utilized in the case of the entries to the data-mining competition [Elkan, 2000] [Wenke, 

1999] [Pfahringer, 2000] [Levin, 2000] [Vladimir, 2000]. Known as “10% training” this 

contains 494,021 records among which there are 97,278 normal connection records (i.e. 

19.69 %). However, this still represents a considerable challenge for GP. Specifically, GP 

is a data driven learning algorithm (section 2.3) in which each candidate solution 

competes with others. To do so, each individual requires a scalar fitness, where this is 

proportional to error measured across the training data set. For example, if there are 4,000 

individuals and 5- iterations of the algorithm, approximately 100×109 program 

evaluations will take place. Moreover, the stochastic nature of the algorithm requires that 

runs be conduced over at least 30 different initializations in order to establish the 

statistical significance of any results (i.e. verify that solutions are not due to random 

chance). Finally, we also note that reading the entire data set into computer cache is not 

feasible. That is to say, sequentially presenting each training pattern to a program for 

classification does not make use of the localized spatial and temporal access patterns on 
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which cache memory is based [Hennessy, Patterson 2002]. In this work we will therefore 

address these problems by making use of the observation that not all training patterns are 

equally difficult. Thus, a hierarchical competition between patterns is defined, based on 

the Dynamic Subset Selection technique [Gathercole, 1994]. 

As indicated in the introduction, the KDD’99 dataset describes each connection 

record in terms of 41 features and a label declaring the connection as either normal, or as 

a specific attack type. In this work, in order to naturally support the 2 address mode 

employed by the instruction format of L-GP [Heywood, 2002], of the 41 features, only 

the first eight (of nine) “Basic features of an Individual TCP connection”; hereafter 

referred to as ‘basic features’ are employed. The additional 32 derived features, fall into 

three categories, 

Content Features: Domain knowledge is used to assess the payload of the original TCP 

packets. This includes features such as the number of failed login attempts; 

Time-based Traffic Features: These features are designed to capture properties that 

mature over a 2 second temporal window. One example of such a feature would be the 

number of connections to the same host over the 2 second interval; 

Host-based Traffic Features: Utilize a historical window estimated over the number of 

connections – in this case 100 – instead of time. Host based features are therefore 

designed to assess attacks, which span intervals longer than 2 seconds. 

In this work, none of these additional features are employed, as they appear to almost 

act as flags for specific attack behaviors. Our interest is on assessing how far the GP 

paradigm would go on ‘basic features’ alone. 
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The training data1 encompasses 24 different attack types, grouped into one of four 

categories: User to Root; Remote to Local; Denial of Service; and Probe. Naturally, the 

distribution of these attacks varies significantly, in line with their function – ‘Denial of 

Service,’ for example, results in many more connections than ‘Probe’. Table 2.1 

summarizes the distribution of attack types across the training data1. Test data2, on the 

other hand, follows a different distribution than in the training data, where this has 

previously been shown to be a significant factor in assessing generalization [Elkan, 

2000]. Finally, the test data added an additional 14 attack types not included in the 

training data, as shown in Table 2.1, and therefore considered to be a good test of 

generalization [Elkan, 2000]. 

Table 2.1. Distribution of Attacks 

Data Type Training Test 

Normal 19.69% 19.48% 

Probe 0.83% 1.34% 

DOS 79.24% 73.90% 

U2R 0.01% 0.07% 

R2L 0.23% 5.2% 

 

Given that this work does not make use of the additional 32 derived features, it is 

necessary for the detector to derive any temporal properties associated with the current 

pattern, x(t). To this end, as well as providing the detector with the labeled feature vector 

                                                 
1. “10% KDD dataset” in KDD contest [Lippmann, 2000]. 
2. “Corrected test set” in KDD contest [Lippmann, 2000]. 
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for the current pattern, [x(t), d(t)], the detector is also allowed to address the previous ‘n’ 

features at some sampling interval (modulo(n)). 

 

Section 2.2: Machine Learning Approaches on KDD’99 
 

In KDD-99 contest, there were 24 entries submitted, of which the three best 

approaches returned performance with essentially the same statistical significance [Elkan, 

2000]. 

The “Winning entry” made use of an ensemble of 50x10 C5 decision trees, using 

cost-sensitive bagged boosting [Pfahringer, 2000]. In its training process, 50 samples 

were drawn from the original training set. The samples always included all of the 

examples of the two smallest classes ‘U2R’ and ‘R2L’, and 4000 PROBE, 80000 

NORMAL, and 400000 DOS examples without duplicate entries. For each sample, an 

ensemble of 10 decision trees was built using both of the error-cost and boosting options. 

The final predictions were computed on top of the 50x10 trees with Bayes optimal 

prediction used to minimize conditional risk. Table 2.2 summarizes the result 

performance. Each sample took C5 a little less than an hour to process on 2 processors 

ultra-sparc2 (2x300Mhz) with 512M RAM, and a 9G disc running Solaris 5.6. Processing 

for all, yielding 50x10 trees, therefore took approximately 24 hours in the final 

"production" run. 

Table 2.2. Performance of KDD-99 wining entry on KDD corrected test set [Elkan,2000] 

Predicted Normal Probe DOS U2R R2L %Correct 
Actual       
Normal 60262 243 78 4 6 99.5% 
Probe 511 3471 184 0 0 83.3% 
DOS 5299 1328 223226 0 0 97.1% 
U2R 168 20 0 30 10 13.2% 
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R2L 14527 294 0 8 1360 8.4% 
%Correct 74.6% 64.8% 99.9% 71.4% 98.8%  

 

The “Second placed” solution also used decision trees [Levin, 2000]. Training was 

conducted over the 10% training set and split into a series of “good” partitions, where 

“good” partition are partitions independent with each other [Levin, 2000]. A set of 

decision trees was constructed from these partitions. A problem specific global 

optimization criterion was then used to select the optimal subset of trees to give the final 

prediction. The global optimization criterion employed was designed to minimize the 

total cost of misclassifications, whilst taking into account parameters for reliability and 

stability of prediction in an attempt to minimize the overfitting problem. The hardware 

used consisted of one PC (Pentium II 350 MHz) with 128 MB of RAM. It took in total 

about 22 hours of machine time to complete the process of finding all the patterns. 

Performance is detailed in Table 2.3. 

Table 2.3. Performance of KDD-99 second entry on KDD corrected test set [Levin,2000] 

Predicted Normal Probe DOS U2R R2L %Correct 
Actual       
Normal 60244 239 85 9 16 99.42% 
Probe 458 3521 187 0 0 84.52% 
DOS 5595 227 224029 2 0 97.47% 
U2R 177 18 4 27 2 11.84% 
R2L 14994 4 0 6 1185 7.32% 
%Correct 73.95% 87.83% 99.88% 61.3% 98.5%  

 

The “Third placed” solution was two layer decision trees [Vladimir, 2000]. The first 

layer was trained on the connections which can not be classified by security experts, 

whereas the second layer was built on the connections which can not be classified by first 

layer. Training data set was again the “10% KDD data set” and some of the DOS and 
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"normal" connections were randomly removed. This training dataset was then randomly 

split into three sub samples: 25% for tree generation, 25% for tree tuning, and 50% for 

estimating model quality. Two computers were used. One was a Pentium Notebook 150 

MHz with 32 MB RAM and about 200MB free disk space, and another is Pentium 

Desktop 133 MHz with 40 MB RAM and about 200MB free disk space. It took about 30 

minute to generate one set of trees. The total time for all calculations was about 6 hours.  

There are other successful approaches on the classification problem of KDD-99. In 

[Wenke, 1999], a data-mining framework is described in which four data mining 

programs are used together to give a final classification as follows. 

1. A Classification system, RIPPER, is used to classify connections into one of 

a 5 categories. RIPPER searches for the most discriminating features out of 

42 features in KDD dataset and uses them to generate rules.  

2. Meta-learning is used as a mechanism to inductively learn the correlation of 

predictions by a number of classifiers. The resulting metaclassifier thus 

combines the detection power of all the classifiers.  

3. Association rules. The goal of mining association rules is to derive 

correlations between 41 connection features.  

4. Frequent Episodes are used to represent the sequential audit record patterns.  

The above framework performs as well as the best systems built using the 

manual knowledge engineering approaches [Wenke, 1999]. Table 2.4 compares the 

detection rates of old intrusions and new intrusions where new intrusions refer to 

those that did not appear in the training data. Table 2.5 summarizes the complexity of 

classifiers in terms of the number of features in a connection record, the number of 
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RIPPER rules produced, and the number of distinct features actually used in the 

rules. The numbers in bold, for example, 9, indicate the number of automatically 

constructed temporal and statistical features being used in the RIPPER rules. 

Table2.4. Detection Rates [Wenke, 1999] 

Category %Old %New 
DOS 79.9 24.3 
Probe 97.0 96.7 
U2R 75.0 81.8 
R2L 60.0 5.9 
Overall 80.2 37.7 

 
 

Table 2.5. Complexity of Classifiers [Wenke, 1999] 
 

Model # of features 
in records 

# of rules # of features 
in rules 

content 22 55 11 
traffic 20 26 4+9 
Host trafic 14 8 1+5 

 
In [Caberera, 2000], statistics of the traffic are modeled and used to recognize 

connection types in the KDD-99 dataset. Two statistics is used. The first is the number of 

bytes from the responder and the other is the byte ratio between responder and originator. 

A Kolmogorov-Smirnov test is then used to show that attacks using telnet connections in 

the DARPA dataset form a population that is statistically different from the normal telnet 

connections. The FP and detection rates are also comparable to other approaches obtained 

in the DARPA evaluation. 

 

Section 2.3: Introduction to Genetic Programming 

Evolutionary Computation mimics aspects of Darwinism’s natural selection and 

survival of fittest to optimize a population of candidate solutions towards a predefined 
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fitness. During the evolutionary process, the combination of selection and search 

operators are used to generate fitter solutions. Genetic Programming (GP) is one instance 

of evolutionary computation in which an individual takes the form of executable code, 

hence “running” the program determines an individuals’ fitness. In order to apply GP, it 

is necessary to define the ‘instructions’ from which programs are composed – often 

referred to as the Functional Set. The principle constraint on such a set being that it 

should provide syntactic closure and require one or more arguments. In addition, a 

Terminal Set is provided consisting of zero argument instructions, typically representing 

inputs from the environment or constants. The content of a population is modified 

through the application of selection and search operators. Selection operators govern how 

individuals from the population are sampled, thus giving rise to a competition between 

parents for ‘space’ in the population (population size is fixed). Search operators utilize 

the concepts of crossover and mutation from generation to introduce variation in children. 

Holland placed such a framework in a theoretical context and demonstrated for the case 

of individual composed from binary strings (Genetic Algorithm) [Holland, 1975]. The 

traits from the best performing individual will see expanded rates of reproduction, 

leading to monotony improvement to a population from then. This is the GA Schema 

Theorem; recent work by Poli has begun to provide equivalent relations for GP [Poli, 

2001]. The method as a whole is popularized by the seminal work of Koza [Koza, 1989], 

[Koza, 1992] in the form of tree-structured GP. However, linearly structured GP has also 

been proposed [Freidburg, 1958] [Cramer, 1985], [Nordin, 1994], [Huelsbergen, 1996] 

[Heywood, 2002]. Familiarity with the linear structure resulted in the use of it in this 

work. 
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Section 2.3.1: Tree and Linearly Structured Genetic Programming 

As indicated above, a linearly structured GP, or L-GP, takes the form of a ‘linear’ list 

of instructions. Execution of an individual mimics the process of program execution 

normally associated with a simple register machine as opposed to traversing a tree as in 

the case of tree-structured GP (leaves representing an input, the root node the output). 

Each instruction is constructed by an opcode and operand, and modifies the contents of 

internal registers, memory and program counter. Another aspect which differentiates T-

GP and L-GP is in the operation of crossover. As shown in Fig 2.1 and Fig 2.2, T-GP 

individuals exchange sub trees between parents, while L-GP individuals exchange 

‘linear’ sequences of instructions. 

 

Fig 2.1. Crossover in Tree GP [Brameier, 2001] 
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Fig 2.2. Classical crossover in Linear GP result in variable length individuals 

[Brameier,2001] 

 

Fig2.3. Crossover in Page-based L-GP result in fixed length individuals [Heywood,2002] 

 
Section 2.3.2: Page-based Linear GP with Dynamic Crossover 

The operator crossover as typically applied in GP is blind. That is to say the 

stochastic nature of defining a crossover point results in individuals whose instruction 

count continues to increase with each generation without a corresponding improvement 

in performance. Page-based L-GP provides a method for encouraging the identification of 
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concise solutions without penalizing generalization ability [Heywood, 2002] [Wilson, 

2002]. To do so, Page-based L-GP defines individuals in terms of a number of program 

pages selected stochastically at initialization, but thereafter does not change and a page 

size, as measured in terms of instructions per page (the same for all members of the 

population). The crossover operator merely selects which pages are swapped between 

two parents, where it is only possible to swap single pages. This means that following the 

initial definition of the population; the length of an individual never changes (length 

measured in terms of the number of pages and instructions per page). The number of 

pages each individual may contain is selected at initialization using a uniform distribution 

over the interval [1, max program length]. This is different from classical L-GP as: (1) 

the concept of pages does not exist; and (2) the number of instructions crossed over in 

classical L-GP is not constrained to be equal, resulting in changes to the number of 

instructions per individual. Moreover, any two parents denote crossover boundaries, thus 

alignment of code between boundaries never takes place [Huelsbergen, 1996], [Nordin, 

1994]. 

Given that the page-based approach fixes the number of instructions per page, it 

would be useful if manipulation of the number of instructions per page was possible 

without changing the overall number of instructions per individual. The selection of 

different page sizes is related to the overall fitness of the population. It starts with 

smallest page size to encourage the identification of building blocks of small code 

sequences. When the fitness of the population reaches a ‘plateau,’ the page size is 

increased. Further plateaus make page size increased towards a maximum number. After 

then such cycles restart at the smallest page size. Such a scheme was denoted dynamic 
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page-based L-GP and extensively benchmarked against classical L-GP and tree structured 

GP in [Heywood, 2002]. In all cases concise solutions were located without penalizing 

generalization.  

 

Section 2.3.3: Mutation Operation in L-GP 

L-GP as employed here utilized two forms of mutation. The first type of mutation is 

used to manipulate the contents in individual instructions. To do so, an instruction is 

randomly selected, and then, an X-OR operation performed with a second randomly 

generated integer to create the new instruction, as shown in Fig 2.4. The principle 

motivation for such an operator is to introduce additional (code) diversity into the 

population.  

 

Fig 2.4. Instruction wild mutation 

The second type of mutation operator was introduced to enable variation in the order 

of instructions in an individual. This is referred to as a swap operator. In this case, an 

arbitrary pair wise swap is performed between two instructions in the same individual, as 

shown in Fig 2.5. The motivation here is that the sequence, has a significant effect on the 

solution as well as the composition of instructions. Both types of mutation occur by 

probability threshold defined a priori and held constant throughout. 
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Fig 2.5. Swap operation 

 
 
 

Section 2.3.4: Steady State Tournament Selection 

Classically, both genetic algorithm and programming utilized a proportional 

selection operator [Holland 1975], [Koza 1989, 1992]. As such, at each generation M/2 

pairs of parents are selected, where the probability of selecting individual i, Pi is  

∑
=

j
i

i
i tf

tf
P

)(
)(

        (1) 

Thus at each generation M individuals are evaluated through reproduction, crossover 

and/or mutation. Concisely, steady state selection stochastically selects K (<<M) 

individuals independent of their current relative fitness. Each individual within the 

tournament is evaluated. The relative fitness of the K individuals is used to divide the 

tournament into two groups. The better half will be parents and remain in the population. 

The inferior half will be replaced by offspring created by stochastically applying the 

search operators to the parents. Offspring replace the K / 2 inferior members from the 

population. Both selection schemes have been extensively analyzed with Steady State 

tournament demonstrate a higher selection pressure [Syswerda, 1991] 
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Section 2.3.5: Functional Set 

Functional and terminal sets in linear GP take the form of opcodes in the register-

level transfer language instructions. Table 2.6, illustrates the difference between 0, 1, 2, 3 

address formats in the case of a solution to the ‘simple regression’ benchmark problem. 

Note the opcodes, or function set, in this example is {+, -, x, %, NOP, EOP}, where NOP 

denotes no operation and EOP denotes end of program. 

Table 2.6. An example of L-GP [Heywood, 2002] 

 

 
Section 2.3.6: Terminal Set 

The terminal set takes form of operands (e.g. permitted inputs, outputs and internal 

registers or general address space) in the register-level instructions. In addition, constants 

may also be expressed directly as a ‘b’ bit integer over the range 0 to 2b – 1, or –2b /2 to 

2b /2 – 1. In the above example, terminal set is {R1, R2, P0 (= x)}. 
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Section 2.3.7: Raw Fitness 

Raw fitness represents the initial measurement of error as calculated between desired 

value (supplied by the data set) and value suggested by GP. As such raw fitness provides 

the basis for evaluating performance of a program. In the above example, the raw fitness 

was the sum of the absolute differences between the desired value and the actual result 

achieved from running the program. Thus, lower raw fitness means better performance. 

Regarding on the problem, a wrapper might be necessary to interpret the GP output in 

terms of the data. In particular, classification problem type requires the GP response to be 

expressed in terms of greater than zero (class 1) or less than zero (class 2). A count of the 

number of correct classifications is then facilitated. 

 

Section 2.3.8: Training Termination Criteria 

The training process terminates if either convergence is found, or if the number of 

generations exceeds a pre-set limit. Convergence is typically expressed in terms of 

minimizing (maximizing) a suitable cost function, where this is naturally a function of the 

application domain. Thus, an individual with a perfect result (say a raw fitness of zero), 

or performance within some predefined threshold of an ideal result. Typical cost 

functions might include a count for the number of correctly classified patterns or cases 

with error smaller than some predefined threshold. Moreover, the cost function may also 

include additional properties, such as a term for solution complexity. In this work several 

cost functions are investigated, sections 4, 5 and 6. 
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Section 2.3.9 Liner GP algorithm 

Figure 2.6 summarizes the overall algorithm for page-based L-GP using dynamic 

crossover using pseudo codes. The training parameters used to initialize the training 

system consist of predefined thresholds for the probability of mutation, crossover and 

swap as well as the maximum number of pages in an individual and the maximum 

number of instructions per page.  

Training(Parameters) 

{ … 

 initialize training system and population; 

 read dataset into memory; 

… 

iteration = 0; 

 while ( termination(iteration) == False) 

 { 

  conduct tournament selection; 

  train selected individuals on the dataset; 

  evaluate fitness; 

  test for change in cross over page size; 

  if (change == true) update page size; 

  let offspring = parents; 

  crossover between offspring; 

  mutation on offspring; 

  swap on offspring; 
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  overwrite worst members of tournament with 

offspring; 

  update population; 

  iteration++; 

 } 

…} 

Fig 2.6. Page-based L-GP with dynamic crossover 

The initial population is generated randomly from the functional set and terminal set 

by first stochastically selecting instruction type (source reference is an internal register; 

source reference is a data value; specification of a constant) and then stochastically 

selects from the set of operands and opcodes to form a legal instruction. Note, the ratio of 

instruction types is also defined a priori. 
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Chapter 3: Methodology 

 

The specific interest of this work lies in identifying a solution to the problem of 

efficiently training with a large dataset (close to half a million patterns). To this end, we 

revisit the method Dynamic Subset Selection [Gathercole, 1994]. Dynamic Subset 

Selection (DSS) involves randomly selecting a target number of cases from the whole 

training set every generation, with a bias towards patterns which have a history of being 

either ‘difficult’ to classify or has not been selected ‘recently’. Random Subset Selection 

involves randomly selecting a target number of cases with equal probability. 

There are at least two aspects to this problem: the cost of fitness evaluation – the 

inner loop, which dominates the computational overheads associated with applying GP in 

practice (section 2.1); and the overhead associated with datasets that do not fit within 

RAM alone (section 2.1). In this work, as shown in Fig 3.1, a hierarchy is defined in 

which the data set is first partitioned into blocks. The blocks are small enough for 

retention in RAM where the result of a competition is a sub set of training patterns that 

reside within cache alone, and then a competition is initiated between training patterns 

within a selected block. The selection of blocks is performed using Random Subset 

Selection (RSS) – layer 1 in the hierarchy. Dynamic Subset Selection (DSS) enforces a 

competition between different patterns – layer 2 in the hierarchy. Thus, a hierarchical 

architecture has been defined in conjunction with the previous concepts of random and 

dynamic sub-set selection in order to facilitate access to a much larger training set (RSS 

and DSS were previously only demonstrated on a dataset of hundreds of patterns, 

therefore never requiring a hierarchy [Gathercole, 1994].) 
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Fig 3.1. Two Layers of Subset Selection 

 

Section 3.1: Subset Selection 

First layer The KDD-99 10% training data set was divided into 99 blocks with 5000 

connection records per block2. The size of such blocks is defined to ensure that, when 

selected, they fit within the available RAM. Blocks are randomly selected with uniform 

probability. Once selected, the history of training pressure on a block is used to define the 

number of iterations performed at the layer 2 in DSS. Such a training pressure is defined 

in proportion to the performance of the best-case individual. Thus, iterations of DSS, I, in 

block, b, at the current instance, i, is 

)1()( (max) −×= iEIiI bb       (5) 

                                                 
2 Last block has 3993 connections. 
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where I(max) is the maximum number of subsets selected on a block; and Eb(i – 1) is the 

number of misclassifications of the best individual on the previous instance, i, of block, b. 

Hence, Eb(i) = 1 – [hitsb(i) / #connections(b)], where hitsb(i) is the hit count over block 

‘b’ for the best case individual identified over the last DSS tournament at iteration ‘i’ of 

block ‘b’; and #connections(b) is the total number of connections in block ‘b’.  

Second layer A simplified DSS is deployed in this layer. That is, fixed probabilities are 

used to control the weighting of selection between age and difficulty. For each record in 

the DSS subset, there is a 30% (70%) probability of selecting on the basis of age 

(difficulty). Thus, a greater emphasis is always given to examples that resist 

classification. DSS utilizes a subset size of 50, with the objective of reducing the 

computational overhead in performing a particular fitness evaluation. Moreover, in order 

to further reduce computation, the performance of parent individuals on a specific subset 

is retained. Finally, after 6 tournaments the DSS subset will be reselected. 

DSS Selection In the RSS block, every pattern is associated with an age value, which is 

the number of DSS selections since last selection, and a difficulty value. The difficulty 

value is the number of individuals that were unable to recognize a connection correctly 

the last time that the connection appeared in the DSS subset. Connections appear in a 

specific DSS stochastically, where there is 30% (70%) probability to select by age 

(difficulty). Roulette wheel selection is then conducted on the whole RSS block, with 

respect to age (difficulty). After the DSS subset is filled, age and difficulty of selected 

connections are reset to an initial value. For the rest, age is increased by 1 and difficulty 

remains unchanged. 
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Algorithm The following pseudo code describes the L-GP system with Dynamic Subset 

Selection. The lines in bold are additional code to support the hierarchy of subset 

selection where as the remainder defined in section 2.3.9 

Training(Parameters) 

{ 

 … 

 initialize training system and population; 

RSSiteration = 0; 
while ( RSStermination(RSSiteration) == False) 

 { 
  randomly load one block b into memory; 

… 

iteration = 0; 

 while ( termination(iteration) == False) 

 { 

  conduct tournament selection; 

  conduct Dynamic Subset Selection; 
  train individuals on DSS subset; 

   test for change in cross over page size; 

   if (change == true) update page size; 

  let offspring = parents; 

  crossover between offspring; 

  mutation on offspring; 

  swap on offspring; 
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  overwrite worst members of tournament with 

offspring; 

  iteration++; 

 } 

test the best individual against RSS block b; 
record number of errors on block b; 
Calculate max iterations of b; 
 

} 
 … 

pick the best individual; 
remove introns; 
test it against whole dataset; 
record result and translate; 

} 

 

Section 3.2: Parameterization of the Subsets 

The low number of patterns actually seen by a GP individual during fitness 

evaluation, relative to the number of patterns in the training data set, may naturally lead 

to ‘over fitting’ on specific subsets. Our general objective was therefore to ensure that the 

performance across subsets evolved as uniformly as possible. The principle interest is to 

identify the stop criterion necessary to avoid individuals that are sensitive to the 

composition of a specific Second Level subset. Note however that there is a natural 

conflict between reducing over fitting (equivalent to maximum diversity in patterns 
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utilized for fitness evaluation) and minimizing computational overhead in matching the 

evaluation (GP inner loop). 

To this end, an experiment is conducted in which 2,000 block selections are made 

with uniform probability. In the case of each block selection, there are 400 DSS 

selections. Before selection of the next block takes place, the best performing individual 

(with respect to sub-set classification error) is evaluated over all patterns within the 

block, let this be the block error at selection i, or Eb(i). In Fig 3.2, block errors over the 

first 500 selections are plotted and a linear least-squares regression is performed. The 

regression line indicates that the general trend in the first 500 selections is towards a 

block error converging tending to zero.  

To further understand how performance changes at each selection, a sliding window 

is then constructed consisting of 100 block selection errors, and a linear least-squares 

regression performed. The gradient of each linear regression is then plotted, Figure 3.3 

(1900 points). A negative trend implies that the block errors are decreasing whereas a 

positive trend implies that the block errors are increasing (the continuous line indicates 

the trend). It is now apparent, that after the first 750 block selections, the trend in block 

error has stopped decreasing. After 750 selections, oscillation in the block gradients 

appears, where this becomes very erratic in the last 500 block selections. 
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Fig 3.2 Block errors on first 500 iterations. X-axis represents tournament and Y 

represents block error 

 

Fig 3.3. Gradient of block error using best case DSS individual. X-axis represents 

tournament and Y represents slope of best fitting line on 100 point window 

On the basis of these observations, the number of DSS selections per block is limited 

to 100 (from 400) – with the objective of further reducing any tendency to prematurely 
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specialize – where the principle cost is in a lower number of DSS per block, thus 

increasing the number of times that the cache is flushed. 

 

Section 3.3: Structural Removal of Introns 

Introns are instructions, which have no influence on the output, but appear to be a 

factor in the evolution of solutions. Moreover, two forms of introns are often 

distinguished: structural introns and semantic introns. Structural introns manipulate 

variables that are not used for the calculation of the outputs at that program position. 

Whereas, semantic introns manipulate variables on which the state of the program is 

invariant [Brameier, 2001]. In this work, structural introns are detected using following 

pseudo code, initiated once evolution is complete, with the last reference to R0 (the 

output) as the input argument. 

 

markExon(reg, i) 

{ 

 ...; 

for ( ; destination in the ith instruction != reg ; i--) 

 if (i = 0 ) exit; 

 mark ith instruction as exon 

 markExon(oprand1, i-1) 

 markExon(oprand2, i-1) 

 .... 

} 
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Chapter 4: Evolving Individuals with Standard Fitness 

 

In this initial experiment, equal penalty is assumed between errors made by GP 

individuals no matter the connection type. The following experiments are based on 40 

runs using Dynamic Page-based L-GP. Runs differ only in their choice of a random seed 

initializing the initial population. That is, the same genetic page-based L-GP parameters 

are employed as in previous study [Heywood, 2002]. Functional set is selected with a 

bias towards simplicity. Table 4.1 lists the common parameter settings for all runs. The 

total number of records in training and test sets are summarized listed in Table 4.2. The 

method used for encouraging the identification of temporal relationships and composing 

the instruction set is defined as follows, and is reflected in the selection of Terminal set, 

Table 4.3, Table 4.4. 
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Table 4.1. Parameter Settings for Dynamic Page based Linear GP 

Parameter Setting 

Population Size 125 

Maximum number of pages 32 pages 

Page size 8 instructions 

Maximum working page size 8 instructions 

Crossover probability 0.9 

Mutation probability 0.5 

Swap probability 0.9 

Tournament size 4 

Number of registers 8 

Instruction type 1 probability 0.5 

Instruction type 2 probability 4 

Instruction type 3 probability 1 

Function set {+, -, *, /} 

Terminal set {0, .., 255} ∪  {i0, .., i63} 

RSS subset size 5000 

DSS subset size 50 

RSS iteration 1000 

DSS iteration (6 tournaments/ 

iteration) 
100 

Wrapper function 0 if output <=0, otherwise 1 

Cost function Increment by 1 for each 
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misclassification 

 

Table 4.2. Distribution of Normal and Attacks 

Connection Training Test 

Normal 97249 60577 

Attacks 396744 250424 

 

Section 4.1: Implementation 
Sequencing Information As indicated in section 2.1, only the 8 basic features of each 

connection are used, corresponding to: Duration; Protocol; Service; normal or error status 

of the connection (Flag); number of data bytes from source to destination (DST); number 

of data bytes from destination to source (SRC); LAND (1 if connection is from/to the 

same host/port, 0 otherwise); and number of “wrong” fragments (WRONG) as shown in 

Table 4.3. This implies that GP is required to determine the temporal features of interest 

itself. To do so, for each ‘current’ connection record, x(t), GP is permitted to index the 

previous 32 connection records relative to the current sample t, modulo 4. Thus, for each 

of the eight basic TCP/IP features available in the KDD-99 dataset, GP may index the 8 

connection records [(t), (t – 4), … (t – 28)], where the objective is to provide the label 

associated with sample ‘t’ as show in Table 4.4. 
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Table 4.3 8 Basic features 

Dur Protocol Service Flag DST SRC LAND WRONG t 

… … … … … … … …  

Dur Protocol Service Flag DST SRC LAND WRONG t - 4 

… … … … … … … …  

Dur Protocol Service Flag DST SRC LAND WRONG t - 8 

… … … … … … … …  

… … … … … … … …  

… … … … … … … …  

Dur Protocol Service Flag DST SRC LAND WRONG t - 32 

 

Table 4.4 Temporal features 

T t - 4 t – 8 t – 12 t -16 t - 20 t - 24 t - 28 

 

Instruction Set A 2-address format is employed (Table 2.6) in which provision is made 

for: up to 16 internal registers, up to 64 inputs (Terminal Set), 5 opcodes (Functional Set) 

– the fifth is retained for a reserved word denoting end of program – and an 8-bit integer 

field representing constants (0-255), as shown in Table 4.5. Two mode bits toggle 

between one of three instruction types: opcode with internal register reference; opcode 

with reference to input; target register with integer constant. Extension to include further 

inputs or internal registers merely increases the size of the associated instruction field. 

The output is taken from the first internal register.  
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Table 4.5. Instruction format 

Operation Code Destination Register ( 0 – 7 ) Source Register (0- 7 ) | 
Terminal [row][column] | 
const ( 0 – 255 ) 

3 bits 3 bits 6 bits 
 

Section 4.2: Results and Analysis 

Training was performed on a Pentium III 1GHz platform with a 256M byte RAM 

under Windows 2000. It takes approximately 15 minutes to finish each trial. The 40 best 

individuals within the last tournament are recorded and simplified as per Section 3.3. 

Performance is expressed in terms of average program length (before and after 

simplification), false positive (FP) and detection rates, estimated as follows, 

AttacksofNumberTotal
NegativesFalseRateDetection #1 −=    (3) 

sConnectionNormalofNumberTotal
PositivesFalseRatePositveFalse #

=   (4) 

Figure 4.1 summarizes the performance of all 40 runs in terms of FP and Detection 

rate on both training and test data. Of the forty cases, three represented outliners (not 

plotted). That is to say, they basically classified everything as normal or attack. Outside 

of three outliner cases, it is apparent that solution classification accuracy is consistently 

achieved. Table 4.6 makes a direct comparison between KDD-99 competition winners, 

verses the corresponding GP cases. 
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Fig 4.1. FP and detection rate of 40 runs on KDD-99 test data set 

 

Table 4.6. Comparison with KDD-99 winning entries 

Parameter 
Detection 

Rate 
FP rate 

Winning entry 0.908819 0.004472 

Second place 0.915252 0.00576 

Best FP rate GP 0.894096 0.006818 

Best Detection rate GP 0.908252 0.032669 

 

Structural removal of introns, Section 3.3, resulted in a 5:1 decrease in the average 

number of instructions per individual (87 to 17 instructions). With the objective of 

identifying what type of rules were learnt, the GP individual with best Detection Rate 

from Table 4.6 was selected for analysis. Table 4.7 lists the individual following removal 
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of the structural introns. Table 4.8 summarizes performance of the individual over a 

sample set of the connection types in terms of connections types seen during training (24 

different types) and connections types only during test (14 different types). Of particular 

interest here is that high classification accuracy is returned for connection types, which 

are both frequent and rare, where it might be assumed that only the connections with 

many examples might be learnt. 

Table 4.7. Anatomy of Best Individual 

Opcode Destination Source 

LOD R[0] 20 

SUB R[0] Input[2][5] 

MUL R[0] Input[0][1] 

DIV R[0] Input[0][4] 

SUB R[0] Input[2][5] 

SUB R[0] Input[6][5] 

DIV R[0] Input[0][4] 

 

Table4.8 Error rates on test data for top 16 attacks by individual with Best Detection 

Rate 

Seen 
connection 
type 

% 
Misclassified 

Total 
Examples 

Unseen 
connection 
type 

% 
Misclassified 

Total 
Example
s 

Neptune 0 58,001 Udpstorm 0 2 

Portsweep 0 354 Prosstable 3.03 759 

Land 0 9 Saint 5.978 736 
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Nmap 0 84 Mscan 8.452 1,053 

Smurf 0.077 164,091 Httptunnel 15.823 158 

Satan 3.552 1,633 Phf 50 2 

Normal 3.267 60,577 Apache2 65.491 794 

 

Re-expressing this individual analytically provides the expression, 

( )

]4][0[

]5][6[]5][2[
]4][0[

]1][0[]5][2[20

Input

InputInput
Input

InputInput

Output
−−

×−

=  

It is now apparent that the statistics for the number of bytes from the destination and the 

byte ratio destination-source are utilized. This enables the individual to identify that the 

attacking telnet connections in the DARPA dataset are statistically different from the 

normal telnet connections. Moreover, not only telnet connections can be classified by this 

way. Such a rule never misses an attack of “Neptune”(DOS), “portsweep”(Probe), 

“land”(DOS), ”nmap” (Probe), “udpstorm”(DOS). It also had good performance on 

“smurf”(DOS), “processtable” (DOS), “normal”(Normal), “satan”(Probe), 

“saint”(Probe), “mscan” (Probe) and “httptunnel” (R2L). Moreover, for “Neptune,” there 

are many half open tcp connections, without any data transfer. In “smurf,” there are many 

echo replies to victim, but no echo requests from victim. In “http tunnel,” the attacker 

defines attacks on the http protocol, which is normal, but the actual data exchange ratio 

makes it different from normal traffic. Currently, only [Caberera, 2000] argued that telnet 

connections might be differentiated by a rule of the form discovered here.  Moreover, it 

has also been suggested that attacks be formulated with such a rule in mind, [Kendall, 

1998], but without explicitly proposing this statistic. Thus GP in this case has actually 
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provided a unique generic rule for the detection of multiple attack types before such a 

rule was openly formulated. 
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Chapter 5: Dynamic Fitness – Motivation and Performance 

 

In the previous experiment, penalties for errors across all the connection types were 

weighted equally. However, this does not actually reflect the distribution of connection 

types in the training set. Thus, GP individuals which had better performance on 

frequently occurring connection types will be more likely to survive, even if they perform 

worse than competing individuals on the less frequent types. From Table 4.8 in the 

previous chapter, the solution investigated in detail provided good accuracy on types, 

which had more instances, such as “Normal”, “Neptune”, “Smurf”, but performed badly 

on others which appeared with less regularity. 

 

Section 5.1: The Notion of Dynamic Fitness 
In order to improve the accuracy on the relatively ‘rare’ connection types without 

compromising performance on the more frequent, a dynamic weighting is introduced. To 

do so, type specific weights (penalties) will be updated periodically in proportion to the 

current error rates on different connection types. Since subset selection is used (section 

3.1), and current error rates are calculated on the basis of a portion of the training set (the 

block), then connection type weighting will be introduced in a similar way. 

 

Section 5.2: Implementation and Analysis of Dynamic Fitness 

In line with its five generic connection types, “Normal”, “Probe”, “DOS”, “U2R”, 

“R2L”, the fitness weighting will reflect the same set of categories. On initialization, 

every category received an initial weight, which can be equal (no a priori information) or 

biased ( a priori information). At every RSS selection, error rates for all categories were



40 

 

 

 

 calculated and weights updated accordingly. For example, at iteration j, the weight on 

category c, Wj(c) is calculated as an exponential weighted history of previous weight 

value, or as followings.  

)()1()()( 11 cWcEcW jjj −− ×−+×= αα    (4) 

Thus as α → 1(0), more emphasis is given to the most recent error on connection 

type c (previous instances of error). To this end, four variations are considered, Table 5.1. 

Case 1 was investigated in section 4. Case 2 and 3 consider ‘high’ (low) emphasis of the 

correct error estimate, given equal initial weight. The final case initialized in favor of 

minimizing ‘Normal’ connection type first, for a ‘high’ emphasis of the current error 

estimate. 

Table 5.1 Standard setting and three combinations 

Case Description 

1 Weight = 1 for all 5 types 

2 α  = 0.3, initial weight = 0.2, for all the 5 types 

3 α  = 0.05, initial weight = 0.2, for all the 5 types 

4 α  = 0.3, initial weight (normal) = 0.6 and 0.1 for the rest 4 types 

 

30 runs on all 4 cases were conducted. Median, first quartile and third quartile were 

calculated on the false positives and true positives across the 30 results and used to 

measure performance. FP rate and detection rate were calculated based on these statistical 

numbers and drawn in the following charts.  
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Fig 5.1 FP rates on 4 cases (Y-axis is FP rate.) 

In Fig 5.1, case 4, which uses dynamic fitness with initial weight biased to ‘Normal’, 

gives best performance on all the statistical numbers (first quartile, median and third 

quartile) over the other three, in terms of FP rate. And the other two cases using dynamic 

weights and equal initial weights perform worse than the standard setting, which uses 

fixed and equal weights. Such results indicate that using biased initial weights plays an 

important part in “focusing” the training process. In terms of α , difference is apparent 

that a better median and lower spread is provided for the higher α  value. 
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Fig 5.2 Detection Rates on 4 cases. Y-axis is Detection Rate. 

In Fig 5.2, all the cases using dynamic weights show the potential ability to improve 

the detection rate statistics. They all had better third quartile, first quartile and median 

than the standard settings, except case 4. In terms of α , the smaller value has 

demonstrates better performance, i.e. case 3 provided less spread than either 2 or 4. 

Taking into account both of the FP rate and detection rate, case 4 performs best. It has 

best FP rate as well as an acceptable detection rate (same median as case 3). Weight cases 

2 and 3 are considered inferior, even though they are better on the attack side, this is out 

weighted by much worse ‘Normal’ or FP rates. 
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Fig 5.3 Normalized error rates on attack categories from 4 cases. Y-axis is normalized 

value 

In order to investigate whether dynamic fitness (case 2 – 4), compared with case 1, 

improves the accuracy on connection types with lower frequency of occurrences, error 

rates on each category from different cases are normalized with respect to the standard 

fitness (case 1) and plotted into Fig 5.3. Within each attack category (‘Probe, ‘DOS’, 

‘U2R’ and ‘R2L’), the normalized value of case i in the three series are calculated as 

followings. The median values from case 1 (standard fitness) in each category served as a 

baseline, so that both the deviation (between third quartile and first quartile) and average 

(median) values can be compared between different cases. 

1

:1
Median

ileThirdQuart
vSeries i

i =       (5) 

1

:2
Median

ileFirstQuart
vSeries i

i =       (6) 
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:2
Median
Median

vSeries i
i =        (7) 

Thus, in Fig 5.3, lower value means lower error rate. It’s apparent that, compared 

with case 1, all the cases using dynamic fitness have lower error rates on all attack types, 

especially ‘U2R’ and ‘R2L’. ‘U2R’ and ‘R2L’ have the lowest frequency in the training 

set, respectively, 0.01% and 0.23%. Thus, dynamic fitness not only improves the 

accuracy on major types, but also on the minor types.  

Table 5.2 details classification accuracy on each connection type from best case 

individual recorded by each fitness weighting – case 1 to 4, Table 5.1 For the best GPs 

from cases 2 and 3, relative to case 1 (standard fitness), they both perform better on the 

minor categories, ‘U2R’ and ‘R2L’, but are 2 to 3 times worse on ‘Normal’ connection 

type. That’s a high FP rate, hence they were considered inferior to case 1 and 4. The best 

GP in case 4 discovered the following rule.  

]5][1[3]5][0[255 InputInputOutput ×−×−=  

Compared with the best GP from case 1, it has similar FP rate (0.0375) rate and detection 

rate (0.904), however as shown in Table 5.2, it performed better on ‘R2L’.  

Table 5.2 Total number of errors on 5 categories from best GPs from 4 
cases 

Case Normal Probe DOS U2R R2L 

1 1979 423 8449 88 14016 

2 5838 1111 8079 87 12303 

3 6073 593 7441 73 12236 

4 2274 1238 9038 182 13686 
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Chapter 6: Lexicographic Fitness – Motivation and 

Performance 

 

In chapter 5, dynamic fitness shows the potential to improve the accuracy on 

connection types with both low and high frequencies. However performance is sensitive 

to the correct combination of two parameters, α  and initial weights, where the best 

combination might not be obvious initially. 

 
Section 6.1: The Notion of Lexicographic Fitness 

 
To reduce such complexity, lexicographic fitness can serve as a simple alternative 

formulation for the cost function, which may uphold classification accuracy on major 

types, like 'normal' and 'DOS' whilst improving that on lesser classes. Specifically, rather 

than try to formulate a single cost function for all classifications (as in the previous 

experiments), lexicographic fitness functions define a hierarchy of fitness classes 

[Huelsbergen, 1998], [Luke, 2002]. Such a scheme results in individuals getting the 

basics right first (in this case separation of major types from minor types) and only then 

introduce more specific criterion. 

 

Section 6.2: Implementation and Analysis of Lexicographic Fitness 
 

In this chapter, a two level lexicographic fitness is utilized, as follows. Level 1 

fitness uses error rates on ‘Normal’ and ‘DOS’ whereas Level 2 fitness uses error rates 

on the remaining categories. After each tournament, the individuals are ranked in terms 

of their first level fitness. If more than two appear within the same range of level 1 
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fitness, their level 2 fitness will be used to resolve the tie, i.e. in order to resolve the best 

set of parents in case where level 1 fitness is in the same range, level 2 fitness is used as 

the tie breaker. As before, 30 runs are conducted and results are compared with the 

previous 4 cases in chapter 5 using FP, detection rate and error rates on specific types. 

Fig 6.1 summarized the distribution of FP rates in which the first four entries 1, 2, 3, 4 

denote the previous cases and case 5 represents lexicographic fitness. It is apparent that 

lexicographic metric provides the most concise distribution of the FP metric. 

 

Fig 6.1 FP rate on 5 cases 
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Fig 6.2 Detection rates on 5 cases 

In terms of detection rate, as shown in Fig 6.2, lexicographic performs equally well 

as case 1. Lexicographic has 0.8917 as first quartile, 0.894 as median and 0.899 as third 

quartile, while case 1 has 0.8919 as first quartile, 0.8941 as median and 0.898 as third 

quartile. Compared with case 4, which is the best among cases using dynamic fitness, 

lexicographic still makes comparable accuracy, as shown in Table 6.1. With respect to 

both of the FP rate and detection rate, lexicographic fitness is superior to all the cases 

because it achieves outstanding decrease on the FP rate (Fig 6.1) while retaining 

acceptable accuracy on detection rate. 

Table 6.1 Detection rates on case 4 and 5 

Quartile Lexicographic Experiment 4 Difference 

First 0.8917 0.8919 0.0002 

Second (Median) 0.894 0.8957 0.0017 

Third 0.899 0.9022 0.0032 
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Regarding accuracy on specific attack categories, the error rates on each type are 

normalized in the same way in the chapter 5 and plotted in Fig 6.3. Compared with case 

1, except on “Probe”, lexicographic has equal or better third quartile and median of error 

rates over all the attack types. Compared with case 4, lexicographic is inferior on “DOS” 

types, but has similar accuracy on the remaining types. And in terms of total error rate 

(total number of errors / total number of patterns), lexicographic has the best 

performance, as shown in the Fig 6.4. The values are normalized in the same way as in 

chapter 5.  

Moreover, in terms of performance of best GPs from different cases, as shown in 

Table 6.2, the best GP from lexicographic fitness has the lowest error on “Normal”, and 

comparable errors on “DOS”. Thus this GP is superior to other cases, as it is low FP rate 

which will often dictate the usability of the detector. 

 

Fig 6.3 Normalized error rates on attack categories 
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Fig 6.4 Normalized total error rate on 5 cases 

Table 6.2 Errors on 5 categories from best GPs 

Case Normal Probe DOS U2R R2L 

Best GP from 1 1979 423 8449 88 14016 

Best GP from 2 5838 1111 8079 87 12303 

Best GP from 3 6073 593 7441 73 12236 

Best GP from 4 2274 1238 9038 182 13686 

Best GP from 5 547 1230 9045 142 14567 

 

Finally, the complexity of this particular individual is much more involved than that 

found in the previous cases, as per the following relation, 

04 RROutput ×=  

2]7][1[]2][1[)1]5][5([]6][5[
]1][5[4

××+×
=R  
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15]7][1[

]4][4[]1][1[]4][2[])5][3[]7][4[2(2510 +
−

×+×
−

+××+×+
=R  

where [m][n] represents nth feature in (t – 4 * m)th connection (Table4.3, Table 4.4) at 

current record  t. Note, however, this should be taken as a general effect of the 

lexicographic fitness function, but merely a result of the particular individual. 
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Chapter 7: Conclusion and Future Work 

 

Section 7.1: Summary of Page-based L-GP with Subset Selection 

A Page-based Linear Genetic Programming system with Dynamic Sub-Set (DSS) and 

Random Sub-Set (RSS) schemes for efficient training data sampling was designed, 

implemented and tested on the KDD'99 benchmark dataset. In doing so, a hierarchy of 

data subset selections are introduced in order to facilitate learning by GP on a data set of 

half a million patterns. Moreover, only the basic connection features are employed, with 

GP deriving the necessary temporal features itself. Table 7.1 demonstrates that GP 

performance approaches that of data-mining solutions based on all 41 features, whilst 

solution transparency is also supported and verified, enabling the user to learn from the 

solutions provided.  

Table 7.1 Comparison between KDD Best Entries and Best Lexicographic Solution 

Parameter Detection Rate FP rate 

KDD Winning entry 0.908819 0.004472 

KDD Second placed 0.915252 0.00576 

Best Lexicographic fitness GP 0.9002 0.00903 

 

Section 7.2: Time Complexity and Solution Complexity 

In this work, each GP trial requires approximately 15 minutes to find an optimal 

computer program to address the two-class classification problem on the KDD’99 

dataset. Such solutions take the form of simple, short linear structures of assembly 

language. In comparison to the solutions previously proposed on the KDD contest
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 (section 2.2), page based L-GP represents the potential to generate more concise rules in 

shorter training time, Table 7.2. 

Table 7.2 Comparison between KDD Best Entries and Best Lexicographic Solution 

Parameter Training Time Complexity Solution Complexity 

KDD Winning entry ≈24 hours 500 decision trees 

KDD Second placed ≈22 hours 755 decision trees 

Best Lexicographic fitness GP 
≈7.5 hours 

(30 trials at ≈15min per trial)

Best case L-GP solution 

with 86 instructions in 2 

address format (chapter 3)

 

Section 7.3: Summary and Comparison on Different Fitness Measurement 

Standard, dynamic and lexicographic fitness were designed and tested. In case of a 

‘standard’ fitness measure, equal penalties was assigned to every connection type and 

maintained at these values during the training process. In dynamic fitness measurement, 

weights associated with different connection types were adjusted at run time according to 

their error rate i.e. a multi-objective cost function. In lexicographic fitness, a 2 level 

fitness function is formed instead of a single cost function for all classifications.  

Compared with ‘standard’ fitness, the other two fitness metrics provide the potential 

to improve accuracy on minor connection types without compromising the classification 

ability on major types. In terms of False Positive rates and Detection rates, the 

lexicographic fitness solution performs best with the principle improvement to FP rate 

and similar detection rates. The case of dynamic fitness with larger α  value and biased 

initial weight to ‘Normal’ also appeared to provide an advantage over ‘standard’ fitness. 
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The cases using smaller α  or equal initial weights proved inferior. The principle reason 

for this deterioration appeared to be an over emphasis on classifying the less frequent 

connection types at the expense of the more frequent. 

Compared with the best programs from different fitness metrics, the individual 

utilizing a lexicographic fitness achieves the lowest number of errors on ‘Normal’, while 

the others are 4 – 10 times worse, Table 6.2. In terms of the total number of errors on all 

the attacks, each demonstrate relatively close performance, Table 6.2. Thus, the 

individual from lexicographic is considered the best solution, while the solutions from 

standard and case 4 are considered equally good, or be if with the significant overhead of 

selecting the correct parameter values. 

 

Section 7.4: Future Work 

The GP function set in all the reported experiments is purely arithmetic. Of interest 

would be the significance of introducing conditional statements or modular code within 

this problem context. Moreover, in this work, a single individual is used to recognize all 

connection types, in the future; a co-evolution system has the potential to provide 

individuals that co-operate in any one classification thus providing the basis for 

distributed or modular solutions; as would the case of building classifiers hierarchically 

to provide increasingly more specific attack types. Finally, rather than limiting ourselves 

to the case of the 8 most basic features, GP could also be evolved for that case of all 41 

connection features in section 2.1, thus giving a direct comparison between KDD contest 

best entries and GP solutions. 
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An interesting fact to note in this work is that, even though no knowledge of 

application data can be derived from the 8 basic TCP/IP features employed (section 4.1), 

GP solutions still appear to recognize connections which would be commonly regarded as 

content based attacks, i.e. they can be only distinguished from the normal traffic by 

examining the application data carried in the packets. ‘Httptunnel’, ‘Phf’ and ‘Apache2’ 

in the Table 4.8 are typical such attacks yet the GP individual still recognized 84%, 50% 

and 35% out of them respectively. Thus, study of rules generated from GP solutions 

would likely provide a good way to explore unknown abnormal traffic patterns useful for 

identifying content-based attacks. 



 

55 

 

 

Reference 

 
[Brameier, 2001] Brameier M., Banzhaf W.: A Comparison of Linear Genetic 

Programming and Neural Networks in Medical Data Mining. IEEE 
Transactions on Evolutionary Computation, 5(1) (2001) 17- 26 
 

[Caberera, 2000] Caberera J.B.D., Ravichandran B., Mehra R.K.: Statistical traffic 
modeling for network intrusion detection. Proceedings of the 8th 
International Symposium on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems (2000) 466 –473 
 

[Cramer, 1985] Cramer N.L.: A Representation for the Adaptive Generation of 
Simple Sequential Programs. Proceedings of the International 
Conference on Genetic Algorithms and Their Application (1985) 
183-187 
 

[Song, 2003] Song D., Heywood M.I., Zincir-Heywood A.N.: A Linear Genetic 
Programming approach to Intrusion Detection. GECCO 2003 
  

[Elkan, 2000]  
 
 

Elkan C.: Results of the KDD'99 Classifier Learning Contest. 
SIGKDD Explorations. ACM SIGKDD. 1(2), (2000) 63-64 

[Friedburg, 1958] Friedburg R.M.: A Learning Machine: Part 1. IBM Journal of 
Research and Development. 2(1), pp 2-13 
 

[Gathercole, 1994] Gathercole C., Ross P.: Dynamic Training Subset Selection for 
Supervised Learning in Genetic Programming. Parallel Problem 
Solving from Nature III. Lecture Notes in Computer Science, Vol. 
866. Springer-Verlag (1994) 312-321 
 

[Hennessy, 
Patterson 2002] 

Hennessy J.L., Patterson D.A., Computer Architecture: A 
Quantitative Approach, 3rd Edition. Morgan Kaufmann, ISBN 1-
55860-569-7 (2002 
 

[Heywood, 2002] Heywood M.I., Zincir-Heywood A.N.: Dynamic Page-Based Linear 
Genetic Programming. IEEE Transactions on Systems, Man and 
Cybernetics – PartB: Cybernetics. 32(3) (2002), 380-388 
 

[Holland, 1975] Holland J.H., Adaptation in Natural and Artificial Systems. 
University of Michigan Press. 
 

[Huelsbergen, 
1996] 

Huelsbergen L., “Toward Simulation Evolution of Machine-
Language Iteration,” Proceedings of the Conference on Genetic 
Programming. pp 315-320 
 



56 

 

 

 

 
[Huelsbergen, 
1998] 

Huelsbergen L., “Finding General Solutions to the Parity Problem 
by Evolving Machine-Language Representations,” Processings of 
the 3rd Conference on Genetic Programming. Morgan Kaufmann. 
Pp 158-166 
 

[Kendall, 1998] Kendall K.: A Database of Computer Attacks for the Evaluation of 
Intrusion Detection Systems. Master Thesis. Massachusetts Institute 
of Technology (1998). 
 

[Koza 1989] Koza J.R., “Hierarchical Genetic Algorithm Operating on 
Populations of Computer Programs,” Proceedings of the 11th 
International Joint Conference on Genetic Algorithms. Sridhara 
N.S. (ed.), Morgan Kaufmann. Pp 768-774. 
 

[Koza, 1992] Koza J.R.: Genetic Programming: On the Programming of 
Computers by Means of Natural Selection. Cambridge, MA, MIT 
Press (1992) 
 

[Koza, 1999] Koza J.R., Bennett F.H., Andre D., Keane M.A., Genetic 
Programming III: Darwinian Invention and Problem Solving, 
Morgan Kaufmann, ISBN 1-55860-543-6 (1999). 
 

[Levin, 2000] Levin I.: KDD-99 Classifier Learning Contest LLSoft’s Results 
Overview. SIGKDD Explorations. ACM SIGKDD. 1(2) (2000) 67-
75 
 

[Lippmann, 2000] Lippmann R.P., Fried D.J., Graf I., Haines J.W., Kendall K.R., 
McClung D., Weber D., Webster S.E., Wyschogrod D., 
Cunningham R.K., Zissman M.A.: Evaluating Intrusion Detection 
Systems: the 1998 DARPA Off-Line Intrusion Detection 
Evaluation. Proceedings of the 2000 DARPA Information 
Survivability Conference and Exposition, 2 (2000) 
 

[Luke, 2002] Luke S., Panait L., “Lexicographic Parsimony Pressure,” 
Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO), Langdon W.B., et al., (eds.), Morgan 
Kaufmann. pp 829-836. 
 

[McHugh, 2000] McHugh J.: Testing Intrusion Detection Systems: A Critique of the 
1998 and 1999 DARPA Intrusion Detection System Evaluations as 
Performed by Lincoln Laboratory. ACM Transactions on 
Information and System Security. 3(4), (2000) 262–294 
 

[Nordin, 1994] Nordin P., “A Compiling Genetic Programming System that 
Directly Manipulates the Machine Code,” in Advances in Genetic 



57 

 

 

 

Programming. Kinnear K.E. (ed.), Chapter 14. MIT Press, pp 311-
334. 
 

[Pfahringer, 2000] Pfahringer B.: Winning the KDD99 Classification Cup: Bagged 
Boosting. SIGKDD Explorations. ACM SIGKDD. 1(2) (2000) 65-
66 
 

[Poli, 2001] Poli R., “Exact Schema Theory for Genetic Programming and 
Cariable-Length Genetic Algorithms with One-Point Crossover,” 
Genetic Programming and Evolvable Machines. 2(2), pp 123-165. 
 

[Syswerda, 1991] Syswerda G., “A Study of Reproduction in Generational and 
Steady-State Genetic Algorithms,” in Foundations of Genetic 
Algorithms. Rawlins G.J.E. (ed.), Morgan Kaufmann, pp 94-101 
 

[Vladimir, 2000] Vladimir M., Alexei V., Ivan S.: The MP13 Approach to the 
KDD'99 Classifier Learning Contest. SIGKDD Explorations. ACM 
SIGKDD. 1(2) (2000) 76-77 
 

[Wenke, 1999] Wenke L., Stolfo S.J., Mok K.W.: A data mining framework for 
building intrusion detection models. Proceedings of the 1999 IEEE 
Symposium on Security and Privacy (1999) 120 –132 
 

[Wilson, 2002] Wilson G.C., Heywood M.I., “Crossover Context in Page-Based 
Linear Genetic Programming,” Canadian Journal of Electronic and 
Computer Engineering. 27(3), pp 113-116. 
 

 
 

 

 

 


