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Abstract

A novel approach to the classification of large and unbalanced multi-class data sets is
presented where the widely acknowledged issues of scalability, solution transparency,
and problem decomposition are addressed simultaneously within the context of the
Genetic Programming (GP) paradigm. A cooperative coevolutionary training en-
vironment that employs multi-objective evaluation provides the basis for problem
decomposition and reduced solution complexity. Scalability is achieved through a
Pareto competitive coevolutionary framework, allowing the system to be readily ap-
plied to large data sets without recourse to hardware-specific speedups. A key depar-
ture from the canonical GP approach to classification involves expressing the output
of GP in terms of a non-binary, local membership function (Gaussian), where it is
no longer necessary for an expression to represent an entire class. Decomposition
is then achieved through reformulating the classification problem as one of cluster
consistency, where individuals learn to associate subsets of training exemplars with
each cluster. Classification problems are now solved by several specialist classifiers
as opposed to a single ‘super’ individual. Finally, although multi-objective methods
have been reported previously for GP classification domains, we explicitly formulate
the objectives for cooperative behavior. Without this the user is left to choose a
single individual as the overall solution from a front of solutions. This work is able
to utilize the entire front of solutions without recourse to heuristics for selecting one
individual over another or duplicating behaviors between different classifiers.

Extensive benchmarking is performed against related frameworks for classifica-
tion including Genetic Programming, Neural Networks, and deterministic methods.
In contrast to classifiers evolved using competitive coevolution alone, we demonstrate
the ability of the proposed coevolutionary model to provide a non-overlapping decom-
position or association between learners and exemplars, while returning statistically
significant improvements in classifier performance. In the case of the Neural Network
methods, benchmarking is conducted against the more challenging second order neu-
ral learning algorithm of conjugate gradient optimization (previous comparisons limit
Neural Network training to first order methods). The ensuing comparison indicated
that most data sets benefit from the proposed algorithm, which remains competitive
even against the well-established deterministic algorithms, such as C4.5.
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Chapter 1

Introduction

Advances in digital computers and mass storage systems have triggered an accel-

eration in the global acquisition, processing and warehousing of data in countless

forms. With communication networks now providing widespread inter-connectivity

and spurring yet new forms of data collection, considerable interest is being taken in

the challenging problem of finding meaningful predictive and/or descriptive models

of these resources. Machine Learning (ML) concerns the automation of this process

through computer-driven model optimization according to performance criteria using

past examples or experience [2]. Of principal interest to this thesis is the ML task

known as ‘classifier learning from examples’, or simply classification. Classification

represents one of the most active areas of ML research, having significant potential

for predictive applications in medical, biological, technological, economic and linguis-

tic domains, to name a few [32] [29] [94] [108] [114] [118]. This thesis is explicitly

concerned with the development of a robust classification framework under the Evo-

lutionary Computation (EC) paradigm of Machine Learning, with specific emphasis

on the Genetic Programming (GP) algorithm.

This chapter establishes the classification context of Machine Learning and in-

troduces the EC paradigm, discussing both motivational aspects as well as practical

design considerations relevant to the application of GP to classification. A high-level

introduction to GP is presented to initiate the unfamiliar reader with the basic algo-

rithm and associated terminology. Next a short discussion of the proposed framework

is provided along with the specific GP and classification objectives to be addressed.

The chapter concludes with an organizational summary of the remainder of the doc-

ument.

1



2

1.1 Machine Learning

Distinctions are typically made between the three primary domains of ML, specif-

ically: supervised, unsupervised and reinforcement learning. Supervised learning

refers to the use of labeled data where each input vector X is accompanied by a

target output (or label) Y . An input vector X (also referred to as an exemplar, case,

or pattern) consists of pre-defined descriptive elements called features or attributes.

When the labels (Y ) takes on discrete values, the supervised learning task is called

classification and involves discovering procedures for categorizing cases into classes,

whereas continuous values for Y are associated with the regression task, or function

modeling. The unsupervised context employs data in the absence of associated labels

and generally involves descriptive modeling of data, where the primary objective is

to find regularities or groupings – a process that is also known as density estimation.

Reinforcement learning builds policies or sequences of actions to take in order to reach

a pre-specified goal by assessing previously appropriate sequences and generating up-

dated policies. This thesis is mainly concerned with the classification context of the

supervised learning domain.

1.2 Design Issues for Machine Learning

Irrespective of the learning task, successful application of ML methods to a diverse

range of problems hinges on careful consideration of the key design issues, which

effectively incorporate the practitioner’s a priori knowledge and domain-specific as-

sumptions into the ML task. Specifically, there are three fundamental considerations

to be addressed when designing (or applying) a machine learning framework [6]:

Representation : Defines the form of the candidate solutions by establishing a set

of elements (an alphabet) from which a model may be induced. The elemental

arrangements (and/or permissible configurations thereof) define the model’s free

parameters which are to be optimized by the machine learning algorithm. The

set of all possible model combinations under a given representation is referred

to as the representation space. Moreover, the representation may enforce many
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constraints among elements (thereby reducing the free parameters) or, alterna-

tively, permit a greater degree of elemental flexibility (increasing the number

of free parameters). An appropriate choice of representation is generally prob-

lem dependent, requiring a priori knowledge of the target domain with respect

to the various constraint tradeoffs and their corresponding effects on the other

design considerations, discussed below.

Cost function : Specifies a computationally tractable estimate for quantitative

characterization of model behavior. Specifically, the cost function provides a

performance map of the representation space (defined above) to a search space.

A more tightly constrained representation attempts to minimize the ambiguity

in this mapping, whereas additional freedom in the representation can result in

a more complex interaction between the representation and search spaces. In

conjunction with the cost function, ‘stop criteria’ are typically defined which

specify the halting point for the model search. Stop criteria are generally defined

in terms of a computational limit (e.g., a maximum number of credit assign-

ment steps – in the case of ML this may correspond to an upper limit on the

number of models to constructed through an iterative process of refinement) or

a satisfactory level of performance (often in terms of the cost function), where

further ‘improvement’ could be considered negligible or entirely undesirable.

Credit assignment : Provides a mechanism to guide the algorithm toward promis-

ing candidate solutions by relating the information about the search space per-

formance (provided by the cost function) back to the representation space.

These design considerations critically influence an algorithm’s ability to search, eval-

uate and express solutions thereby introducing both implicit and explicit assumptions

about the problem domain. This influence is commonly referred to as inductive bias,

which is defined as any criterion (aside from consistency with the data) used to favor

one candidate solution (or hypothesis) over another [38]. Inductive bias is common

to all learning algorithms, with certain biases having more suitability for some ap-

plication domains as opposed to others. The two main types of inductive bias are

introduced below with a brief discussion of their relationship with the aforementioned
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ML design issues.

1.2.1 Representational Bias

Representational bias is firstly influenced by how an instance of the data is described

in terms of the input features. This might include implications for descriptive spec-

ifications according to the use of numeric vectors, nominal or binary features, etc.

Representational bias may also refer to the implicit nature of the solution represen-

tation, or what is known as the solution representation language (e.g., trees, rules,

networks and so forth). Representational bias may therefore provide certain advan-

tages (or impose particular constraints) according to:

Element design : The basic elements or building blocks of any machine learning

model are pre-specified by the representation. An example might include build-

ing blocks suggested by biological models, such as neural synapses [48], or al-

ternatively, the problem might be considered in terms of facilitating a mapping

process between the original input space, to the output (classification) space.

In the latter case, a priori decisions are made with the selection of a ‘represen-

tative’ set of operators necessary to perform the mapping in much the same way

that instruction sets are designed for computing systems [49]. In either case,

domain knowledge is used to place limits on the representational flexibility with

the basic computing elements.

Model structure : Elements used to compose or configure a model might be de-

ployed with very tight rules for model building (as in the full connectivity pat-

tern in artificial Neural Network models) or require learning of relationships

between elements. The latter, for example, results in the concept of ‘syntac-

tic closure’ under Genetic Programming; that is, the output from any model

building element must be appropriate for the input to any element [61].

Decisions made regarding a representational bias will naturally impact the complex-

ity of the resulting learning task, as well as influencing the ability to make decisions

appropriate to the domain in question. Examples include support for linear versus

non-linear model building, full connectivity versus sparse connectivity (of basic model
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building elements), and support for encouraging reuse of structures previously dis-

covered as appropriate for problem solving. Moreover, depending on the elements

selected, the ensuing model may either be readily interpretable (highly descriptive),

or take the form of a black box solution. In short, the bias assumed when declaring

the building blocks for an ML model can have a considerable impact on many facets

of the ensuing solutions, as well as interacting with design decisions made regarding

the credit assignment process and establishing appropriate cost functions. In the case

of Genetic Programming, for example, we may potentially assert that the set of ele-

mental building blocks be Turing Complete, thus capable of a wide range of problem

solving; however, this says nothing of the ability to find a suitably ‘good’ solution.

Indeed, assuming such a representation may make the process of identifying useful

solutions more difficult as the search space can become artificially large.

1.2.2 Search Bias

Being that the search space of most practical problems is generally too large and hence

computationally prohibitive to enumerate directly, a search heuristic is responsible

for finding ‘optimal’ solutions. The two latter ML design considerations introduced in

Section 1.2 (namely, cost function specification and credit assignment) together help

define how the representation space will be explored and exploited in the search for

‘optimal’ regions of the search space. This influence is referred to as search bias. An

example might include ‘smoothness’ constraints on an algorithm’s cost function, which

requires a differentiable relationship between free parameters and cost function such

that gradient information can be employed to direct the optimization procedure. In

such a case, a tightly constrained representation results in an informative, minimally

ambiguous mapping between representation and search space that will typically be

accompanied by a local credit assignment mechanism, capable of exploiting the locally

relevant feedback supplied by the cost function. This might include a greedy approach

to credit assignment, which favors pursuit of the local model change(s) that will

provide the most incremental improvement relative to the current model. This ‘local

exploitation’ behavior is typically desired but trades off in the exploration behavior,

as local optima can impede progress toward globally ‘optimal’ solutions.
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In contrast, an ML approach having more freedom among representational ele-

ments (typically resulting in more complex interactions between representation space

and search space) does not necessarily rely on meaningful local feedback from the

cost function in the credit assignment approach driving the ensuing search. Stochas-

tic credit assignment algorithms, for example, have no specific greedy constraints on

search direction and are free to make random or probabilistic selections during the

optimization process. While this class of algorithms has the potential to provide more

search exploration (potentially returning different solutions on each initialization) and

avoid convergence on locally optimal regions of the search space, these tradeoffs are

typically realized at the cost of algorithmic complexity. Stochastic search is the pri-

mary focus of the current work, specifically Genetic Programming (GP) algorithms

of the Evolutionary Computation (EC) paradigm. The primary contribution of this

thesis will be to provide algorithmic advances that attempt to improve search effi-

ciency in terms of credit assignment, without stepping outside of the stochastic search

domain.

1.2.3 No Free Lunch

All machine learning algorithms employ design choices that hold inherent representa-

tion and search biases having direct implications for the search processes and ensuing

solutions. Different learning algorithms therefore hold certain advantages and disad-

vantages according to the problem. The ‘No Free Lunch’ (NFL) theorems formalize

this, noting that any elevated performance by one algorithm over one class of prob-

lems is exactly paid for in performance over another class [119]. Given that there

exists no ‘universal best’ approach, good machine learning performance is generally

contingent on the appropriate matching of algorithms with problems [118].

1.3 Evolutionary Computation

Evolutionary Computation is a branch of Machine Learning concerned with algo-

rithms that employ metaphors from natural evolution to model search processes for

optimization. Among these algorithms exist assorted differences in terms of approach,

most notably with respect to solution representation and credit assignment (in the
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form of population and search operators) [5]. EC algorithms differ significantly from

most ML models (stochastic or greedy) on account of their flexibility in terms of rep-

resentation and credit assignment. Moreover, these algorithms make explicit use of a

multipoint search that attempts to address the credit assignment process by building

new models from more than one model in the current ‘population’ of candidate so-

lutions. The procedures are motivated by the neo-Darwinian principle of survival of

the fittest, where transitions between search states are stochastic in nature (favoring

the sampling of ‘fit’ candidate solutions) and as such enable the algorithm to make

different ‘decisions’ under the same environmental conditions. Such a property has

the potential to afford robust exploration of the search space and aid in the escape

from local optima.

As opposed to the classical search methods, EC algorithms permit user-specification

of the representation and cost function, making comparatively few assumptions about

the nature of the underlying problem. While such properties have the potential to

offer significant advantages over the greedy search procedures, the complexity issue

remains widely acknowledged and provides one of the principal motivations for the

current work.

1.4 Genetic Programming

Genetic Programming (GP) is an EC learning paradigm that attempts to evolve a

population of computer programs that evolve towards a common goal as they inter-

act with a training environment [6]. GP is an attractive approach to learning that

provides a stochastic global search requiring little in the way of a priori knowledge

and allows for flexible representations and problem-specific evaluation schemes, mak-

ing it readily applicable to a wide range of problem domains [61]. In a classification

configuration, GP provides a stochastic training process that returns diverse, analytic

models while making no assumptions about the distribution of the underlying data

and requiring minimal pre-processing, particularly with respect to scaling and feature

selection of the training data [75].

The standard Genetic Programming algorithm is motivated by a neo-Darwinian

model of organic evolution, the process responsible for the emergence of complex and
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well-adapted structures in nature [5]. Of specific significance to the GP model is

the Darwinian notion of ‘survival of the fittest’. In basic terms, Darwin posits that

well-adapted individuals within a population hold a natural survival (and therefore

selectional) advantage that drives the eventual propagation of above-average genetic

material through reproduction. Under the evolutionary metaphor, GP candidate so-

lutions are known as individuals. The low level, genetic representation of an individual

is referred to as the genotype, genome, or chromosome and consists of elemental ge-

netic units known as genes, each being an instance of a particular allele [86] [6]. The

expression of the genetic material in terms of observable characteristics is known as

the phenotype. The basic relationship between the genotype and phenotype is indi-

cated in Figure 1.1, where two items are of specific interest. The first being the duality

between the representation (or decision) space and search (or objective) space, which

correspond to the population genotype and phenotype representations, respectively.

The second being the association of genotype and phenotype representations with the

genetic and population operators, respectively. The critical link between the two is

fitness evaluation in terms of the problem objective(s), which influences the ensuing

credit assignment.

1.4.1 Problem Design

GP design choices implicitly bias the landscape of the search space and, by exten-

sion, the efficiency with which solutions are found. The practitioner therefore faces

numerous decisions in terms of design and simulation details that require special

considerations between GP algorithms and problem types. These are matters of con-

siderable interest within the research community and a large volume of the literature

aims to address the key elements, including: models of solution representation and

operator specification, formulation of cost function with respect to objectives, credit

assignment mechanisms and parameterization. These will be discussed in the follow-

ing sections.
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1.4.2 Representation

The standard canonical algorithm for GP, summarized in Algorithm 1, employs a

population P of individuals which represent candidate solutions in the form of models,

or basic computer programs. Solution representations are highly dependent upon

the variant of GP under use and can be tailored according to problem domain and

practical experience.

Among EC practitioners, most would recognize the canonical model to consist

of a fixed-length l, binary string-based genotype representation g = {0, 1}l, with

phenotype p being the result of a mapping function, m, taking g to a suitable output

corresponding to a candidate solution, p = m(g). The preference for a binary string

representation is derived from the original schema theorem [5], however the work of

Antonisse and more recently Michalewicz demonstrated that integer representations

are also entirely appropriate and quite often beneficial [4] [84]. Koza’s canonical GP

algorithm, however, employs a strictly tree-based representation where both genotype

and phenotype are variable length parse-trees of LISP programs, or S-expressions,

which can be interpreted directly or with modest processing [60] [61]. Recently, the

indirect binary string genotype representation has been established under the GP

context, perhaps most notably in the cases of Linear GP [90] [39] and Grammatical

Evolution (or GE) [91] where the phenotype corresponds to state-machine programs

or intermediate grammatical rule selectors, respectively. The latter is of specific

relevance to this thesis.

Under the conventional representation, the GP practitioner is responsible for sup-

plying a representation in terms of a language framework that is appropriate and

reasonably efficient for solving the problem under consideration. A typical language

specification will consist of terminals and non-terminals (e.g., operators or functions)

that will be used to compose the expression (computer program in the case of GP)

of an individual. In the traditional GP formulation, for example, the practitioner is

specifically responsible for providing the terminal and functional sets, which Koza

defines as the ‘alphabet’ of the programs to be evolved. The terminal set consists

of variables, inputs and constants, while the function set may contain specific opera-

tors (e.g., arithmetic operators: +, -, ÷, ×; procedural instructions: move left, move
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Figure 1.1: Genotype / Phenotype Relationship.

right, speed up, slow down and so forth) to be carried out (e.g., in a simulation envi-

ronment) in conjunction with the terminals or other more complicated functions [61].

Moreover, the language specification must be consistent (genotype to phenotype) and

provide closure under the variation operators, meaning that all permissible modifi-

cations to a program in the language must result in a syntactically valid program as

defined by the language framework.

1.4.3 Credit Assignment: Exploration vs. Exploitation

Choice of parameters such as population size and evolutionary run length directly

affect the search characteristics of the GP algorithm. For example, large populations

run over a small number of generations approximate a random walk through the

search space, while a small population run for a large number of generations can

simulate a hill-climbing or local search [76]. Under each of these configurations the

GP algorithm demonstrates conflicting search characteristics, which are advantageous

when combined yet potentially ineffective on their own, introducing the classical credit

assignment tradeoff known as exploration versus exploitation.

Exploration of the search space is both desired and required in the GP algorithm;

in particular, the exploration features allow the GP to sample a diverse range of solu-

tions and facilitate a means of stochastic escape from local optima. When promising
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regions of the search space are encountered, however, there must be an exploita-

tive pursuit of the corresponding genetic material (i.e., ability to perform a local or

‘hill-climbing’ search) to investigate the potential for global optima. That is to say,

while a stochastic credit assignment that enables good exploration is desired, its ef-

fects must be counterbalanced with exploitation behavior in order to avoid an overly

randomized search that is unable to actively discover optimal solutions. Likewise in

defining the exploitation behavior – while it provides the means to actively direct a

local search, it lacks the capacity to avoid convergence in local basins of attraction

(i.e., the stochastic escape readily provided by exploitation behavior).

To summarize, the GP algorithm is able to provide a wide ranging global search

when it is maximally explorative; however, this style of search falls into direct conflict

with the exploitation objective, which requires a focusing or hill-climbing capacity

that can be largely absent in the exploration behavior and vice versa. When ade-

quately combined, the elements of exploration and exploration can provide a strong

degree of consistency and efficiency in the search process; striking an appropriate bal-

ance or tradeoff between these aspects is therefore a primary goal in GP. Moreover,

this tradeoff represents a recurring theme in the design and practical implementation

of any GP, in that many of algorithm’s features can be seen as contributing to the

exploration and/or exploitation modes of search.

1.4.4 Operators

Operators simulate the natural selection, variation and inheritance of genetic material

and are applied iteratively throughout the evolutionary run. Operators provide the

primary transitional mechanisms of the GP algorithm, and are specifically respon-

sible for guiding the population toward optimal regions of the search space through

selection, variation and replacement; that is to say, credit assignment.

In the GP context, operators are broadly described as either population or ge-

netic (variation) operators. The population operators are problem independent and

are typically applied stochastically across the search space according to the fitness

distribution of the population. Specifically, these operators define processes for se-

lection of parents and replacement of population members, where both processes are
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biased to favor the more fit individuals (on average). In contrast, genetic variation

operators are applicable to points (genotypes) in the representation space and are

used to stochastically recombine and alter genetic material.

GP operators explore the representation space and exploit individuals that have

advantageous characteristics in the search space; i.e., the candidate solutions are sam-

pled from the search space, whereas the search itself is conducted in the representation

space.

Selection and Replacement

The selection and replacement operators are responsible for choosing among individ-

uals upon which to base successive population instances. Each process is biased in

favor of individuals exhibiting advantageous features (i.e., above average fitness); the

magnitude of this bias is referred to as the selection pressure. Two schemes have

become particularly well established within the GP community and these will be

discussed in detail below:

1. Fitness-proportionate selection with generational replacement;

2. Tournament-based selection with steady state (SS) replacement.

The fitness proportionate selection context is often associated with the genera-

tional replacement form of GP; that is, performance in terms of fitness is used to

proportionately bias the selection across the population P , such that an individual

i ∈ P having fitness f(i) has a probability for selection Ps specified by:

Ps(i) =
f(i)∑
j∈P f(j)

(1.1)

This can be readily implemented as a biased roulette wheel simulation where each

individual is allocated a number of slots on the wheel according to Ps. On each

spin, the individual associated with the winning slot is selected as a parent. In

the generational algorithm, parent pairs produce offspring by way of probabilistic

application of the variation operators, which are then copied to a second population,

P ∗. When the number of individuals in P ∗ reaches the original population size,
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P ∗ replaces P . Iterating this process, the generational GP algorithm replaces its

populations with successive generations of new (and hopefully improved) individuals.

The denominator in Equation 1.1 requires the calculation of a global statistic

in the fitness proportionate approach. A less computationally intensive alternative

is the tournament-based selection process, which is frequently paired with a steady

state replacement strategy. Tournament-based selection samples the population for

a uniform random subset of individuals to participate in a fixed tournament size,

s = 4k, with k ∈ Z+ and k << |P |
4

which provides the basis for the parent selec-

tion process. The choice of s provides a direct means to influence selection pressure,

with larger values of s enforcing more pressure. Moreover, a tournament may be

run for selection of each parent or the most fit pair may be selected as parents from

a single tournament. The replacement occurs following the production of offspring

through stochastic application of the variation operators where offspring determinis-

tically replace the worst tournament performers. The steady state approach therefore

employs no centralized mechanism for explicitly buiding ‘generations’ and as such the

population remains in a ‘steady state’ of update (i.e., the operators are continually

modifying the population).

The evolutionary properties resulting from the two approaches have been demon-

strated to be distinct [113]; in particular, the generational model has a much lower

‘turn over’ rate than the SS tournament model. That is to say, the generational

model will let weaker individuals linger in the population much longer than the SS

tournament. Moreover, the SS tournament is explicitly elitist, which has been shown

to provide advantageous convergence properties over the generational model without

an additional elitist operator [101].

Genetic Variation

Variation operators are responsible for the recombination and modification of genetic

material in the representation space. Two widely used operators are of specific rel-

evance to this work: crossover and mutation. The design of these operators may be

specific to the GP representation being employed; however, the general approach will

be discussed here.
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The crossover operator plays a primarily recombinatorial role in GP and is applied

to parent pairs stochastically with a probability of application Pxo. The outcome of

the application of the crossover operator is an exchange of genetic material, with the

goal being an exchange corresponding to advantageous material, or building blocks be-

tween parents that is inherited by offspring. When applied in the most common form

(single point crossover) the crossover operator selects a point in the genotype of each

parent and swaps the genetic material beyond these points between parents (Figure

1.2). The crossover points are traditionally chosen based on a uniform random selec-

tion, constrained by representational suitability. When the test for the application of

crossover fails, an exact copy of parent material is assigned to each offspring in lieu

of recombination or additional tests for the application of mutation.

The mutation operator is responsible for genetic variation and is applied to each

offspring stochastically with a probability of application Pm. The mutation operator

is representationally dependent (i.e., it must obey the closure properties of chosen

representation) and involves applying suitable random alterations to the genotype of

the offspring (Figure 1.3). Such an operator is either applied gene-wise or individual-

wise where the latter is combined with an additional test to establish the particular

instruction (and/or field) affected.

1.4.5 Problem Objectives and Definition of Cost Function

Evaluation of individuals at the phenotype level and the corresponding fitness assign-

ment (according to a user-defined cost function) play critical roles in GP; success is

highly dependent on the appropriate formulation of problem objectives. As such, cost

functions may be evaluated directly or according to a function of the problem under

consideration. Typically objectives are to be maximized or minimized and a problem

may consist one or many objectives (see Section 2.3).

Unlike other machine learning methods, GP provides considerable flexibility in

the design of the cost (fitness) function. Neural networks and kernel methods re-

quire differentiable cost functions, whereas decision trees enforce a greedy entropy

minimization cost function. Thus the potential exists for making the fitness function

more closely reflect the desired goals of the problem domain relative to other machine
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learning methods. Moreover, the utility of the multi-objective fitness functions is

readily achieved, further extending the flexibility of machine learning methods as a

whole [55].

Under the supervised learning context (the primary domain of this thesis) training

data in the form of exemplars or fitness cases are supplied as input / output pairs. In

the single objective case, the training of GP proceeds as outlined in Algorithm 1 and

the evaluation of an individual can be a relatively straightforward procedure such as

counting the number of hits ; that is, fitness cases (exemplars) that satisfy a predefined

minimum threshold of error. Under the classification domain, output labels generally

take the form of integers denoting class membership of the corresponding (typically

multi-dimensional) input. For example, the hit-based fitness function popularized by

Koza for classification takes the form of a count of the number of matching labels

provided by an individual [61] [62]. To this end, Koza employed a wrapper or activa-

tion function to map the GP output from a 1-dimensional number line into a binary

space, representing in and out-of-class labels (Koza did not consider the multi-class

case). We will later show that such a methodology has a significant impact on the

ensuing behavior of the classifier (e.g., novelty detection versus discrimination, single

versus multiple solutions, weak learner or ensemble methods versus non-overlapping

problem decomposition).

Under the single individual, single objective context the fitness evaluation pro-

cesses can be relatively transparent; however the introduction of multiple objectives

or multiple models per solution can introduce new problems in fitness evaluation and

the ensuing credit assignment. Of particular relevance to this thesis is the multi-

objective credit assignment problem and how to determine fitness in the face of sev-

eral factors contributing to the degree of fulfillment of the stated objective(s). The

problem has specific interest when contributing influences conflict in relation to the

objective(s). This will be discussed in detail for the multi-objective case in Section

2.3 and the multi-model case in Section 2.4.

1.5 GP Classification and Computational Overhead

The canonical GP algorithm for the classification context was established by Koza
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Algorithm 1 gpMain - Canonical model for GP.

Input: Population of programs P , training data TD.
Output: Best program, bp.

1: Initialize P randomly
2: Evaluate P over TD
3: Assign fitness to P
4: while ! Stop criteria do
5: Select parents from P , biased for fitness
6: Apply variation operators to produce children C
7: Evaluate C over TD
8: Assign fitness to C
9: Insert C into P

10: end while
11: bp := Program in P having maximum fitness

[60] [61] and is outlined in Algorithm 1. The supervised evaluation process involves

calculating the fitness of the population as a whole (establishing the basis for credit

assignment) before application of the selection and variation operators. Such a process

implies that the a priori declared cost function (typically taking the form of a count of

correctly classified training exemplars) be evaluated over all training exemplars. Such

a process creates a computationally expensive inner loop at line 7 of Algorithm 1 and

renders the basic GP algorithm prohibitively costly for large training sets. Specifically,

the number of program evaluations necessary to evolve a solution under the canonical

GP algorithm can be estimated as a function of the number of classes c, number of

initializations I, number of generations G, population size P , and size of training

data |TD| [61], Equation 1.2. Typical values for each of the four GP run parameters

are summarized in Table 1.1 with the corresponding upper and lower bounds on the

number of evaluations. One of the goals of this thesis is to present algorithms that

decouple the number of evaluations actually performed from the values assigned a

priori to these four generic GP run parameters.

#Evals = c× I ×G× P × |TD| (1.2)

Clearly the number of classes c and the size of the training data |TD| will be

fixed for any given problem. These two factors are traditionally addressed through



19

Table 1.1: Typical GP parameter values for estimating total evaluations.

Term Lower Upper

c 2 9
I 50 100
G 50 500
P 50 1000
|TD| 100 500000

#Evals 2.50E+007 2.25E+014

hardware specific speedups (e.g., multiple concurrent initializations spread over a large

number of nodes) and will be discussed in greater detail in Section 2.5.2. Selection of

I, G, and P is something of an art, with Koza, for example, taking the philosophical

approach that the search process be driven through reproduction and crossover. Such

a model requires a comparatively large population of ‘genetic material’ from which

to compose solutions. An alternative approach frequently employed under the linear

GP representation is to introduce mutation to maintain diversity under a smaller

population model.

1.6 Approach and Objectives

The current work considers the evolution of classifiers comprised of multiple, coop-

erating models with Evolutionary Multi-objective Optimization (EMO) providing a

basis for comparing the performance of individuals in the presence of multiple per-

formance objectives using the criterion of Pareto dominance [93]. We assume that

candidate solutions are performing a mapping from input space X, to a one di-

mensional (classification) output space. However, in contrast to the global wrapper

typically assumed, a local membership function (LMF – a Gaussian) is employed

within a cooperative context to encourage collaborations, providing the ‘novelty de-

tection’ basis for automatic problem decomposition. The result is a set of mappings

effectively responding to different subsets of the original input space and mapping

them to different (non-overlapping) output spaces. Moreover, the well known issue

regarding the scalability of GP with respect to data set size is addressed through the



20

use of a Pareto competitive coevolution training framework which provides multi-

class solutions in a single run of GP. Specifically, the current research establishes the

Competitive Multi-objective Grammatical Evolution (CMGE) framework for classi-

fication. CMGE represents a Pareto coevolutionary version of the Multi-objective

Grammatical Evolution (MOGE) framework [82] that is capable of addressing the

problems that typically preclude a GP approach to classification, including:

Scalability : The inability of GP in its canonical form to address problems involving

large numbers of training exemplars (tens of thousands or millions; see Equation

1.2) is well documented in the literature [108] [22] [6]. This problem is directly

addressed through the novel use and reformulation of the Incremental Pareto

Coevolution Archive (IPCA) algorithm [23]. In contrast to previous approaches

we do not rely on hardware-related factors, opting rather to sub-sample the

data set and use competitive coevolution to retain the most useful learners and

exemplars.

Class Imbalance : Poor representation of minority classes in the set of training

exemplars can lead GP individuals to focus on the majority classes in an attempt

to maximize fitness. Previously, this has been addressed through niching and

fitness sharing methods; however, these methods required careful selection and

tuning of parameters to ensure niche maintenance and to minimize sensitivity

to genetic drift [80] [85]. In this thesis, we will address the problem through

the design of a coevolutionary training model that explicitly requires a balanced

representation of patterns from majority and minority classes. Such an approach

is enforced by the growing literature on machine learning under unbalanced

data sets. The work of [116] makes a particularly strong case for the balanced

sampling of major and minor classes.

Solution Transparency : Simple solutions have the capacity to provoke further

analysis into factors contributing to the various classes of data presented. With-

out this requirement, GP is free to evolve expressions that are highly complex

and inefficient [6] [61], leading to computational overheads during training and



21

producing final solutions that are difficult to analyze directly for underlying sig-

nificance post-training. This issue will be addressed through the multi-objective

(MO) framework. Again, use is made of the Pareto MO model in which node

count and error are simultaneously minimized producing a Pareto front of solu-

tions representing the trade off between the two [25] [93]. Such a scheme tends

to be superior to comprising the cost function from the weighted combination

of error and complexity terms or lexicographic (hierarchical) formulations in

which complexity is employed as a ‘tie breaker’ during parent selection [77], as

both approaches assume a fixed a priori weighting of one factor relative to the

other, the significance of which has unknown impact on the solutions found.

Problem Decomposition : The tendency for the GP population to converge on

a single ‘super individual’ that is required to classify the entire data set with

a single expression is well established [6], yet may be undesirable in light of

the solution transparency objective. Moreover, the ability of the system to

decompose the problem into a series of small, simple solutions provides the

basis for modularity of the classifier. This issue will be addressed through

the evolution of local membership functions that reformulate the classification

problem as one of cluster consistency in combination with a unique approach to

forming the objectives of the Pareto MO framework. In particular we are able

to reformulate the classification problem as one of locating mappings from the

input space to a one-dimensional output space such that class-consistent clusters

are rewarded. We do not require all exemplars from the same class to be mapped

to the same cluster, but explicitly reward the combination of individuals who

successfully classify all exemplars as a group. Such an approach makes no

assumption regarding the number of individuals comprising a solution, and

is applicable to binary and multi-class domains. Related approaches in which

Pareto MO GP formulations have been proposed for multi-class classification are

limited to single GP individuals representing each class [121] [93] and there is no

problem decomposition beyond different individuals (from the same population)

representing different classes.
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Multi-class Applications : Problems involving more than two outputs for each ex-

emplar (in vs. out-of-class, i.e., binary classification) will be handled by a single

run of the proposed system, whereas the usual GP approach to such problems

involves configuring each class as a separately evolved binary classifier, requiring

N runs of GP for an N -class problem [58]. This will be accomplished through

an efficient design of the training algorithm, where the evaluation of cluster-

consistency dictates class allocations and the stopping criteria ensures sufficient

training with respect to all classes. That is to say, evolution of multi-class classi-

fiers takes place in parallel with a single training run providing individuals of all

classes. Deployment of the resulting classifiers takes place in parallel where this

requires stronger performance of the classifiers as a whole than the hierarchical

case, which can assign classifiers with best false positive rates to the first layers,

masking the comparatively poor performance of classifiers appearing later in

the hierarchy. The principal benefit of the parallel classification model is that

we are now able to explicitly address the multi-label classification domains in

which exemplars might be a member of multiple classes.

The principal objectives of this research are therefore to address these issues for

classification within the context of GP by combining the MOGE algorithm with a

novel coevolutionary training model that simultaneously performs competitive and

cooperative coevolution. That is to say, the competitive model decouples the fit-

ness evaluations and scales the approach to large data sets, where as cooperative

coevolution facilitates problem decomposition.

1.7 Thesis Overview

Chapter 2 introduces the background literature relevant to Genetic Programming,

particularly with respect to the design of GP systems under the classification con-

text. Specifically, this chapter begins by describing the GP framework used in this

thesis (Grammatical Evolution, or GE) along with the related design tradeoffs rele-

vant to representations and search operators under this paradigm. We next present

a survey of the binary and multi-class approaches from the recent GP literature fo-

cusing on the various treatments of the traditional pathologies of GP associated with



23

scalability, class imbalance, solution transparency, problem decomposition and multi-

class applications as introduced above. We introduce the notion of a multi-objective

cooperative coevolutionary framework and discuss the formulation of classification-

specific objectives for GP as well as the notion of ‘opponents’ (training patterns) as

objectives.

Chapter 3 details the algorithms pertaining to the framework presented in this

thesis and describes the relevant design choices in light of the traditional pathologies

of GP under classification. Specifically, underlying motivations are discussed for

the use of EMO to evolve the desired class-consistent cooperation and parsimony

behaviors and the use of IPCA to build multi-class teams while supporting a balanced,

scalable representation of the training data. The chapter concludes with a detailed

computational complexity analysis.

Chapter 4 describes the benchmarking methodology, including the comparative

systems, data sets and evaluation procedures. We provide motivation for the ap-

proach taken and support the benchmark selections, providing references to related

benchmark literature while discussing some recently reported results. Moreover, we

introduce a separate methodology for stochastic and deterministic comparisons, where

the latter require special treatment in order to frame single-run experiments against

multiple initialization experiments synonymous with GP.

Chapter 5 begins with the comparative results of the current framework with the

canonical and scalable variants of GP. These results highlight the classical pathologies

related to GP under the classification task and demonstrate the capacity for these

issues to be addressed by the current framework. Results are indicated for classifica-

tion performance, training times and solution complexities with the proposed CMGE

framework demonstrating results that are statistically significant in their superior-

ity in the vast majority of cases. These results motivate further comparisons of the

CMGE framework and a baseline, ‘scalable’ variant of standard GP (RssGE). The

chapter concludes with a brief discussion of the classification results of an alternative

Pareto coevolution framework (known as PGEC) and we address its ‘inter-class’ team

behavior in comparison to that of CMGE. Chapters 6 and 7 provide the results of

the comparisons outside of the EC paradigm. The CMGE framework is shown to
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provide improved or competitive results under the majority of analyses, establishing

the system as a viable classification framework for GP.

Chapters 8 and 9 analyze the behavior of the CMGE framework in terms of

problem decomposition, establishing further distinctions from the ‘ensemble’ or ‘weak

learning’ approach of PGEC. Moreover, the robustness of the system with respect to

parameter (archive size) selection is investigated and some general recommendations

are provided.

Chapter 10 provides discussion and summaries of the benchmarking results, high-

lighting the contributions of the CMGE framework toward addressing the fundamen-

tal pathologies of the GP algorithm under classification. We conclude with a set

of recommendations for the use of the CMGE framework and provide directions for

future work.



Chapter 2

Background and Related Work

This chapter develops background material pertinent to the thesis. As such, Section

2.1 reviews the particular form of Genetic Programming utilized in this work. Specif-

ically, the method of Grammatical Evolution is assumed, although the contribution

of this thesis is independent of the specific formulation of GP. The review of related

literature begins in earnest in Section 2.2 where the scene is set for the supervised

learning domain of classification under binary and multi-class contexts. In doing so,

the case is made for multi-objective methods of fitness evaluation. That is to say,

recent approaches to multi-class classification have begun to utilize multi-objective

methods to ‘co-evolve’ each class simultaneously from a single population. In addition

we question the extensive utility of Koza’s ‘switching’ type wrapper function that is

widely used in the classification domain as a mechanism for converting the original

real valued GP representation into a class label. At this point we have made the case

for: (a) pursuing a wrapper function based on a local membership function (Gaus-

sian), thus opening up GP to the novelty detection model of classification as opposed

to a discrimination based model of classification; and (b) utilizing a multi-objective

methodology for facilitating the arbitrary decomposition of a problem into a set of

class consistent mappings from subsets of the input exemplars to local membership

function.

Section 2.3 returns to reviewing the broader literature in order to identify the

most ‘GP friendly’ approach for performing Evolutionary Multi-objective Optimiza-

tion (EMO). Such a perspective has been developed under a GA setting, resulting in

various assumptions that do not necessarily carry over elegantly into the GP context.

This section concludes by reviewing previous GP models that include an explicitly

multi-objective fitness function. As the proposed local membership function approach

25
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explicitly facilitates problem decomposition, we also provide a short review of previ-

ous approaches to automatic problem decomposition within the GP paradigm, Section

2.4.

At this point we have not explicitly dealt with scaling GP to larger data sets,

although the review of appropriate EMO algorithms has enabled us to determine

an effective scheme for defining early stopping. Section 2.5 provides a short survey

of techniques that attempt to minimize the five factors identified in equation 1.2

from the introduction. From the perspective of this thesis, the work on competitive

coevolution is the most relevant. The principal motivation of which is to evolve the

learner population over some adaptive subset of the larger training set. The goal of

such a methodology is to engage the subset population and learning population in an

incremental game in which advances in classifier performance results in the subset of

exemplars adapting such that classifier performance continues to improve.

The algorithm proposed in this thesis therefore uses a combination of: (i) com-

petitive coevolution to scale the approach to larger data sets, while (ii) using a com-

bination of co-operative coevolution (EMO) under a local membership function to

guide evolution of GP individuals that decompose the problem into possibly multiple

classifiers. All classifiers are evolved from a single population, without any a priori

specification of the number of individuals to participate in a solution.

2.1 Grammatical Evolution

The following work is undertaken using a specific variant of GP, known as Grammat-

ical Evolution (GE), however none of the algorithms are specific to the type of GP

employed. GE was first introduced by Michael O’Neill, J. J. Collins and Conor Ryan

in 1998 as an evolutionary algorithm that permits automatic and language indepen-

dent evolution of programs of arbitrary complexity, provided that a grammar for the

language can be supplied in Backus-Naur form (BNF) [91]. As opposed to the stan-

dard approach to GP, where programs are represented directly as tree structures, GE

employs a linear genome in the form of a fixed length binary string which is used to

derive a program according to an arbitrary, user-supplied BNF context free grammar

(CFG). A high level representation of this process is illustrated in Figure 2.1. Figure
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Figure 2.1: The GE decoding and mapping process.

2.1 step A) indicates the binary string being lowest level of GE representation. The

string is of fixed length and should be evenly divisible into n-bit segments, or codons,

where both parameters are chosen by the GE practitioner. The Figure 2.1 transition

from A) to B) indicates the binary (DNA) to integer codon (protein) decoding pro-

cess that is synonymous with the biological transcription process1. Steps B) and C)

taken together form the GE mapping process, which is analogous to the translation

of proteins to phenotypic traits or characteristics. The mapping process employs an

internal, user supplied BNF grammar structure. The codons represent transitions or

rule selections which deterministically expand non-terminal options to sentences in

the language specified by the context free grammar; the pseudo code for this process

is specified in Algorithm 2. Step D) represents the final expression or phenotype

resulting from the mapping process.

While the fundamental motivation and end product of GE and traditional GP are

largely the same, a key distinction involves the underlying program representation,

specifically with regards to GE’s use of an indirect mapping between the genotype

1Such a process is largely redundant within the context of the canonical GE model, with no
variation in the alignment process to effect different decodings from the same codon sequence. As
such, GE models generally begin with a sequence of integers with allele ranges spanning the set of
predefined terminals / non-terminals of the CFG, as will be discussed shortly
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(step B) and phenotype (step D). Unlike traditional GP, GE does not apply variation

operators to the expression phenotypes themselves; rather GE programs are stored as

a series of BNF grammar rule selectors, or codons, which are in turn represented by

a fixed length binary string (i.e., a genotype). In this sense, GE is similar to Genetic

Algorithms (GA) and consequently permits the use of simple GA search operators.

This indirect mapping from genotype to codons to phenotype is analogous to the

expression of genes in natural biology to proteins, which (in conjunction with other

proteins) affect physical traits.

There are a number of critical implications of the genotype to phenotype mapping

used in GE (the specific process of which is detailed in Algorithm 2):

1. The genotype-phenotype mapping is many to one, implying that changes at the

genotypic level (due to application of GE’s variation operators) need not affect

the phenotypic representation (mapped program). In the case of the mutation

operator this has been described as ‘silent mutation’ and is due in principal to

the reliance on the MOD operator in the mapping of production rules. The

application of the MOD operator ensures codons that take on values beyond

the number of options for a production rule are mapped back to the legal range.

This feature assumes sufficient redundancy in the codon representation; that is,

codons must be defined to have the capacity to take on values greater than the

number of options for rules under consideration. Greater redundancy in the

codon representation can therefore increase the number of ‘silent’ mutations.

2. While a particular gene will always translate to a particular protein (codon),

the protein may be expressed differently at the physical trait level (phenotype)

depending on the presence or absence of other proteins (codons) appearing

before or after it in the sequence;

3. By definition, the mapping process ensures that any terminating selection of

rules as supplied by codon translation of the genotype will map to a syntacti-

cally correct program in the language (i.e., the phenotype). This property of

the mapping algorithm provides an elegant solution to the closure requirement

of traditional GP, where careful system design must be observed in order to
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ensure that the outcome of any legal application of genetic operators results in

a program that is syntactically valid;

4. A particular individual will always generate the same expression in the map-

ping from genotype to phenotype. Moreover, the mapping guarantees that the

standard GA search operators can be employed independent of the problem.

Whereas the algorithms presented in this work are not specific to GE and be-

cause of the numerous similarities, the terms GE and GP will be hereafter employed

interchangeably.

Algorithm 2 geMap (C) - Canonical GE individual mapping function.

Input: Codon array C. Employs local variables for option array (opt), next symbol
(ns), codon pointer (cp) and stack S. Assumes global access to context free gram-
mar G (e.g. Table 2.1). Local functions: isTerminal, option and #options are
direct look ups given G; push, pop and isEmpty have the traditional implications
for a stack.

Output: Expression string, e.
1: cp := 0
2: ns := <start>
3: push( S, ns )
4: while ! isEmpty(S) do
5: ns := pop( S )
6: if isTerminal( G, ns ) then
7: e := strcat( e, ns )
8: else
9: opt := option(G, ns, C[cp] mod #options(G, ns))

10: for i := |opt|-1 . . . 0 do
11: push( S, opt[i] )
12: end for
13: cp++
14: end if
15: end while

For the classification algorithm presented here, individuals represent simple arith-

metic expressions within the GE framework. The BNF grammar is defined by the

4-tuple {N, T, P, S}, where N = {<start>, <exp>, <preop>, <op>, <var>} and

T = {(, ), SIN, COS, SQRT, LOG, EXP, +, -, ×, ÷}, sets of non-terminal and ter-

minal rule symbols respectively; S = {<start>} is the (non-terminal) start symbol; P
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Figure 2.2: Example mapping codon-level representation to phenotype expression.

is a set of production rule transitions, mapping N to T . A set of production rules for

the classification grammar for a problem having n features (or attributes) is provided

in Table 2.1. A sample GE mapping from a codon string C0 . . . C6 to the phenotypic

expression x3 + x6 according to the grammar supplied in Table 2.1 is illustrated in

Figure 2.2.

2.1.1 Genetic Operators

Implicit in the linear mapping characteristic of GE is the high degree of linear genetic

dependence and therefore the potential for widely disruptive impact of each gene

modification. That is to say, the genotype is incrementally converted into the corre-

sponding phenotype using the CFG to convert non-terminals into terminals, where

non-terminals frequently expand recursively to additional non-terminal symbols be-

fore the grammar identifies a terminal2. For example, a single bit mutation when

applied to the binary representation of a non-terminal-expanding codon, can dramat-

ically impact the phenotypic expansion for all of the following genes due to the change

of context. Similarly, the traditional crossover operator will result in code exchange

2The codon expansion type information (e.g., terminal versus non-terminal or non-terminal type)
is readily accessible in the mapping process (lines 7 and 9 of Algorithm 2); this is illustrated by the
‘N’ or ‘T’ following each expansion step in Figure 2.2.
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between individuals without regard to context information. This has led to the criti-

cism that GE variation operators impose much more destructive changes than their

GP counterparts. The result has been the recent development of context sensitive

crossover operators that note the gene expansion types (where types correspond to

non-terminal expansions vs. terminals) during the mapping of the phenotype [47].

Context sensitive variation operators are explicitly defined for crossover and mu-

tation such that the traditional operators of single point crossover and bit-wise muta-

tion are constrained in their application based on codon expansion types. Matching

Crossover [47] restricts crossover to codon boundaries where the codon of the second

parent expands the same non terminal type as the codon selected in the first parent.

The expectation of context preservation is therefore based on each parent receiving

material that is used to interpret the same part of the grammar as the donating

parent. While this does not preclude disruptions later in the sequence, it does pro-

vide a basic means to guarantee preservation of context at the crossover boundary

and is readily applicable to the wrapping form of GE. Such a crossover operator was

demonstrated to perform significantly better than the single point crossover typically

employed by GE [47].

Under a similar use of the expansion type information, mutation can be readily ap-

plied to avoid structural disruption by restricting application to genes corresponding

to bits of terminal-mapping codons in the phenotype. This variation on the standard

mutation directly results in alternative terminals of the same arity as opposed to

potentially substantial structural changes in the phenotypic expression.

2.2 Classification

Pattern classification is a central task in machine learning that involves prediction of

a class label based on a set of numeric and/or nominal-valued inputs (features or at-

tributes) associated with each exemplar. Classifier induction under the standard GP

framework is a supervised machine learning task that employs a set of pre-classified

exemplars (i.e., a labeled training set) with the goal of producing a simple classifica-

tion rule which can readily generalize to unseen instances post-training.

In the literature, a distinction is typically made between binary classifiers and
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Table 2.1: Sample context free grammar for classification under GE

Rule ID Rule Option Option ID # Options

0 <start> <exp> 0 1
1 <exp> <exp> 0 5

| ( <exp>) 1
| <exp> <op> <exp> 2
| <preop> <exp> 3
| <var> 4

2 <preop> SIN 0 5
| COS 1
| SQRT 2
| LOG 3
| EXP 4

3 <op> + 0 4
| - 1
| × 2
| ÷ 3

4 <var> x0 0 n

| ...
...

| xn−1 n− 1
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multi-class (or multi-category) classifiers. A multi-class classifier predicts one (or

multiple) labels for each example from a set of many candidate labels, while a binary

classifier predicts each example as either in or out-of-class. While the classification

task has received considerable attention in the GP community, several problems re-

main universally acknowledged, specifically with respect to how GP may be readily

employed in large, ‘real-world’ classification problems. In such instances, training sets

consist of tens or hundreds of thousands of exemplars and the class distributions may

be widely unbalanced. Ensuing solutions must provide good generality (performance

on unseen exemplars) yet remain computationally tractable. Moreover, many real-

world classification problems are multi-class (as opposed to binary) in nature and

potentially require several class-specific expressions to collaborate in order to pro-

vide adequate coverage over all classes. The conventional approaches to classification

within the GP paradigm do not adequately address these questions in general, and the

current work is intended to provide a more comprehensive framework for classification

under the GP context. In the current work we employ tools from the evolutionary

multi-objective and coevolution literature to achieve scalable, multi-class solutions

that decompose the problem from a single population.

2.2.1 Binary Approaches

Binary classification problems under the GP paradigm are typically configured to

calculate a single value that is used to characterize the quality of an individual in

terms of a specific performance metric (e.g., accuracy, sum squared error, weighted

combination of sensitivity / specificity etc. . . ) [75] [12]. This value is then scaled,

providing a fitness value that indicates the individual’s probability for selection dur-

ing evolution. This naturally leads the search to a single individual having the largest

fitness value, which is then used to solve the classification problem alone. The implicit

assumption in this model however, is that one expression (moreover, a single objec-

tive) is sufficient and/or appropriate to solve the classification problem. Moreover in

the case of binary problems, classification decisions under GP conventionally take the

form of a hard switching function arbitrarily centered at zero. GP outputs greater
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Figure 2.3: GP classifier wrapper functions: (a) Hard global wrapper function, (b)
Sigmoid global wrapper function, (c) Range-based global wrapper function, (d) Gaus-
sian local membership function (LMF).

than zero indicate ‘in-class’ patterns, while those less than or equal to zero are con-

sidered to be ‘out-of-class’ (Figure 2.3 (c)). George et al. [43] examined alternative

wrapper-fitness functions (including sigmoid / SSE and a wrapper-less / separation

distance) in the binary context and concluded that a wrapper-less approach provided

the most dependable results in terms of accuracy and variation. In the wrapper-less

formulation only the class separation distance was considered in fitness assignment,

which was defined by mapping the raw GP output on each class and calculating

inter-class separation distance. Post-training, labels were assigned according to the

nearest-neighbor based on distance to in / out-of-class cluster means.

Such a methodology explicitly questions the utility of the wrapper operator.
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Specifically the GP wrapper operator typically employed takes the form of a switch-

ing function (Figure 2.3 (a)). As indicated above, such an operator ‘quantizes’ the

original mapping performed by GP from a typically multi-dimensional input space

to a one-dimensional output space. The quantization corresponds to the number of

classes, where Koza only considered the binary case, whereas [75] considers the case

for multi-class quantization (Figure 2.3 (c)). Such an operator results in a fitness

(cost) function that counts the number of correctly classified exemplars, but does not

distinguish between an individual that finds a mapping that explicitly pushes points

away from the switching threshold, and one that leaves points near this threshold.

This is significant because performance on unseen exemplars might well be worse in

the case of the latter, but result in more ‘robust’ or generalized behavior in the former.

The work of George et al. is interesting in this respect because it effectively dropped

the concept of a wrapper operator entirely, thus also avoiding the requirement to a

priori specify the point at which ‘class switching’ appears.

More generally, by considering the classification problem as finding a series of

mappings from the input space to a one dimensional output space, we are able to

rephrase the problem as locating a set of mutually exclusive clusters that decompose

the original set of class consistent (input) exemplars when mapped to the one dimen-

sional output space. The ensuing clusters on the GP output space imply that possibly

multiple individuals cooperate to find the required decomposition of the classification

problem i.e.,, each individual searches for a class consistent cluster that minimizes

the overlap with other individuals, while maximizing (minimizing) the number of in-

class (out-class) exemplars described per cluster. Finally, we also recognize that such

a framework implies that each cluster be described in terms of a local membership

function, such as a Gaussian, thus the resulting classification model represents a nov-

elty detector as opposed to a discriminator. The latter point is significant as most

machine learning algorithms assume a discriminator based model for establishing de-

cision boundaries. Such a scheme however, may result in unpredictable behaviors on

unseen data [79]. In particular discriminator models rely on ‘global activation’ func-

tions such as sigmoidal operators (Figure 2.3, (b)) or the switching type of wrapper of

Koza’s canonical GP classifier (Figure 2.3, (a)). The unfortunate consequence of this
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is that when such a model encounters unseen exemplars that do not belong to the dis-

tribution of data encountered during training (e.g., as in a fault condition or outlier),

the discriminant based classifier is forced to label the exemplar as in or out-of-class,

whereas what is more desirable would be for the model to declare such exemplars as

neither class [79]. In effect by assuming the proposed cluster decomposition approach

to classification we are able to also provide a more informative model for classification

than has previously been possible under the GP paradigm. Such a novelty detection

based framework may be particularly appropriate for domains in which it is difficult

to provide representative samples of training data for all out-of-class conditions, for

instance, medical diagnosis, intrusion detection, and fault detection.

2.2.2 Multi-class Approaches

The standard binary approach to classification has previously been extended to multi-

class problems by combining binary classifiers to form teams or hierarchies with one

or more expressions assigned to each class of the problem under consideration [58].

This normally requires a cumbersome set of separate initializations for each class,

although several single-population approaches have surfaced recently [75] [13] [12]

[105] [80].

The standard approach to multi-class is known as Binary Decomposition, where

the approach evolves separate binary classifiers for each class [58]. This necessarily

implies separate initializations of GP for each class in the problem under considera-

tion; dividing this job across a Beowulf cluster, for example, provides a brute force

method to arrive at a classifier for an arbitrary number of classes on the same data

set.

A more direct approach to the multi-class problem was taken under a constrained

syntax representation of GP [13] [12], where multiple models (one per class) are the

result of a single initialization of GP. The representation imposed syntactic constraints

to evolve simple conditional rules that could be applied to any pattern. Individuals

were then assigned a class deterministically as that which rewarded the individual

with the best composite fitness (a composite function was employed to encourage

solution transparency in addition to the usual accuracy objective). Class-wise elitism
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was enforced to avoid the occurrence of convergence on a single class and the winning

set of individuals are combined to produce a final solution. Under the post-training

combination scheme, any pattern that satisfies more than one rule is assigned to

the class of the rule having the best training accuracy and those satisfying none are

assigned to the majority class. A sensitivity / specificity analysis on a very small data

set was presented indicating preferential results in comparison to the C4.5 decision

tree.

Smart and Zhang propose the Communal Binary Decomposition (CBD) approach

[105] that builds on the Binary Decomposition of Kishore and the Probabilistic Multi-

class (PM) model of Langdon and Poli [67] for GP classification. The PM approach

is based on probabilistic models of GP program outputs. Specifically, a GP is run

over each class of the training data to determine the mean and standard deviation of

each class on the output range. In a binary problem, the class separation distance

is employed to arrive at a fitness value directly; in the case of a multi-class problem,

fitness is based on a sum of pairwise distances between all combinations of class

distributions. This method still constrains each program to solve the entire problem.

In contrast, CBD assigns fitness to an individual based on the single class resulting in

the best binary class separation distance and maintains an elitist archive of the single

best result (i.e., expert) for each class. When a class expert provides separation

distance beyond a pre-selected threshold, the class is no longer considered in the

fitness assignment thus providing a means of class-wise early stopping criteria. CBD

cassifier voting is a multi-class approach (one expert per class) from a single run

of GP; combining of classifiers is therefore achieved using a (Gaussian) probability

density function related to each expression. CBD overall accuracy results compared

favorably against PM and a static range selection approach (discussed below) over

four image classification problems, however training time was longer (typically many

times longer) for CBD than the alternatives.

Loveard and Cieisielski described four approaches which provide single expres-

sion solutions to multi-class problems in a single initialization of GP; two of the

approaches require specialized formulations of GP (Class Enumeration and Evidence
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Accumulation) and two are range selection techniques (static and dynamic range se-

lection, or SRS and DRS respectively). In the SRS approach, a series of intervals

over the GP output range are chosen a priori to be associated with each class. The

DRS version chooses intervals dynamically based on output from the GP programs

themselves given a subset of the training data. Class enumeration involves a new

conditional structure and further requires all trees to return terminal values corre-

sponding to a class label. Evidence accumulation employs a secondary data structure

for each tree, known as a certainty vector, which contains a numeric accumulator

element for each class. A novel form of terminal which adds or subtracts a constant

from the elements of the certainty vector during program execution (per exemplar)

is introduced. Following program execution the certainty vector is examined for the

largest element, which indicates label assignment. The four approaches were evalu-

ated against the standard binary decomposition approach to multi-class classification

[75]. In both the binary and multi-class context, the DRS approach was reported

to have best accuracy given comparable training times. The binary decomposition

method was typically as accurate, however will generally require considerably longer

training times as the number of classes increase. Moreover, the SRS method has been

successfully applied to real-world, multi-class image classification problems including

coin recognition and retinal pathology [120].

Muni et al. introduced a ‘multi-tree’ approach to multi-class classification using

GP whereby individuals take the form of multi-trees, i.e., one tree is provided for

every class under consideration within each chromosome [87]. The classification is

made by examining the root values at each tree and assigning the class label based on

the output having a positive value (essentially applying the standard hard wrapper

function to all raw outputs). In the event of contradictory output (i.e., multiple

trees (or none) evaluating to positive outputs), a conflict resolution heuristic was

employed to arrive at a label. In this sense, the multi-tree approach provides a single

solution (composed of multiple models – one per class) from a single run of GP.

Results across five benchmark data sets in terms of overall classification accuracy

were competitive with other forms of GP as well as various tree, Neural Network

and statistical classifiers, however the approach requires a specialized representation
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(and associated operators) along with many non-standard parameters, heuristics and

optimizations; moreover there were no specific provisions for training on large or

unbalanced data sets.

2.3 Evolutionary Multi-objective Optimization

Evolutionary multi-objective optimization (EMO) represents a relatively recent ap-

proach to solving problems having more than a single objective using the methods

of evolutionary computation. The first practical EC approach that addressed prob-

lems of the multi-objective nature directly was Schaffer’s Vector Evaluated Genetic

Algorithm (VEGA) [103] [104]. In principle VEGA did not modify the standard GA

approach aside from the selection mechanism. In turn, each objective would be used

to proportionately select individuals and create sub populations which were later

merged to compose the population for the following generation.

Aside from VEGA, multi-objective search and optimization problems were his-

torically configured in one of two ways under the evolutionary computation context

[26]. In the first approach a single, composite objective is employed as a weighted

combination of the original objectives. The second approach chooses one of the ob-

jectives and formulates the remainder as constraints having pre-defined limits. The

usual evolutionary procedures may then be applied directly. The principal drawback

being that the weights or limits must be chosen a priori and may affect the quality

of the final solutions.

In the following, we briefly survey some of the milestones in the development of

Evolutionary Multi-objective Optimization (EMO) methods as they developed in the

GA context; we will then revisit the problem from the perspective of GP, where EMO

has only recently begun to borrow from the GA context. From the GP context we

will use EMO to provide the basis for problem decomposition as well as MO problem

formulations and therefore move on to survey other methods for encouraging problem

decomposition in Section 2.4.
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2.3.1 Pareto Dominance

The notion of Pareto optimality under the EC context was introduced by David

Goldberg [44] as a method for considering each of the multiple, possibly conflicting,

objectives simultaneously in order to obtain a set of mutually equivalent candidate

solutions (i.e., the Pareto optimal set) that trade off in their optimality across objec-

tives. In the absence of information defining specific preferences for the objectives,

the Pareto optimal set contains the set of alternative, mutually optimal solutions

(those trading in one objective for another) which must be chosen from by a decision

maker (DM) [37] based on some final selection criteria.

The Pareto approach defines a partial ordering of candidate solutions based on

the notion of Pareto dominance. An individual A Pareto dominates individual B

over the set of objectives Θ if A is no worse than B on any objective (θ ∈ Θ) and

is strictly better than B on at least one [66]. Formally for the case of minimization

(i.e., A ≺ B):

A ≺ B ⇔ ∀θ ∈ Θ Aθ ≤ Bθ ∧ ∃θ ∈ Θ : Aθ < Bθ (2.1)

A and B are said to be incomparable when A does not Pareto dominate B and vice

versa and an individual is non-dominated when it is not Pareto dominated by any

others3. The set of (incomparable) non-dominated individuals constitute the Pareto

Set.

2.3.2 ε Approximations to Pareto Dominance

The definition of Pareto Dominance can be generalized using the notion of ε-dominance,

which effectively provides a general means to discretize the objective space and con-

strain the number of elements in the solution set to be finite. The significance of

this lies in the guarantee of diversity among solution vectors and practical size of the

solution set, known as the ε-approximate Pareto set [68]. Multiplicative ε-dominance

(for minimization A ≺ε B) is defined as:

A ≺ε B ⇔ ∀θ ∈ Θ Aθ · (1− ε) ≤ Bθ | 0 ≤ ε < 1 (2.2)

3When A and B contain identical values in all objectives they are not considered incomparable;
rather these cases are termed indifferent and are handled separately in the current work.
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Moreover, an additive variant can be employed when specification of constant ε values

is desired across objective dimensions:

A ≺ε B ⇔ ∀θ ∈ Θ Aθ − εθ ≤ Bθ (2.3)

The additive ε-dominance definition provides uniform discrete resolution over the ob-

jective space as opposed to the multiplicative variant, where larger hyper-rectangular

cells (corresponding to lower objective space resolution) are defined as dimension

magnitudes increase. This contrast is illustrated in Figure 2.4.

2.3.3 Pareto Ranking, Diversity and Elitism

The notion of Pareto optimality, in terms of ranking and preservation of diversity as

introduced by Goldberg [44], has inspired several generations of EMO algorithms [20].

Recent advances in the literature have demonstrated that a Pareto front may be used

to maintain a set of candidate solutions to multi-modal problems [26]. Within the

GA context, candidate solutions describe a point in multi-dimensional space, where

the basic objective is to locate the set of solutions (points) minimizing a predefined

objective over an unknown (multi-modal) function. Three fundamental goals are

common to the design of modern EMO algorithms, specifically [123]:

1. Ensure that evolution guides solutions toward Pareto optimality;

2. Maintain diversity among solutions in the objective space;

3. Prevent the loss of non-dominated solutions.

A Pareto ranking mechanism, based on Pareto dominance as described in Section

2.3.1, provides the basis for the ensuing fitness assignment scheme and guides the evo-

lutionary algorithm by favoring non-dominated solutions in the selection and repro-

duction processes. Typically the mapping from rank to fitness is linear or exponential

but varies by algorithm. Moreover, in order to avoid dense regions in the objective

space, a diversity preservation mechanism may be included where this typically takes

the form of preselection, crowding, or sharing (where the latter requires additional

parameterization in the form of a sharing radius) in the genotype or phenotype space.
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(a) Additive ε-dominance

(b) Multiplicative ε-dominance

Figure 2.4: ε-domination regions for the case of a) additive and b) multiplicative
variants.
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When these are combined with an explicit archiving structure (having acceptance cri-

teria based on non-dominance) or an elitist replacement scheme, a diverse collection

of non-dominated solutions are readily produced by the EMO algorithm. Among the

most significant and representative of the recent of the EMO algorithms are:

1. Strength Pareto Evolutionary Algorithm (SPEA / SPEA2) [125] [126] [124];

2. Nondominated Sorting Genetic Algorithm (NSGA [112] / NSGA-II [27]);

3. Multi-objective Genetic Algorithm (MOGA) [37];

4. Pareto Converging Genetic Algorithm (PCGA) [66].

These algorithms have been employed extensively in the literature and all achieve

similar goals as outlined above; however, the algorithms vary with respect to the

approach taken to their ranking mechanisms, maintenance of diversity and prevention

of solution loss. The four algorithms indicated above will be discussed in turn with

specific focus on these distinguishing features.

SPEA / SPEA2

The original SPEA algorithm was introduced by Zitzler et al. and is a generational

algorithm that employs a solution archive which acts as a fixed-sized external memory

preventing the loss of non-dominated individuals. At the start of each generation the

non-dominated members are updated to the archive, culling dominated and indifferent

members accordingly. In the event of an archive overflow, additional members are

pruned on the basis of a clustering algorithm which preserves diversity over the non-

dominated front. During evolution, archive members are assigned a strength that is

proportional to the number of population members that they dominate over the target

objectives, while population members receive a fitness according to the strengths of

archive members by which they are dominated. In this way, only a weak density

relationship is enforced among population members. Moreover, this implies that the

fitness assignment and diversity maintenance is highly dependent on the archive size

and contents. These issues were addressed in SPEA2 by providing a more fine-grained

fitness assignment and incorporating an explicit measure of density information (by
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way of k-Nearest Neighbor clustering) which directly influences selection over the

archive members.

From the perspective of using SPEA as the basis for GP EMO, we are immediately

confronted with the problem of defining an appropriate process for diversity mainte-

nance; SPEA assumes the availability of a clustering algorithm. In GA this is not

a problem as the genotype denotes a point in the domain feature space; comparing

the ‘location’ of two individuals with regards to establishing cluster membership is

therefore trivial. Conversely, genotypic similarity under the GP model is not straight-

forward. As such, one is often reduced to comparing the behavioral properties at the

phenotypic level, a costly activity as it implies comparison over the training data.

NSGA / NSGA-II

The NSGA family of generational algorithms introduced by Srinivas and Deb imple-

ment a non-dominated ranking scheme as a means of influencing fitness assignment

[112] [27]. In the original variant of NSGA, the non-dominated ranking procedure

finds all non-dominated solutions and assigns them to the highest rank. Fitness is

then assigned within the rank as a genotypic share of the highest ‘dummy’ fitness

value (thus encouraging diversity among members of the rank). These individuals

are removed from consideration and the process is iterated. NSGA-II improved on

the original by introducing improved ranking and diversity maintenance schemes.

Preservation of non-dominated individuals was due to an elitist inter-generational

maintenance of best individuals. That is to say, succeeding generations are popu-

lated by a crowded-comparison operator among the union of parents and children

which prefers high ranking solutions but employs a crowding distance to favor so-

lutions from sparse regions of the objective space for members of the lowest rank

[27].

MOGA

Fonseca and Fleming’s MOGA suggests a subtly different ranking scheme from that

of Srinivas and Deb in which all members of the population are assigned a rank that

is equal to one plus the number of individuals by which they are dominated without
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removal after each rank. Members having rank 1 (that is, the highest rank) are

assigned the highest fitness while members of following ranks are assigned fitness as a

linear function of rank, scaled by objective space density in the form of niche counts

according to a sharing distance [37] [20].

PCGA

Of specific interest to the GP EMO proposed in this work is the steady-state PCGA

algorithm introduced by Kumar and Rockett [66]. PCGA assigns ranks in a similar

fashion to MOGA, assigning fitness as a linear function of rank. However the current

approach deals with ties in the objectives between two individuals by increasing the

rank of one, chosen at random. This method is described as ranking with ties [66] and

forms the basis for fitness assignment used in the present work. Moreover, as a steady

state algorithm, PCGA enforces elitism at each incremental change in the population,

replacing the lowest ranking member only if it is lower ranking than the offspring. As

such the authors do not employ a diversity mechanism explicitly; arguing that the

compressed range of ranks due to the elitist steady-state strategy of PCGA produces

the same effects as fitness sharing [66]. In further motivation to the current work is

PCGA’s use of early stop criteria in the form of difference of rank histograms. Pareto

rank histograms are defined as a frequency distribution of tied ranks in the population

and are generated for successive epochs from the ratio of number of individuals at a

given rank in the current population to those at the same rank in the combined and

re-ranked populations of the current and previous epochs; a match between successive

rank histograms indicates an appropriate point for early stopping [66].

In summary, from the perspective of a GP EMO model, the PCGA algorithm

side steps the entire issue of niching via distance or similarity metrics. Instead this

property is supported through an elitist steady state mechanism applied to the Pareto

ranking process. This approach is much more applicable to the GP context in which

establishing similarity cannot be performed genotypically, but requires a costly phe-

notypic comparison of the behavior across training data.
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2.3.4 Multi-Objective Genetic Programming

Multi-objective optimization techniques have recently been applied to the GP context

toward parsimony and diversity enforcement by framing these as explicit, indepen-

dant objectives. Encouraging results on the Even Parity test problem [61] have been

published in [11] where the SPEA2 algorithm is employed using a parsimony objec-

tive (minimization of solution size) in addition to the standard fitness objective. De

Jong, Watson and Pollack’s Find Only and Complete Undominated Sets (FOCUS)

algorithm [25] additionally enforced a diversity objective (maximization of diversity)

on the even 3, 4, and 5-Parity problems with results that outperformed standard GP

in terms of computational effort and solution size; however, FOCUS also employed

a special phenotypic distance metric that involves summing the distances between

nodes of corresponding trees (each node difference increments the distance by 1 when

corresponding trees are overlaid starting from the root) [25].

One of the first attempts to apply MO techniques to a ‘real-world’ GP problem

domain was perhaps [99] where the MOGA algorithm was directly implemented in

the GP context, however this was specifically aimed at the regression task. Additional

examples of MOGP have surfaced recently in the regression domain (e.g., the Ordinal

Pareto GP of [107] using error and complexity objectives) however we will focus

the remaining discussion of MO techniques as applied to the GP context on the

classification task.

Limited instances relating MO methods of GP to the classification task have ap-

peared in the literature. Pseudo-Objective Parsimony Enforcement GP (POPE-GP)

and Decomposed Multi-Objective GP (DecMO-GP) have been applied to classifica-

tion tasks involving small and near ideally balanced data sets including UCI Breast,

Iris and Wine [93]. Both algorithms employ the NSGA II algorithm in the search with

POPE-GP using an explicit parsimony objective under the classification task while

DecMO-GP decomposes the standard error minimization objective into separate error

minimization objectives for each class under consideration. DecMO-GP is extended

to include a parsimony objective in the DecMOP-GP algorithm. Lower error rates

and computational effort in comparison to the standard GP approach were reported
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over all three algorithms on the classification problems. In all cases the SRS frame-

work (Section 2.2.2) employed provides single, ‘super’ individual solutions though

the authors acknowledge a largely heuristic approach to the final solution choice and

indicate interest in the multi-model, hierarchical approach proposed in [80].

Zhang and Rockett have recently employed the MOGP context to evolve ‘optimal’

feature extractors to drive a separate classification stage [121]. The process involves

transforming the input space into a one dimensional decision space such that pattern

separability in decision space is maximized. Under both generational and steady-state

contexts, they employ a fitness function that was based on Pareto comparison of three

variables (complexity, bayes error and misclassification error). Ensuing classification

results on five UCI problems appeared to be competitive with results reported in

the recent literature, however between the two approaches investigated the errors

returned were not significantly different. It was reported, however, that the steady-

state approach (referred to as PCGP), returned much smaller solutions. The classifiers

of this work still appeared to result in hard thresholding and single, ‘super’ individual

solutions that were applied to the binary context only.

Of specific interest in this work is to provide a methodology for utilizing the MO

framework, currently demonstrated under a GA context, for solving the problem

decomposition issue under Genetic Programming. To do so we make use of a recent

result from GP in which the switching (or global) wrapper classically employed to

map the ‘raw’ GP output to a discrete number of class labels is replaced with a local

or Gaussian-type wrapper function [43]. Under this context, it is now possible to

phrase the classification problem as finding the minimum set of mappings from a

multi-dimensional input space to class consistent clusters on the one-dimensional GP

output space.

Such an approach enables us to leave the problem of finding appropriate mappings

and matching exemplars to mappings to EC. Moreover, desirable properties for the

(and therefore mappings) are described in terms of the PCGA framework enabling

us to make use of the associated Pareto based early stopping criterion. However,

unlike Zhang and Rockett we do not limit each class to a single mapping; in effect we

have a process for automating problem decomposition. In the following section we
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summarize work to date directed at problem decomposition under the GP paradigm.

2.4 Problem Decomposition

Since the conception of Genetic Programming several methodologies have been pro-

posed for encouraging solutions to take the form of a set of programs (individu-

als) solving different parts of the problem, as opposed to the population converg-

ing on a single ‘super’ individual. Recent examples might include the cooperative

[95], and competitive [24] co-evolutionary paradigms, where both have been demon-

strated within a Genetic Algorithm (GA) context. Both co-evolutionary approaches

are multi-population models. In this work we are specifically interested in developing

a multi-member solution from a single population, as opposed to ‘super’ individuals,

where the latter has recently been investigated in a Multi-objective GP context for

classification [93] [121] and regression [99] [107], as indicated above.

2.4.1 Automatically Defined Functions

Under the tree-based GP context, Koza enabled a form of intra-individual prob-

lem decomposition through the use of Automatically Defined Functions (ADFs) [62].

ADFs permit a form of problem decomposition within each individual through the

explicit specification of a tree-representation that incorporates modular sub compo-

nents or functions. ADFs require a main, result-producing branch, along with a

user-defined number of branches to be co-evolved as functions having an assumed

number of arguments; as such, the ADF specifications are highly representation and

problem dependent. Moreover, the degree of problem decomposition achieved within

an individual is directly influenced by the ADF architecture specification rather than

an emergent property of the GP itself. Finally, when applied to problems that did

not need the ‘complexity’ introduced by ADFs, the canonical GP model was found

to perform better [62]. In effect, a user would have to run the canonical form of GP

with and without ADFs in order to understand whether they were necessarily helpful

in addition to experimenting with the additional parameters of argument counts and

function sets.
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2.4.2 Decomposition by Teams

Decomposition by teams refers to an inter-individual, multi-model problem decompo-

sition approach based on the evolution of teams of competing or cooperating models

that enable a degree of partitioning of the solution space. Moreover, teams can be

homogeneous (e.g., N copies of the best individual) or heterogeneous (N different

programs contributing to a final solution). The latter is of relevance to the current

thesis, where models (i.e., team members) may be specialized within the problem

domain or provide a degree of reinforcement (overlap) in their behavior, or both as

necessary to perform better than a single individual.

The evolution of teams has been a subject of numerous studies in the literature

and can be implemented in a variety of ways. In general there are three fundamental

design decisions involved in team approaches: how to select team members, how to

combine solutions, and how to assign credit [16]. Banzhaf’s taxonomy adequately

characterizes the main approaches as follows:

1. Random team member selection from the same population [109]. While this

provides a straightforward heuristic to member selection an alternative, greedy

selection scheme has also been employed in the ensemble context [41]. The

primary stumbling block to member selection approaches is associated with

the credit assignment problem (see Section 1.4.5), where an appropriate fitness

assignment algorithm is required to distribute credit according to contribution

of individual participants (i.e., potential team-members). That is to say, how

can fitness be efficiently assigned so as to properly reward (and thus pursue)

team members contributing to strong performance?

2. Team members evolved in separate sub populations (also known as the island

approach [111]) e.g., non-dominated random sub-population component selec-

tion of [53]. In practice the combination of team members from several popula-

tions or niches raises a number of additional problems, including team selection

and output composition; although the latter has been successfully addressed,

for example, by the bidding models of Lichodzijewski et al. in [73]. In other

words, the choice of individuals to include in a solution can dramatically affect
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system performance, as can the choice of how to coordinate their collaborations

[16]. The island approach can produce reasonable teams having members with

a high degree of fitness and independent errors; however, this requires that all

solutions are equivalent (no solution bias) to avoid convergence on the same

(easy to find) solutions [111].

3. Individuals as explicit team representations within the evolutionary process

(also known as the team approach [16]). The main drawbacks of this approach

include the requirement of appropriate team representation (plus relevant team

operators) and proper assumptions on team size. Soule reported that teams

evolved under this configuration can exhibit good overall performance using

small team sizes, with inversely correlated errors and a high degree of spe-

cialization (or cooperation) but may suffer from poor fitness among individual

members. As a result, overall solution performance was shown to deteriorate

with increasing team sizes [111].

4. Island / team hybrid approach. Soule recently presented an interesting vari-

ant known as the Orthogonal Evolution of Teams (OET) which simultaneously

applies evolutionary pressure for team performance and member performance

[111]. The OET approach employs an island model (one island per team): first

a selection operator chooses highly fit team members (per island) as parents to

produce new teams of pre-defined size. The update scheme inserts the new (off-

spring) teams into the associated island, replacing teams having of low fitness.

The implicit assumption appears to be that the credit assignment problem can

be appropriately solved (to accurately reward individuals with respect to their

team performance) using their isolated performance. That is, the approach as-

sumes that team members with high fitness when tested individually will lead

to good (uncorrelated) team members without explicitly making this a require-

ment for member selection. This idea conflicts with results presented by Soule

in [110], where team member fitness was typically poor. In other words, the

most fit individuals may not lead to the best teams.
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In [94] a multi-model, majority voting scheme for GP (Majority Voting GP Clas-

sifier, or MVGPC) is investigated. Sets of voters (models) were collected as best-of-

population individuals over multiple runs of GP; in the case of multi-class problems,

the standard binary decomposition approach (separate initialization per class) is em-

ployed over multiple runs. An individual’s vote increments the in or out-of-class

counter for the class corresponding to the voter. Labels are assigned based on the

class having the largest ratio of in vs. out-of-class counts. A simple heuristic is em-

ployed for conflict resolution (automatic assignment to the lower of conflicting classes)

and a special ‘misclassified’ label is assigned when all ratio values are 0. MVGPC

demonstrated superior performance on Leave One Out Cross Validation (LOOCV)

experiments versus a k-Nearest Neighbour implementation on two real-world gene

expression problems having small, unbalanced numbers of exemplars and thousands

of features. The authors demonstrated that the best results were obtained when the

number of voters was equal to the number of training patterns, however larger data

sets (in terms of number of training exemplars or total number of classes) would

directly preclude this approach based on the demanding computation (training) re-

quirements.

The cooperative, team-based approach investigated problem decomposition from

the perspective of several combining policies, notably including the coevolution of

voting weights and Neural Network optimization to achieve specialization on binary

classification and regression subtasks [16]. Here, Brameier and Banzhaf take the

‘Team Representation’ approach using the linear GP model where a specialized rep-

resentation is devised for teams (i.e., a fixed number of programs defined per indi-

vidual) and appropriate team recombination operators are introduced. Fitness is a

composite function of overall team error and a weighted sum team component errors.

A total of seven approaches to linearly combining the outputs of team members are

presented, where ‘output’ is either based on the raw expression value or wrapped class

decision, depending on the approach. Combining policies included constant weighting

(or essentially averaging of outputs), normalized error (i.e., a function of fitness) as

weights, cooperative coevolution of weights, majority voting (MV), winner-take-all
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(WTA), and a linear perceptron optimized weights (applied to raw output). Signifi-

cant improvements on classification (train and test error) over three problems by all

the of team approaches over standard GP were reported, with only moderate increase

in overall solution complexity.

In summary, other than the bidding models of Lichodzijewski and Heywood [73]

[72], the above models for problem decomposition all assume that the number of

cooperating models is pre-specified. It remains to be seen, however, whether the bid-

based mechanism can incorporate properties such as multi-objective fitness functions,

where this is frequently a benefit for establishing parsimonious solutions.

2.5 Scalability

The ability to train the GP algorithm on large data sets is frequently cited as a

primary disadvantage of GP in comparison to other machine learning approaches.

Scalability, particularly with respect to real-world and multi-class problems, remains

a widely acknowledged issue in the classification context of the GP paradigm, where

recent approaches in the literature have invoked:

1. Systematic, incremental reduction of population size during evolution [76];

2. Parallel and hardware-specific speedups [90] [7] [36];

3. Sub sampling of the training data [42] [108] [22] .

These approaches to scalability will be discussed and compared in turn over the

following sections.

2.5.1 Variable Population Size

Luke et al. employ a population implosion strategy, where population size is de-

creased over the course of a GP run to effectively reduce run time while maintaining

(or improving on) the results of the standard approach [76]. Specifically, the layout

(describing population versus runtime) is explicitly defined to be diagonal as opposed

to rectangular, such that the population size is reduced linearly over the run as op-

posed to remaining constant, as is the case in a traditional run of GP. The diagonal
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layout was compared with several traditional rectangular layouts over four standard

GP benchmark problems and in the majority of experiments the former showed signif-

icant performance improvement when run over pre-specified numbers of evaluations.

The primary performance improvement reported is achieved through the reduction

in population size, which explicitly addresses the evaluation function as specified in

Equation 1.2 by lowering the number of population members needing evaluation,

particularly late in the run.

A similar result was obtained by examining the effect of plagues on GP popu-

lations [33], where Fernandez et al. reported to reduce computational requirements

while maintaining the quality of the resulting solutions employing a plague metaphor.

Plague is used to refer to the process of systematic elimination of individuals (those

having the lowest fitness) along generations. While effecting performance gains in line

with improvements seen in the diagonal layouts of Luke et al. [76], a second direct

consequence of plague was a reduction in the influence of code growth on computa-

tional overhead. As code growth, or bloat, is known to increase over the course of a

run in a variable sized representation (such as tree-based GP), the systematic elim-

ination of individuals additionally implies less computational effort wasted toward

evaluation of introns as evolution proceeds.

Smits and Vladislavleva adopt an Ordinal Optimization approach to algorithm

design to address the computational cost issue through the modification of both pop-

ulation size and number of (random) fitness cases sampled during evolutionary runs

under the regression domain [59] [107]. This design methodology is considered in

conjunction with an archiving Pareto GP for the interesting case of linearly increas-

ing subset size while systematically reducing population size. Evaluation using few

exemplars over many individuals early in the run effectively corresponds to the use

of a ‘course’ or ‘soft’ screen (goal softening), while performing exhaustive evaluation

over a small population near the end of the run improves the screen fidelity over

few alternatives. Results were indicated to be comparable to the standard approach,

however with much lower variation [107].
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2.5.2 Hardware Specific Speedups

As indicated in Chapter 1, of the five factors contributing to the computational over-

head of evolving GP solutions (Equation 1.2), the inner evaluation loop is dominated

by the number of exemplars over which the evaluation is made. The basic objective

is therefore to conduct this evaluation as efficiently as possible through the use of an

appropriate computer architecture. To this end, we briefly survey parallelization of

the GP loop, specifically fitness evaluation.

A natural parallel approach involves a control-parallel system, having a main

processor direct the evolutionary procedures of the algorithm (e.g., selection, repro-

duction), with distributed processors (nodes) bearing the parallel fitness evaluation

duties. In practice, such an approach fits naturally with the steady state tournament-

based selection, described in section, where the role of the main processor is to initiate

selection and apply variation operators based on the results of a distributed tourna-

ment. In the parallel context a tournament round is initiated by the main processor,

assigning individuals to processors (ideally on a one-to-one basis). The parallel step

therefore solves the evaluation of individuals in parallel and returns the results to

the main processor. The main processor completes the cycle with sequential applica-

tion of genetic operators. An implicit assumption under the control-parallel model is

global availability of training data, where this can be provided as a global read-only

resource or as copies of training data distributed to each processor where a trade-off

exists between storage requirements and inter-processor communication bandwidth.

A critical disadvantage is that the maximum speedup due to the parallelization of

the GP is in proportion to the tournament size which is frequently small.

A more common approach to the control-parallelization of GP is the use of dis-

tributed populations with migration, where this is has been described as the asyn-

chronous island model. Under this configuration, GP sub populations are maintained

at each node effectively parallelizing the entire algorithm at each processor. Following

the (asynchronous) breeding and evaluation of the sub populations, a number of indi-

viduals are identified across all populations as immigrants, that will be incorporated

into neighboring populations. Immigrants are identified probabilistically according

to fitness and are queued at their destination nodes, and later assimilated when the
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current (local) generational procedure has finished.

In general, the control-parallel models discussed above are readily amenable to low

cost, commodity-class Beowulf clusters [7]; however such systems may be hampered

by communication, storage and maintenance requirements as processors are added

and as such they become more ‘efficient’ as the cost of fitness evaluation increases.

That is to say as the ratio of fitness evaluation time to communication overhead

(to control or master processor) decreases, the Beowulf model becomes increasingly

efficient.

Finally, the concept of reconfigurable computing has been used to implement indi-

viduals as a Field Programmable Gate Array (FPGA) configuration for the purposes

of evaluating individuals during fitness evaluation [63]. Needless to say, the number

of function sets and problem domains to which this is applicable become increasingly

limited given the overhead in converting code to hardware descriptions for ‘program-

ming’ the FPGA.

2.5.3 Sub Sampling Algorithms

Previous work towards addressing the scalability of GP in software (given the large

training set sizes of the classification domain) has broadly fallen under two paradigms:

active learning and coevolution. These are related by their underlying approach to

scalability (i.e., fitness evaluation over subset samples of the data) but differ con-

siderably in their sampling mechanisms, where this typically involves addressing the

appropriate proportion of data to be sampled from each class and sampling with sen-

sitivity to maintenance of a relevant training gradient. These issues naturally have

a significant impact on the performance of ensuing classifiers; Weiss and Provost, for

example, demonstrated that sampling according to the naturally occurring class dis-

tribution provides best performance under an undifferentiated error evaluation, while

a balanced sampling mechanism provides strong performance when an area under

ROC (AUC) evaluation is considered [116].
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Active Learning

The active learning paradigms, which include the Random Subset Selection (RSS)

and Dynamic Subset Selection (DSS) algorithms of Gathercole and Ross [42] involve

uniform stochastic sampling of the training data (in the case of RSS) and the use

of age and difficulty heuristics to bias the stochastic sampling of training patterns

during evolution (DSS). These algorithms have recently been extended to model hier-

archical computer memories (hierarchical DSS [108] [21]) that involve multiple levels

of selection. Such an approach is capable of handling very large data sets (those that

exceed the conventional capacity of main memory), however these active learning

frameworks generally involve manual selection of parameters such as block sizes and

iteration limits. Moreover, these have only been demonstrated in the context of bi-

nary classification, although they are applicable to both supervised and unsupervised

learning (thus discrete and real-valued cost functions) [117].

Closely related to these approaches are the Boosting and Bagging algorithms.

Boosting and Bagging are two general purpose ensemble (team-based) techniques

that are readily applicable to the GP classification domain with the potential for

reducing computational cost while improving classifier accuracy. Under the Boost-

ing algorithm, a series of classifiers are iteratively learned based on a biased sample

of the data set. The sampling at each iteration is biased according to weights that

are associated with each pattern being updated based on the previous iteration in

proportion to misclassification. Specifically, exemplars that are incorrectly classified

have their weights increased while correctly classified exemplars have their weights

decreased so that each iteration focuses more on the previously misclassified exem-

plars. The final solution is therefore composed of many classifiers, with each assigned

a weight in proportion to accuracy on the training data. Classifications are carried

out (post training) by assigning unseen patterns to the class having the highest sum

of weighted outputs. Owing to the tendancy to focus more on ‘difficult’ patterns,

Boosting algorithms are susceptible to the over learning problem, however have the

potential to improve classifier accuracy significantly [45].

Bagging (or Bootstrap Aggregating) involves the use of bootstrap sampling where

data is sub sampled from the original set through uniform random sampling with
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replacement. Each bootstrap sample forms the basis for training of a new classifier,

with sufficient iterations yielding a collection of classifiers that employ a team-based

voting policy post training. Each classifier is associated with a single vote and clas-

sifications are therefore carried out by assigning unseen patterns to the class having

the highest vote total. In contrast to Boosting, Bagging is typically less susceptible

to over learning since patterns are not sampled in proportion to difficulty; moreover,

bagging typically results in a significant improvement in classification performance

over a single classifier as the voting algorithm naturally contains the variance associ-

ated with individual classifiers.

A critical aspect of ensemble systems is disagreement among component classi-

fiers [46], since combining classifiers that behave identically will clearly have no net

improvement. Moreover, Krogh et al. [64] have formally shown that ideal Neural

Network ensembles are composed of highly accurate classifiers with maximal dis-

agreement, with this result being later confirmed empirically in terms of classifier

generalization [92]. Therefore despite the general potential for performance (accu-

racy) increases through the use of ensemble methods, both Boosting and Bagging

algorithms require an explicit specification of the number of component classifiers to

employ; moreover each iteration requires a separate training run to generate the next

classifier. These have additional implications for parameterization and computational

overheads in the context of GP classification.

Coevolution

The second paradigm that has previously been considered in the literature with re-

gards to scalability of GP as it relates to large data sets is that of competitive co-

evolution, where two (or more) populations interact (each changing in response to

the other) to evolve simultaneously under the analogy of an adversarial game4. The

central idea behind this paradigm is that the population contents provide the ob-

jectives for evolution which allows the potential for boundless training capacity in

the absence of explicitly defined fitness objectives [3]. This is clearly advantageous

4It is also possible to phrase coevolution as a single population system, where interactions are
defined by self-play [89]
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where no fitness function is generally well known or such a function is difficult to

define without a priori knowledge of the problem domain; this is typically the case in

subset selection for training of a GP classifier. Specifically, one population will index

the environment (e.g., a subset of indices to the larger data set or initial conditions

within a test environment) whereas the second population represents the learners (in

the context of the current work, GP classifiers).

Within the coevolution paradigm, two main approaches have emerged: the host

/ parasite model and the Pareto dominance model. The host / parasite (or predator

/ prey) approach models the competition between populations as a host / parasite

interaction, where one population plays the role of parasite and the other is assigned

the role of host [98]. Each population gains fitness at the direct expense of the other

(the parasite receives fitness payoff for defeating the host, while the host is rewarded

for successfully defeating the parasite). Such systems have the potential to engage in

the evolutionary equivalent to an ‘arms race’ [100] [3], however the dynamics of these

systems are infamous for their oscillatory behavior and fragility during training [17].

Specifically well-studied problems include disengagement (leading to loss of gradient),

relativism, the red queens effect, and intransitivity [17] [115] [56]. Several approaches

have been proposed in the literature for correcting these problems including: mod-

eration of parasite virulence [17], the ‘hall of fame’ memory mechanism, competitive

fitness sharing, and shared sampling selection [100]. A competitive coevolution (host

/ parasite framework) has been previously examined for GP classification where the

host population was configured to represent classifiers while the parasite represented

subsets of the training data [81]. This configuration was seen to suffer from a high de-

gree of sensitivity to virulence parameters and oscillatory training dynamics, although

training was achieved on data sets having up to eleven thousand exemplars.

The Pareto coevolution model takes the approach of ‘opponents as objectives’

[24], combining the notion of coevolution with techniques from the EMO literature,

including sorting and ranking based on the concept of Pareto dominance [44]. Classi-

cally this has been employed in the GA (in particular, self-play and gaming) context

[89]. Recently Pareto coevolution has become the subject of considerable interest
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as the relevance of ‘distinctions’ made by opponents (or ‘tests’) has been demon-

strated as the basis for maintaining an appropriate training gradient (also known

as engagement) relative to the coevolving population (of ‘learners’) [34]. Under the

DELPHI (Dominance-based Evaluation of Learners on Pareto Hillclimbing Individu-

als) algorithm [24], defeating a learner is not necessarily the most valuable result of an

interaction; rather the ability of a test to provide a new distinction between learners

is rewarded; this provides the basis for progress in the evolution of learners (i.e., a

training gradient). Several authors have since proposed competitive coevolutionary

models based on the ability to distinguish between learner behavior, including the use

of ‘Test Banks’ in [14] and [35]. In particular, the Incremental Pareto Coevolution

Archive (IPCA) algorithm [23] (which extended the DELPHI algorithm with archive

mechanisms, thereby guaranteeing monotonic progress in learning) has recently lead

to the Pareto coevolution model being extended to the binary classification context

for GP in the form of the Pareto GP Classifier (PGPC) algorithm [70] [71]. The

significance of this is that by associating tests with training patterns and learners

with GP classifiers, the resulting framework coevolves a compact subset of objectives

(tests) on which to train learners (classifiers), thus providing an automatic sampling

mechanism which achieves scalability in the GP training algorithm without recourse

to hardware-specific speedups or the conventional active learning mechanisms. The

ensuing solution takes the form of the Pareto front of learners with a post-training

voting policy acting as the mechanism to provide class labels on unseen data. As

well be demonstrated, such an approach results in solutions that adopt an ‘ensemble’

or ‘weak learner’ pattern of coverage, with learners from the Pareto front responding

equally to the majority of exemplars. We attribute the low distinctiveness of the

solutions from the competitive coevolutionary model to the use of a global wrapper

function and single objective fitness function (classification count).

2.6 Discussion

The case was made in the Introduction that the number of fitness evaluations neces-

sary to evolve GP classifiers under generic problem domains consists of five factors:

number of classes, number of initializations, population size, generation limit, and
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the training exemplar count. The current work further establishes the Pareto coevo-

lution model under a multi-class framework for classification in a multi-objective GP,

where the solutions are explicitly encouraged to take the form of collaborators which

naturally decompose classification problems, thereby providing the basis for highly

modular and compact solution sets over multiple classes as the end result of a single

trial of GP. Our solution to this problem has four central components:

1. Local membership or wrapper function : Establishes a novelty detection model

of operation as opposed to the typically employed discriminant model of machine

learning. In doing so, we are able to provide much more predictable behavior

under unique exemplars than is the case under the discriminant model.

2. Evolutionary multi-objective optimization : The utility of multiple objectives

enables us to build models that are parsimonious (therefore simple to evaluate)

as well as providing the opportunity to focus the goal of the classifiers more

effectively. In particular, when used in combination with the local membership

function, we will be able to provide a very clean model for problem decomposi-

tion and early stopping.

3. Competitive coevolution : Scaling to large data sets relies on assuming a com-

petitive coevolutionary model. In particular, we focus on the Pareto test-based

paradigm exemplified by de Jong’s IPCA model in preference to host-parasite

or active learning algorithms, although any of this family of algorithms would

be equally applicable.

4. Default sampling heuristic : Although competitive coevolution provides a mech-

anism for identifying the most useful exemplars for driving the evolution of

a learner population it says nothing about how to sample the original set of

training exemplars. In recognition of this we will adopt the balanced uniform

sampling algorithm benchmarked by Weiss and Provost, where this has been

empirically shown to provide a a good basis for building ‘robust’ classifiers under

the decision tree induction ML paradigm [116].

Our design additionally assumes a means to explicitly encourage the EMO model

to return a front in which individuals explicitly co-operate to return a set of classifiers
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with unique decompositions of the problem domain, as opposed to merely trading off

different objectives. The design of algorithms appropriate for realizing these objec-

tives is presented in Chapter 3.



Chapter 3

Algorithms

In order to develop the proposed approach to GP classification we will introduce

the framework in terms of the high level pseudo code listing provided in Figure 3.2.

This listing describes the proposed framework as a seven step algorithm having two

basic components: a cooperative coevolutionary training section (steps 3-4, Figure

3.2) and a competitive coevolution archiving section (step 5, Figure 3.2). These two

components of the framework will be principal subjects of discussion as the chapter

develops, however we begin by describing the basic model of GP classification assumed

in the current work. This is followed by a general discussion of the high level pseudo

code provided in Figure 3.2. We finally provide an explanation of the framework’s

organization and data flow before proceeding with a detailed presentation of the

underlying algorithms. The chapter concludes with a short summary of technical

benefits including a computational complexity analysis.

3.1 Classification Model

An interaction between a GP individual and a single exemplar is defined by executing

the GP program using the exemplar features as arguments. The result of a single

program run on an exemplar (an interaction) is a real-valued output, mapping the

exemplar (from a typically multi-dimensional feature domain) to a one dimensional

number line that we refer to as the ‘GP Output’ space, or simply gpOut. An example

of this process is provided in Figure 3.1, where the mapping process is repeated to

map n exemplars to n points on gpOut. Such a mapping alone, however, conveys

no class label information; yet the goal of a GP individual under the classification

context is to provide an expression mapping the input space (of the problem domain)

to a class consistent output label.

Canonical GP employs a global membership function (wrapper operator) to impart

62
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Figure 3.1: Basic mapping process of GP classifier model.

class labels. Such an approach effectively casts all points on the gpOut axis that are

greater than (less than) zero as in-class (out-class) exemplars, and counts the number

of misclassifications by way of a cost function. We maintain that such an operator

also enforces the ‘super individual’ approach to problem solving with little support

for problem decomposition. Moreover, this implicitly assumes that partitioning the

class labels about the origin of the gpOut axis is appropriate for the problem domain

in question; however, such an assumption is not likely to be true in practice [75].

Under the current model, label assignment is therefore realized by means of a local

membership function (LMF) that explicitly assigns classes to different regions of

gpOut, suggesting that the mapping should preserve class consistency, i.e., that similar

exemplars (e.g., within each class) should be mapped to the same local neighborhood

on the gpOut axis.

The basic features of our Competitive Multi-objective Grammatical Evolution

(CMGE) classifier are now summarized as follows relative to the pseudo code listing

provided in Figure 3.2:

1. Identification of the subset of exemplars over which individual (learner) evalu-

ation will take place (lines 2a, 2b);

2. Identification of the local membership function (LMF) for each individual, rel-

ative to the associated gpOut distribution (lines 4a - 4d);
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Figure 3.2: High-level pseudo code listing.

3. Evaluation of individuals relative to the learning objectives under a multi-

objective methodology (lines 4e - 4g);

4. Identification and archiving of the most valuable individual classifiers and ex-

emplars (lines 5a, 5b);

5. Class-wise assessment of early stopping criteria (line 6).

With respect to each of these features, we provide the following introductory

comments prior to highlighting the details of the pseudo code listing:

Feature 1 : A class-wise random balanced sampling heuristic is enforced such that

each class has equal representation in the point population. This policy is

assumed as individuals (in the point population) represent exemplar indexes.

Such a representation means that there is no structure on which to build search

operators. Moreover, structure could not be derived without recourse to an

appropriate pre-processing activity such as clustering or graph theoretic models,

both of which have considerable computational overhead;
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Feature 2 : The local membership function is derived from the distribution of points

on the gpOut axis. As such, no attempt is made to incorporate the concept

of class labels when deriving the location of the local membership function.

Instead, we assume a that the local membership function is expressed by a

Gaussian, the parameters of which are derived by first applying a clustering

routine to the individual’s point distribution on the gpOut axis. Having identi-

fied the subset of points associated with the most dense cluster the mean and

variance of the Gaussian local membership function for that particular individ-

ual are established (Figure 3.3). Only the subset of points within the cluster

as evaluated on a specific individual’s gpOut axis are associated with the local

membership function. This is the first property by which we establish problem

decomposition;

Feature 3 : At this point we have a set of individuals with their corresponding local

membership functions and therefore possibly unique subsets of exemplars estab-

lished. Performance evaluation may now take place in two stages. Class label

associated with the individual is established by assuming that the individual

takes the label of the exemplar with maximum membership of the Gaussian.

With the introduction of class labels we may evaluate performance over multiple

objectives, albeit for the subset of exemplars actually mapped to the Gaussian

alone (Figure 3.4). Moreover, the multi-objective view provides the opportunity

to reward non-overlapping behaviors as well as error minimization. Naturally,

having established the relative fitness of individuals (Figure 3.5), selection and

reproduction takes place under a Pareto multi-objective model which encour-

ages diversity without recourse to distance based metrics [66]. This completes

the explicitly co-operative aspect of the framework.

Feature 4 : Competitive coevolution is now used to identify the best points and

classifiers to retain outside of the point and learner populations. To do so, an

outcome vector is constructed over the current contents of the point archive and

population, relative to the current contents of the learner archive and popula-

tion. As such this process follows the IPCA algorithm of de Jong [23], however,
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any form of this class of competitive coevolution would be appropriate. Novel

additions to the IPCA approach include support for class-specific archives in

both the points and learners, finite archive sizes, and therefore the adoption of

suitable pruning heuristics to enforce the finite archive sizes. Moreover, special

attention is necessary to the derivation of an appropriate mechanism for estab-

lishing the outcome vector. In particular this is a real-valued pairwise matrix of

the behavior of each individual relative to points (Figure 3.6). Only individuals

that are non-dominated in the Pareto sense (with respect to outcome vectors)

represent candidates for archiving. Similarly, only the points making the dis-

tinction between dominated and non-dominated learners represent candidates

for the point archive.

Feature 5 : Stop criteria is established in a problem independent manner by making

use of the concept of Pareto rank histograms, as established in the Pareto

multi-objective technique adopted in Feature 3. Unlike the original GA context

in which this concept was derived we also deploy it in a class wise manner.

This enables us to declare classes converged class-by-class, thus providing the

ability to redeploy the individuals associated with that class, such that they are

reassigned to classes as yet not converged.

3.2 High Level Algorithm Discussion

The standard initialization process of line 1, Figure 3.2 randomly sets all GP popula-

tion members (learners) and prepares the relevant data structures, including memories

(archives) for both learners and exemplars (data points or simply, points). This is

discussed in detail in Section 3.6.1. A while loop (line 2, Figure 3.2) encloses the main

sections of the algorithm, ensuring that the steps of the body (i.e., the training of

GP) are repeated until stopping conditions are met (as evaluated at the end of each

iteration in line 6, Figure 3.2). Steps 2a and 2b of Figure 3.2 set up the training set

at each iteration ensuring a balanced view of data, thus enabling robustness against

problems having unbalanced class distributions. This process is associated with Fea-

ture 1 (Section 3.1) and its underlying motivation is discussed in detail in Section
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3.7.

Line 3 of Figure 3.2 begins the cooperative coevolution training loop which em-

ploys an EMO model loosely based on that of Kumar and Rockett [66] to train GP.

This is discussed in detail in section 3.7.2. On each pass of the loop, selection and

variation operators are applied to the GP population and children are produced (line

3a, Figure 3.2). Next, individuals are decoded to program form (line 4a) and the

current selection of exemplars are mapped to the gpOut axis, as indicated in Figure

3.1. We now require a mechanism to identify the local membership function (LMF)

neighborhood without resorting to inappropriate or arbitrary predefinitions of regions

within the gpOut axis. Once such a neighborhood has been defined we can then at-

tach an evaluation function to the members of the neighborhood, incorporating the

behavior of other individuals in order to encourage co-operative approaches to prob-

lem solving. In order to achieve this goal we assume that the neighborhoods of most

relevance are those that have the highest density (see Figure 3.3). Note that this

requirement is relative to the distribution of points on the gpOut axis, and is inde-

pendent of class label, the latter property being enforced later by way of the fitness

function.

At this stage (line 4c of Figure 3.2) we have the basic requirement for a clustering

algorithm to be applied to the subset of points identified by the competitive coevolu-

tionary model as mapped to each individual’s gpOut axis. The clustering algorithm

returns the location of the mid point associated with the ‘most dense’ set of points,

µ, and exemplars associated with this cluster, M. We now have the properties for the

local activation function defined in terms of a Gaussian with mean µ and variance

σ (the latter estimated over the points associated with the cluster) and parameter-

ization proceeds on line 4d of Figure 3.2. A generic example of steps 4c and 4d

(corresponding to Feature 2 of Section 3.1) is provided in Figure 3.3. A more detailed

discussion of this process is provided in Section 3.7.3.

With the properties for the local membership function of the GP mapping es-

tablished we now introduce exemplar labels and apply the multi-objective fitness

criterion (lines 4e and 4f of Figure 3.2, or Feature 3 of Section 3.1). The objectives

are designed to encourage: least ambiguity in cluster membership, non overlapping
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Figure 3.4: Introduction of pattern labels to evaluate individual mapping with respect
to local (Guassian) membership function.

behavior of the exemplars mapped to different individuals, maximization of the num-

ber of in-class exemplars mapped to an individual, and simplicity of the GP mapping.

A basic illustration of the error evaluation process, for example, is provided in Figure

3.4: the GP individual adopts the class label associated with its centroid and is now

evaluated as a subspace (a one dimensional number line, gpOut) and associated with

in and out of class exemplars.

Note that, in common with the findings of other EMO research, we establish

a set of objectives that have a degree of implicit ‘tension’ between them [20]. In

doing so we are able to encourage mappings that reduce the likelihood of degenerate

solutions. Moreover, in order to measure these objectives, the mapping is assigned a

class, where this is assumed to correspond to the class of the point at the center of the

local membership function. In taking this route we avoid making any assumptions

regarding which individuals are mapping which classes, and effectively let individuals

compete for the right to map exemplars. In particular the objective of minimizing

the number of (in-class) exemplars shared between different individuals encourages

diversity in the GP mappings, helping to ensure that we do not evolve populations

that concentrate on mapping the ‘easy’ exemplars at the expense of the ‘difficult’.
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A detailed discussion of the motivation behind our choice of objectives and their

associated evaluation is provided in Section 3.7.4.

Our variant of the PCGA EMO algorithm enables fitness assignment on the basis

of pairwise Pareto ranking along the four objectives and enforces replacement of the

lowest ranked population members on lines 4f and 4g of Figure 3.2. A basic example

of the Pareto ranking (ranks are directly related to fitness score (see Section 3.7.5))

is illustrated in Figure 3.5. The significance of the Pareto ranking and ensuing fit-

ness assignment is that selection operators proportionately favor individuals of higher

fitness (lower ranking) over those having lower fitness (higher ranking). This tends

to encourage the GP algorithm to more frequently sample material corresponding to

individuals that lie closer to the Pareto front, in hopes of evolving improvements in

the chosen objectives.

Figure 3.5 also introduces the concept of a rank histogram, which essentially sum-

marizes the content of the population (in objective space) in terms of the Pareto ranks

so that content can be readily compared between training epochs. When calculated

for each class, this provides the basis for Feature 5 (Section 3.1), the evaluation of

early stopping (line 6 of Figure 3.2). This is discussed in detail in Section 3.9. In

essence, classes associated with unchanging content are assumed to have converged

[65]. At this point resources (‘free’ individuals) are redeployed to the classes that

have not yet converged. Such an approach is naturally more robust than attempting

to set error thresholds which tend to be data set specific.

The above process (steps 3 and 4 of Figure 3.2) define the cooperative EMO model.

This portion of the main loop is performed in combination with the competitive model

(a variant of de Jong’s IPCA algorithm [23]) for the purpose of adapting learner and

test point archives as memories at line 5 of Figure 3.2. That is to say, the competitive

coevolution model’s evaluation is conducted over the contents of the subset of training

exemplars (line 2b of Figure 3.2) dynamically identified by a competitive co-operative

model for archiving the most discriminatory test points (step 5a) and non dominated

learners (step 5b), both from the perspective of a Pareto front (see Figure 3.5). The

competitive model thus plays a primarily archival role (Feature 4 of Section 3.1),

acting as a memory for the cooperative model. The archive entry criteria are evaluated
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Figure 3.5: Pareto ranking of individuals and relationship to early stop criteria.

in terms of GP classification ‘outcomes’ (see Figure 3.6) which are directly related to

the LMF definition and it’s associated performance on the training set. A detailed

description of the competitive archiving model for points and learners is provided in

Section 3.8.

Deployment of the classifier (step 7, Figure 3.2) takes the form of copying the

contents of the learner archives and assignment of weights to each on the basis of

the training data (see Section 3.10). A winner-take-all policy with respect to LMF

outputs determines the assignment of class labels among the team individuals.

In order to develop the above model in detail we incrementally add detail to

the above high-level motivation, with Section 3.3 introducing the architecture for

EMO and competitive coevolution. Section 3.4 presents the algorithm ‘road map’

with Sections 3.5 to 3.11 stepping through the ensuing algorithmic details. Section

3.13 performs a complexity analysis of the resulting algorithms with Section 3.12

summarizing the chapter.
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Figure 3.6: The ‘outcome vector’ links the framework into the competitive coevolu-
tion model which provides memory through point and learner archiving.

3.3 Framework Organization and Data Flow

In the following we adopt the terminology of the Pareto-coevolution literature and

the term test or point will be used interchangeably in reference to a single case, exem-

plar or data instance, while a learner refers to a single individual or GE expression.

Moreover, we distinguish between the training set (TS) and the training data (TD),

with the former referring to the union of point archives with the point population

and the latter referring to the entire collection of training exemplars.

The Competitive Multiobjective Grammatical Evolution (CMGE) framework em-

ploys two tightly integrated algorithm stages. The first is associated with the Multi-

objective Grammatical Evolution algorithm (or MOGE as described in [82]) and the

second is an IPCA-based archiving algorithm, concerned with retaining appropriate

learners and training points at the conclusion of each learning cycle. Relationships

between the various components of the framework are outlined in Figure 3.7. Rect-

angular components with vertical stripes on opposite sides represent functions or

processes, while parallelograms represent data structures supporting either learner

or point populations. Lines between components indicate an exchange of data and

arrows are used to represent the direction of data flow. The broken horizontal line
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separating components 1, 2 and 3 from 4, 5 and 6 in Figure 3.7 illustrates the logical

separation of the system into the MOGE / IPCA stages. Figure 3.7 will be used to

discuss the CMGE framework in high-level terms in the following two sections before

focusing on the algorithm details in Section 3.4.

3.3.1 MOGE Component

At a high level, MOGE (component 1 in Figure 3.7) employs a training set composed

of a sample of exemplars (known as the point population, component 2) that are

selected from the main data set at random, subject to a class-wise balance require-

ment as motivated by the findings of Weiss and Provost [116]. These exemplars are

augmented with several additional sets of points that are selected by IPCA for their

class-wise relevance to training and are known as the point archives (component 6 in

Figure 3.7). The training set, indicated in component 2 of Figure 3.7, is the union of

the point population with the point archives and represents a non-repeating subset

of the underlying data. Moreover, this subset provides exemplars for tests that are

currently supported by the learner archive (i.e., a memory of what has been learned)

as well as for uniformly sampled tests from the original data, with the goal being

to continually drive incremental evolutionary improvements. On each learning cycle,

MOGE utilizes the updated training set to evolve learners, modifying the learner pop-

ulation in component 3 of Figure 3.7 through selection, mutation and recombination

while favoring the propagation of material from fit individuals evaluated according to

the multi-objective framework. This evaluation process has a cooperative aspect as it

is partially based on feedback from learner archives as discussed in the next section.

3.3.2 Coevolutionary Component

At the conclusion of each learning cycle or epoch, control is passed to the IPCA-based

archiving process indicated by component 4 in Figure 3.7, where the current point and

learner populations are evaluated against class-specific archive entry criteria. Learner

and point archives are indicated by components 5 and 6 in Figure 3.7, respectively.

Learners satisfying the learner archive entry criteria are committed to the archive

corresponding to their class, while accepted points are committed to the point archive
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corresponding to the class for which they have been identified as having learning

significance. Point archives are used to build the training set for the next cycle

of learning, while the coverage behavior of the learner archive individuals partially

directs the multi-objective evaluation of the learner population during the next cycle

of evolution. The final solution is taken as the learner archive contents.

The use of a Pareto coevolutionary archiving mechanism in the CMGE framework

was motivated by the work of Lemczyk et al. [70] [71] (work which was originally

based on de Jong’s Incremental Pareto-Coevolution Archive (IPCA) algorithm [23]).

The archiving framework presented here, however, extends beyond Lemczyk’s binary

context to multi-class classification, where separate learner and point archives are

introduced for the purpose of supporting learning on the basis of class-appropriate

objectives. Moreover, unlike Lemczyk, we make use of multiple archives with early

stopping criteria based on the behavior of the class-wise Pareto fronts (Algorithm 3

line 5) enabling class / problem specific stop points to be identified [66]. The notion

of an outcome (and therefore the learner and point archive entry criteria) has also

been reformulated to take advantage of the current framework’s real-valued outputs,

indicating classification certainty (degree of LMF membership) as opposed to purely

binary values (correct vs. incorrect). Basing archive entry criteria on this approach is

specifically intended to promote team-oriented behavior and will be discussed in more

detail in Section 3.8 and Chapter 8. Finally, the learner archive contents are fed back

into the evolutionary (MOGE) loop to encourage a cooperative search, where newly

evolved individuals are rewarded for providing classifications that have not already

been learned, relative to the learner archive content. These contributions combined

with the original MOGE algorithm result in the ensuing CMGE framework, permit-

ting multi-objective evolution of classifiers based on local (Gaussian) membership

functions, with the Pareto competitive archive model naturally reducing the number

of exemplars necessary to perform fitness evaluation as well as providing class wise

early stopping, archiving according to team specific criteria and cooperation in the

multi-objective evolutionary search.
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3.4 CMGE Algorithm Descriptions

The CMGE framework presented in this thesis is detailed by the series of algorithms

in the following sections. All learners are based on the same context free grammar

(CFG), G (although the contributions of this work are independent of the particular

GP framework assumed). High level algorithms described by:

• Algorithm 3 (cmgeMain): expressing the sequence of high level function calls;

• Algorithm 4 (initCmge): detailing the global process of initialization;

• Algorithm 6 (trainCmge): the process of training the CMGE;

• Algorithm 25 (ipcaEvaluation): detailed criteria by which IPCA is applied to

direct training;

• Algorithm 32 (stopCmge): summarizing the early stopping criteria;

• Algorithm 34 (buildSolution): assembles the final classifiers (post training) from

the learner archives.

Each of these high level algorithms is assumed to have global read / write access to

all variables listed in Table 3.1; this will be indicated by a parameter list containing

ellipsis (. . . ). All other algorithms assume data passed by value unless otherwise noted

in the algorithm input / output descriptions. Access to a function named ‘class’,

which returns an exemplar label or individual class assignment, is also assumed along

with array-based functions: max, min, sort, sum and mod, which perform traditional

numeric roles.

As outlined in Table 3.1, the high-level algorithms employ 2c+ 2 populations and

archive variables, where c is specified by the number of classes in the problem. That

is, separate point and learner archives are retained for each class. This ensures that

point archives are able to retain the most appropriate tests (training points) for learn-

ers associated with each class. The descriptions that follow employ several additional

data evaluation structures which are also provided in Table 3.1. All parameter val-

ues associated with the following algorithms are specified in Table 4.5; however, no
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Table 3.1: Algorithm Data Structures and Parameters
Populations and archives

Description Abbrev. Num Capacity

Point population PP 1 PPsize
Learner population LP 1 LPsize

Point archives PA c PAsize, ea.
Learner archives LA c LAsize, ea.

Labeled Classification Data

Training data TD 1 N
Training set TS 1 PPsize + c · PAsize

Evaluation structures

Non-converged classes NC 1 c
Useful tests UT 1 PPsize

Undefeated tests UT ∗ 1 PPsize
Useful learners UL 1 LPsize

Non-useful learners UL 1 LPsize
Undefeated learners UL∗ 1 LPsize

Current rank histograms RH t c LPsize
Previous rank histograms RH t−1 c LPsize

attempt was made to optimize these selections. The over-riding interest is to provide

uniformity across the data sets utilized in the ensuing benchmarking activity, Chapter

4.

The highest level function (cmgeMain, Algorithm 3) is described first in Section

3.5. Sections 3.6 to 3.10 provide detailed descriptions of the basic steps of Algorithm

3. Where appropriate, CMGE design decisions will be highlighted with particular

attention paid to the fundamentally novel aspects of the algorithms.

3.5 Main Function

The CMGE main function is provided in Algorithm 3, which exhibits the three high-

level blocks of functionality: initialization (line 1), the outer training loop (lines 2 - 6)

and post-training solution assembly (line 7). These will be discussed with increasing

detail in the following sections. Line 1 (initCmge) carries out the initialization of all

high level variables including populations and data structures supplied in Table 3.1.

This is examined in more detail in Section 3.6. Lines 2 - 6 enclose the outer training
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loop which cycles until a stop criterion is reached. Stop criteria are discussed in fur-

ther detail in Section 3.9. Line 3 of Algorithm 3 is the call to the high-level learning

cycle, trainCmge, an earlier version of which was known as MOGE [82], that provides

the multi-objective framework for training the classifiers. Adopting a multi-objective

scheme enables the user to encourage, say, simple as well as accurate classifiers. More-

over, as a natural consequence of the EMO paradigm, solutions may take the form of

more than one classifier for the same class [82]. This is the subject of discussion in

Section 3.7. Line 4 of Algorithm 3 addresses the computational overhead of fitness

evaluation through a Pareto (competitive) coevolutionary algorithm that is able to

identify minimal sets of training examples to conduct training while maintaining a

memory of the most relevant learners. A detailed discussion of archiving properties

and the ipcaEvaluation function in general are provided in Section 3.8. The final step

of Algorithm 3 is line 7, which chooses solutions to be included in the final classifier

and assigns a weighting to each member that is later used to combine the various

member outputs to a single output per exemplar.

Algorithm 3 cmgeMain( . . . ) - High level algorithm for the CMGE framework.

Input: Assumes global read / write access to variables described in Table 3.1.
Output: Final classifier (solution) S.

1: initCmge( . . . )
2: while ! Stop criteria do
3: trainCmge( . . . )
4: ipcaEvaluation( . . . )
5: stopCmge( . . . )
6: end while
7: S := buildSolution( . . . )

3.6 Initializations

Initialization proceeds as indicated in Algorithm 4. This algorithm has two roles,

firstly to initialize the point population PP and learner population LP on lines 1 and

2, respectively. Secondly, the class-wise archive structures LA,PA are initialized on

lines 4 and 5. The point population is initially assigned to the empty set on line 1;

however, this population is required to maximize diversity, hence will be reinitialized



79

Algorithm 4 initCmge( . . . ) - High level CMGE algorithm initializations.

Input: Assumes global read / write access to variables described in Table 3.1.
Output: Initialized structures.

1: PP := {∅}
2: LP := initLearners( LP )
3: for i := 1 . . . c do
4: LA[i] := {∅}
5: PA[i] := {∅}
6: NC[i] := i
7: end for

after each training epoch, Section 3.7. The learner population initialization of line

2 is carried out by a call to Algorithm 5, initLearners and is discussed in Section

3.6.1. Archives (LA,PA) may only accept individuals satisfying the Pareto domi-

nance criteria, Section 3.8, thus initially contain no individuals. Finally, line 6 of

Algorithm 4 represents the initialization of the data structure (NC) used to detect

early (class-wise) convergence.

Algorithm 5 initLearners( L ) - GE individual initializations.

Input: Set of GE learners L to be initialized to legal expressions.
Output: Initialized GE learners.

1: for i := 0 . . . |L| − 1 do
2: repeat
3: for j := 0 . . . CODONS-1 do
4: L[i].codon[j] := random( {0, 1, . . . MAX CODON VAL} )
5: end for
6: until geMap( L[i].codon )
7: end for
8: return L

3.6.1 Initializing Learners

A set of GE-based learners L is initialized by Algorithm 5. Lines 2 - 6 perform the

initialization over all learners in the population, with each initialization being repeated

until a legal mapping (return value of 1) is produced by geMap (Algorithm 2) on line

6. When this process is successful it ensures that no degenerate GE individuals are

defined in the learner set [91]. Line 4 of Algorithm 5 assigns codon (gene) values over
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the length of the individual (CODONS), with uniform probability over the range [0,

MAX CODON VAL]. During initialization, there are no requirements on expression

length, however the genotype is limited in the number of rule selection values (by the

CODONS parameter) and expressions are constrained to a maximum string length

of MAX EXP LEN (see Table 4.5).

3.7 Training

The main training function is provided in Algorithm 6, trainCmge. At the outset

of each epoch, the point population (PP ) is filled using random uniform selection

without replacement over the range of all training pattern indices by Algorithm 7,

fillPtPop, on line 1. The point sampling aspect of the framework is discussed in

further detail in Section 3.7.1. In line 2 of Algorithm 6 the training set TS for

the current epoch is the union of all point archives PA[1] . . . PA[c] with the point

population PP . Notably all point archives contribute to TS, regardless of any prior

class convergence. This ensures that entire classes of points cannot be ignored once

they have converged due to class-specific stopping criteria discussed in Section 3.9.

In line 3 of Algorithm 6, the learner archives LA are evaluated against the current

training set to establish their current coverage, which will be used to encourage coop-

erative behavior among learners in this respect. That is, the coverage of the learner

archives, as determined here, will be used to evaluate an explicit coverage metric

on each of the current and newly evolved individuals, favoring individuals with low

overlap (see Section 3.7.4). The next step of the training algorithm, line 4, provides

a population-wide evaluation of fitness using the multi-objective paradigm across the

learner population (LP ). At this step, an local (Gaussian) membership function is

assigned (or re-assigned, after each archiving cycle) and a Pareto evaluation of in-

dividuals on the multiple objectives (see Section 3.7.4) provides a scalar ranking of

that is used to establish fitness for selection (Section 3.7.5). The multi-objective

evaluation, ranking and fitness assignment are discussed in greater detail in Section

3.7.4.

Lines 5 - 20 of Algorithm 6 constitute our original MOGE learning cycle. The basic

procedure involves fitness proportionate, stochastic selection (Algorithm 8, select) on
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lines 6 and 10 defining parents p1 and p2, followed by application of the genetic

operators: crossover (Algorithm 9, applyXover) on line 14 and mutation (Algorithm

10, applyMutation) on line 17. The while loop at line 9 prior to the second parent

selection is intended to provide a sample of size c (number of classes in the problem)

to find a class match for the first parent selected in line 6; failing this, however, a

fitness proportionate random second parent (irrespective of class) is chosen to avoid

a more costly search.

Following the variation blocks, the newly created individual is next passed to the

evalLearners function (Algorithm 12), on line 19 where the LMF assignment and

multi-objective evaluation are carried out. Finally the new individual is inserted into

the population with the replace function, Algorithm 22 on line 20. This learning

process is iterated until the equivalent of an entire population has been generated,

however the replacement scheme itself is not generational; rather a simple policy of

replacing of the lowest ranked learner is enforced in Algorithm 22, replace. While this

does not guarantee monotonic progress of the MOGE Pareto front it does provide an

elitist approach to replacement that allows for diversity in the classifications which can

be favorable in the context of the later archiving stage, where monotonic progress of

candidate solutions is guaranteed [23]. The learning cycle is discussed in detail below,

in Section 3.7.2.

3.7.1 Generating the Point Population

The point population plays an exploratory role in the coevolution process by sub

sampling and maintaining a balanced view of the training data from the perspective

of the learners. Such a view is taken as a consequence of the findings by Weiss and

Provost as discussed in Chapter 2 regarding the general robustness of such a sampling

policy with respect to several classifier performance metrics [116]. The balanced view

requires that an equal number of points from each class is represented in the point

population. Specifically, an equal allocation is made for each class and the point

generation function fillPtPop of Algorithm 7, selects exemplar indices (with uniform

probability for each class) to occupy each allocation. Within fillPtPop, a balanced

representation from each non-converged class of the training data is enforced in lines
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Algorithm 6 trainCmge( . . . ) - Main training cycle of CMGE algoirthm.

Input: Assumes global read / write access to variables described in Table 3.1.
Output: Populations modified by a training cycle.

1: PP := fillPtPop( TD,NC )
2: TS := PA[1] ∪ . . . PA[c] ∪ PP
3: evalArchives( LA, TS )
4: evalLearners( LP, TS, LA )
5: for 0 . . . |LP | − 1 do
6: p1 := select( LP )
7: tries := 0
8: p2 := ∅
9: while class(p1) 6= class(p2) ∧ tries < c do

10: p2 := select( LP )
11: tries := tries+ 1
12: end while
13: if test( PXO ) then
14: C := applyXover( p1, p2 )
15: else
16: C := {p1, p2}
17: C := applyMutation( C, MR )
18: end if
19: evalLearners( C, TS, LA )
20: replace( LP,C )
21: end for
22: epochs := epochs+ 1

Algorithm 7 fillPtPop( TD, NC ) - Selection of point population members.

Input: Training data TD, non-converged classes array NC.
Output: Subset S of training data indices having balanced representation from each

class in NC.
1: S := {∅}
2: for i ∈ NC do
3: TDi := {t ∈ TD | class(t) = i}
4: for 1 . . . PPsize

|NC| do

5: t := random( TDi )
6: S := S ∪ t
7: TDi := TDi − t
8: end for
9: end for

10: return S
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Algorithm 8 select( LP ) - Population selection operator

Input: Learner population LP upon which to apply selection.
Output: Returns a learner selected stochastically in proportion to fitness.

1: s := 0
2: sf := sum( LP.fitness )
3: r := random( {x ∈ R+ | x < sf} )
4: for i := 0 . . . |LP | − 1 do
5: s := s+ LP [i].f itness
6: if r < s then
7: return LP [i]
8: end if
9: end for

Algorithm 9 applyXover( L1, L2 ) - Crossover operator.

Input: Learners L1, L2 to apply crossover operator.
Output: Offspring C1, C2.

1: repeat
2: if test( PCXO ) then
3: pt := random( {x ∈ Z+ | x < CODONS ∧ L1.type[x] = L2.type[x] } )
4: else
5: pt := random( {x ∈ Z+ | x < CODONS} )
6: end if
7: for i := 0 . . .CODONS− 1 do
8: if i < pt then
9: C1.codon[i] := L1.codon[i]

10: C2.codon[i] := L2.codon[i]
11: else
12: C1.codon[i] := L2.codon[i]
13: C2.codon[i] := L1.codon[i]
14: end if
15: end for
16: until geMap( C1.codon ) ∧ geMap( C2.codon )
17: return {C1, C2}
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Algorithm 10 applyMutation( L, P ) - Mutation operator.

Input: Learners L to apply mutation operator with a codon-wise probability of ap-
plication P (%).

Output: Assumes L passed by reference.
1: for i := 0 . . . |L| − 1 do
2: repeat
3: C := {c ∈ Z+ | c < CODONS}
4: if test( PTSM ) then
5: C := {c ∈ C | L[i].type[c] = −1} /* Terminal codons */
6: end if
7: for j := 0 . . . |C| − 1 do
8: if test( P ) then
9: L[i].codon[j] := random( {x ∈ Z+ | x ≤ MAX CODON VAL} )

10: end if
11: end for
12: until geMap( L[i].codon )
13: end for

Algorithm 11 evalArchives( LA, TS ) - Evaluation of learner archives.

Input: Learner archives LA to be evaluated against the training set TS.
Output: Assumes LA passed by reference.

1: for i := 0 . . . |LA| − 1 do
2: caclGpOut( LA[i], TS )
3: wrapGpOut( LA[i] )
4: end for

Algorithm 12 evalLearners( L,LA, TS ) - Evaluation of learners on a training set.

Input: Learners L to be evaluated against the training set TS learner archives LA.
Output: Assumes L passed by reference.

1: for i := 0 . . . |L| − 1 do
2: caclGpOut( L[i], TS )
3: assignLMF( L[i], TS )
4: wrapGpOut( L[i] )
5: evalObjectives( L[i], LA, TS )
6: end for
7: rankLearners( L )
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Algorithm 13 calcGpOut( L, TS ) - Mapping and evaluation of GE expression

Input: Learner L to evaluate raw GP outputs, Training set TS.
Output: Assumes L passed by reference.

1: L.expression := geMap( L.codon )
2: for i := 0 . . . |TS| do
3: L.gpOut[i] := eval( L.expression, TS[i] )
4: end for

Algorithm 14 assignLMF( L, TS ) - Assignment of local membership function

Input: Learner L to be assigned an LMF; Training set TS
Output: Assumes L passed by reference.

1: [C, L.M ] := potentialFn( L.gpOut )
2: L.µ := TS[C[0]]
3: L.class := class( TS[L.µ] )
4: for i := 0 . . . |L.M | − 1 do
5: s := s+ (L.M [i]− L.µ)2

6: end for
7: L.σ :=

√
s

|L.M |−1

2 - 9. Line 3 selects all data from relevant classes, while lines 4 - 8 select from

these patterns (without replacement, line 7) until the space allocated has been filled.

Notably, the loop of line 4 ensures that the allocation for each non-converged class

increases uniformly as classes converge. The function explicitly represents each class of

the problem with equal exemplar counts in the point population assuming that there

are enough points of each class in the training data to do so. The point population

thus provides the basis for balancing the training set. Moreover, scalability of the

training algorithm is achieved by the sampling property of the point population,

as it explicitly limits the maximum number of learner evaluations required at the

computationally costly inner loop of GP (line 19 of Algorithm 6).

3.7.2 The GE Learning Cycle

The MOGE framework induces GE classifier expressions through the multi-objective

evolutionary cycle, Algorithm 6. The basic procedure for learner generation at each
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Algorithm 15 wrapGpOut( L ) - Application of local membership function

Input: Learner L.
Output: Assumes L passed by reference.

1: for i = 0 . . . |L.gpOut| − 1 do

2: L.y[i] := exp
(
− (L.gpOut[i]−L.µ)2

2L.σ2

)
3: if L.gpOut[i] ∈ [L.µ± L.σ] then
4: L.ô[i] := 1
5: else
6: L.ô[i] := 0
7: end if
8: end for

Algorithm 16 evalObjectives( L, LA, TS ) - Multi-objective evaluation of learner.

Input: Learner L to be evaluated according to Section 3.7; Learner archives LA and
training set TS. Assumes access to string length function strlen.

Output: Assumes L passed by reference.
1: L.Objective[0] := evalSSE( class( L.M ), {L.y[L.M ]} )
2: L.Objective[1] := countTruePositive( L.y )
3: L.Objective[2] := evalOverlap( L,LA, TS )
4: L.Objective[3] := strlen( L.expression )

Algorithm 17 evalSse( L, Y ) - Evaluation of sum squared error.

Input: Labels L, outputs Y .
Output: e, the sum of squared errors.

1: e := 0
2: for i := 0 . . . |L| − 1 do
3: e := e+ (L[i]− Y [i])2

4: end for
5: return e

Algorithm 18 countTruePositive( L, TS ) - Estimates true positives of a learner.

Input: Learner L to be evaluated with respect to TS.
Output: Returns the estimated count of true positives.

1: for i := 0 . . . |TS| − 1 do
2: if L.ô[i] = 1 ∧ class(TS[i]) = L.class then
3: tp := tp+ 1
4: end if
5: end for
6: return tp
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Algorithm 19 evalOverlap( L,LA, TS ) - Evaluates learner ‘overlap’ with respect
to Learner Archives LA.
Input: Learner L to be evaluated for overlap with respect to Learner Archives LA.
Output: Assumes L passed by reference.

1: L.overlap = 0
2: for i := 0 . . . |TS| − 1 do
3: if L.ô[i] = 1 ∧ class(TS[i]) = L.class then
4: for j := 0 . . . |LA[L.class]| − 1 do
5: if LA[L.class][j].ô[i] = 1 ∧ class(TS[i]) = L.class then
6: L.overlap := L.overlap+ 1
7: end if
8: end for
9: end if

10: end for

Algorithm 20 rankLearners( L ) - Pareto ranking of learners.

Input: Learners L to be ranked by Pareto-ranking with ties.
Output: Assumes L passed by reference.

1: T := ∅
2: for i := 0 . . . |L| − 1 do
3: L[i].rank := 1
4: end for
5: for i := 0 . . . |L| − 1 do
6: for j := 0 . . . |L| − 1 do
7: r := aDomB( L[j], L[i] )
8: if r = −1 then
9: if i 6= j ∧ {i, j} /∈ T then

10: T := T ∪ {i, j}
11: L[random( {i, j} )].rank + +
12: end if
13: else
14: L[i].rank := L[i].rank + r /* Note: r is 1 or 0 */
15: end if
16: end for
17: L[i].f itness := |L|−L[i].rank

|L|
18: end for
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Algorithm 21 aDomB( A, B ) - Pareto dominance comparison.

Input: Learners A,B to be compared over objective arrays. Without loss of gen-
erality, assumes minimization over all objectives; intended usage should be clear
from context of calling function.

Output: 1 if A Pareto dominates B (i.e. A ≺ B); -1 if A,B indifferent; 0 otherwise.
1: flag := 0
2: for i := 0 . . . |A.Objective| − 1 do
3: if A.Objecitve[i] ≤ B.Objective[i] then
4: flag := flag + A.Objecitve[i] < B.Objective[i]
5: else
6: return 0
7: end if
8: end for
9: if flag > 0 then

10: return 1
11: else
12: return -1 /* A and B are indifferent */
13: end if

Algorithm 22 replace( LP,C ) - Population replacement operator.

Input: Learner population LP and children C to be inserted.
Output: Assumes L passed by reference.

1: for i := 0 . . . |C| − 1 do
2: [rankmin, imin] := min( LP.rank )
3: LP := LP − LP [imin]
4: LP := LP ∪ C[i]
5: end for
6: rankLearners( LP )

Algorithm 23 test( P ) - Generic test for application of genetic operators

Input: Probability P (%) with which to apply the relevant test.
Output: 1 if test passes; 0 otherwise.

1: r := random( {x ∈ R+ | x < 100} )
2: if r < P then
3: return 1
4: else
5: return 0
6: end if
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Algorithm 24 random( S ) - Random number selection.

Input: S, a set of values / objects.
Output: A random element of S.

1: r := rand(0,|S|-1)
2: return S[r]

iteration of step 5 in Algorithm 6 first involves the fitness proportionate stochastic

selection of two parents, with an attempt to choose the second parent (p2) such

that it has same class as the original, (p1). Should the selection function (select,

Algorithm 8) fail to return a match after c attempts, the last individual returned

is accepted as a default for p2 on line 10 of Algorithm 6 to avoid infinite loops.

The select function provided in Algorithm 8 indicates a basic approach to the fitness

proportionate selection scheme used in this work, which is further described in Section

1.4.4 of Chapter 2, i.e., is taken from standard GE practice.

The next step of the learning cycle involves the test for genetic variation operators.

In the current framework, only one test (for crossover) is used (line 13, Algorithm

6) and has an associated probability of PXO, as defined in Table 4.5. If the test for

crossover passes, then the crossover operator (applyXover, Algorithm 9) is applied to

parents (p1, p2) to create the children (C = {c1, c2}). A failure of this test results

in children being created as direct copies of parents, as indicated by the assignment

on line 16. This assignment is then followed by a stochastic application of point-

mutation (applyMutation, Algorithm 10). While the test function of Algorithm 23 is

self-explanatory, the genetic operators are specially formulated for context sensitivity

under GE and as such, employ the type information garnered from the geMap function

of Algorithm 2 (describing ‘canonical’ GE as utilized in this work).

In the case of crossover (provided by applyXover, Algorithm 9), a test for context

crossover takes place at line 2 with a probability of acceptance of PCXO (provided

in Table 4.5). When the test passes, the codon crossover point is restricted to the

stochastic selection of codons having matching (non-terminal) types on line 3. This

ensures that the tail codons are used with the same non-terminal context in both

individuals. A failure of the context crossover test results in the standard single point

crossover procedure on line 5, Algorithm 9 [91]. In practice, the attempts at context
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crossover obviously must be limited to avoid infinite loops when no legal crossover

points exist. Moreover, the crossover algorithm repeats in the event that an illegal

mapping occurs, e.g., a sequence of non-terminating rule selections or an expression

exceeding the maximum string length. This is indicated by line 16 of Algorithm 9.

Point-mutation as implemented by the current framework (provided by apply-

Mutation, Algorithm 10) may probabilistically employ a type-specific version of the

mutation operator which is designed to minimize structural disruptions by strictly

targeting terminal codons (this has been termed terminal specific mutation or TSM).

The test for terminal specific mutation occurs at line 4 of Algorithm 10 with a proba-

bility of acceptance set to PTSM, supplied in Table 4.5. When the test passes, codons

to be selected for mutation are constrained to those mapping to terminal rules only

on line 5 (with terminal codons being assigned a value of -1 by the geMap function

of Algorithm 2). Under the current framework, this implies that a terminal specific

mutation can only alter a variable (or operator) with another variable (or operator)

and therefore widespread structural changes to the structure of GE expressions are

implicitly disallowed. In the event that the test for application of terminal specific

mutation fails, the standard mutation points (any mapping codon) are permitted, as

assigned in line 3 of Algorithm 10. The point (codon-wise) application of mutation

takes place on line 9. It should be noted that the rate of actual point mutation (P )

can be normalized to affect similar numbers of codons irrespective of the number of

codons available to mutation, |C|. Similarly to crossover, the mutation algorithm re-

peats (line 12) in the event of an illegal mapping, e.g., a sequence of non-terminating

rule selections or an expression exceeding the maximum string length.

Following the reproduction and application of genetic operators, the newly cre-

ated offspring in C are evaluated under the multi-objective context by evalLearners

(Algorithm 12). A detailed discussion of the multi-objective evaluation, ranking and

fitness assignment is provided in Section 3.7.4.

The final step of the learning cycle involves replacement on line 20 of Algorithm 6.

The replacement function (replace, Algorithm 22) follows the rule that children always

replace the lowest ranked member of the learner population, LP . The replacement

algorithm (line 2 Algorithm 22) does not preclude the replacement of the first child
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by the second. Following the replacement step, the learner population is re-ranked

by Algorithm 20 (rankLearners) and the next selection iteration begins.

3.7.3 Multi-objective Evaluation

Learner evaluation begins with the evalLearners function provided in Algorithm 12.

This function provides the calculation of gpOut values (calling Algorithm 13, line 2),

assignment of the Gaussian LMF, (calling Algorithm 14, line 3), application of the

LMF (calling Algorithm 15, line 4) and finally evaluation of the learning objectives

(calling Algorithm 16, line 5). Once all learners in L are evaluated, they are ranked

in the last step of Algorithm 16 on line 7, with the call to rankLearners (Algorithm

20).

Within the context of this work, the interaction between a learner and a point

is defined by evaluating the learner expression using the subset of point data and

producing an output value (gpOut). The gpOut array for each individual is calculated

by evaluating the learner’s arithmetic GE expression against each exemplar of TS

using the calcGpOut function provided in Algorithm 13. Line 1 calls the mapping

function (Algorithm 2), which maps codons to an expression according to the global

CFG, G. The expression is then evaluated against all members of the training set

TS on lines 2 - 4. The expression evaluation is provided by an expression interpreter

that is appropriate for the target grammar, G, written using the open source C tools

for lexical analysis and compiler creation known as LEX and YACC1, respectively.

At this point we have established the mapping from the (typically multidimensional)

input space to the one dimensional output space gpOut.

Next the local membership function of Equation 3.2 is assigned by assignLMF,

Algorithm 14. The LMF parameters of µ and σ for a learner are established on line

1 by calling the clustering function known as the Potential Function (Algorithm 35),

which is evaluated on the array of GP output values (gpOut points). Specifically,

the Potential Function (Algorithm 35) returns the indices to the cluster centroids

(C) and the cluster member indices (M). The Potential Function is described in

detail in Section 3.11, however, we note that the choice of clustering function is not

1LEX and YACC are provided by http://dinosaur.compilertools.net/
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significant as long as it is not necessary to supply the number of clusters a priori.

Although generally considered to be a computationally expensive process, clustering

is performed only over the balanced exemplar subset TS as dynamically identified

by competitive coevolution. In doing so, sufficient in and out-of-class exemplars

are provided for deriving the properties of the LMF. Moreover, the gpOut points

correspond to the raw outputs of the learner expression and the clustering function is

therefore a one-dimensional process applied with respect to each individual, providing:

1. µ: A single value on gpOut, defining the centroid of the largest / most dense

cluster;

2. M : The set of cluster member points on gpOut. These correspond to the gpOut

values near µ, as defined by a nearest neighbor allocation with respect to the

two neighboring cluster centroids identified in the same gpOut distribution.

Algorithm 14, lines 2 and 3 assign the µ value (being the first, and therefore cluster

centroid with highest density) and class (the label of the point associated with µ),

respectively. Specifically, line 3 assigns the class label corresponding to the centroid

µ to the learner, which is thereafter used to detect points of that class. Next (lines

4 - 7 of Algorithm 14), the member set M is used to estimate the LMF width as

the standard deviation, σ, as indicated in Equation 3.1. A basic example of this is

provided in Figure 3.8.

σ =

√√√√ 1

|M | − 1

|M |∑
i=1

(Mi − µ)2 (3.1)

The evalLearners algorithm resumes with the application of the LMF function,

carried out by the call to wrapGpOut (Algorithm 15), on line 4 of Algorithm 12.

The wrapGpOut function employs the Gaussian parameters, µ and σ to assign a

membership (y value, Equation 3.2) to each element of gpOut on line 2 and provides

an estimate of in vs. out-of-class (stored in the ô array) according to Equation 3.3 on

lines 4 and 6 respectively.

y (gpOut) = exp

(
−(gpOut− µ)2

2σ2

)
(3.2)
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ô =

{
1 if gpOut ∈ [µ± σ]

0 otherwise
(3.3)

The re-expression of the output represents a key departure from the standard

GP approach to classification, where a GP classifier typically invokes a hard global

switching function centered at zero to render the decision (i.e., if gpOut ≤ 0 then

return class 0, else return class 1), see Figure 2.3 (a). Here, the use of a local

membership function (LMF) permits expressions to represent a subset of the data

such that problem decomposition is facilitated and solutions take the form of several

specialist classifiers rather than a single super individual. Moreover, at this stage

no attempt is made to incorporate the concept of class membership. Instead the

formation of LMFs with consistent class membership will be enforced through the

multi-objective fitness evaluation, Section 3.7.4.

3.7.4 Objectives

The multi-objective evaluation is finally provided by the evalObjectives function of

Algorithm 16 as called by line 5 of Algorithm 12. At this stage each learner has an

output array (y) expressed in terms of a Gaussian LMF. The mean and variance of

this LMF reflect the region of highest density relative to the mapping:

gpOuti = f(xi); i ∈ TS, (3.4)

where f(·) is the mapping between multidimensional input xi and single dimensional

output gpOut and i indexes training examples in the training set TS. The basic

objective is now to incorporate class consistent properties onto the mapping of (3.4)

and therefore the points associated with the LMF.

Central to establishing the objectives are the concepts of: 1) error, relative to

exemplar class and degree of LMF membership; 2) in-class membership count, where

this is defined with respect to the region defined by the LMF; 3) overlap minimization

where in-class exemplars are discouraged from being a member of more than one LMF;

4) solution parsimony, in terms of expression string length. The definitions of these

objectives are summarized as follows:
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Figure 3.8: CMGE (Gaussian) LMF and associated error evaluation on cluster mem-
bers M; ‘x’ points on GPout indicate mappings corresponding to in-class exemplars
and ‘o’ points indicate out-of-class exemplars. Associated error terms are indicated
by dashed lines (see Equation 3.5).
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1. Minimize the sum of squared error (SSE): This objective explicitly en-

forces cluster class-consistency by evaluating classification performance over the

cluster member points and rewarding true positive classifications while discour-

aging the occurrence of false positives (an individual mistakenly labeling a pat-

tern of class 0 as class 1). As provided by the call to Algorithm 17, evalSse,

from line 1 of Algorithm 16, the SSE for an individual is calculated over M , the

set of cluster member points (returned by the Potential Function, Algorithm

35):

SSE =

|M |∑
i=1

(labeli − y (gpOuti))
2, (3.5)

with y as defined in (3.2) and label taking on binary values: 1 when the current

pattern label is the same as the class as that of the current learner (as determined

by the clustering) and 0 otherwise. We emphasize that SSE is only estimated

over the subset of exemplars associated with the LMF, not all exemplars within

the point population (Algorithm 16, line 1). That is to say, as long as the LMF

is consistent in its classification we are not interested in the performance on

exemplars outside of the LMF neighborhood. Such a bias naturally encourages

problem decomposition or specialization of learner behavior.

2. Maximize in-class patterns correctly classified: This objective is designed

to encourage survival of individuals that correctly map many patterns densely

in gpOut, while discouraging the case of single point coverage by classifiers.

This objective balances the specialization effect of objective 1 and is provided

by the call to Algorithm 18, countTruePositive, from line 2 of Algorithm 16.

3. Minimize pattern overlap: This objective is intended to discourage intersec-

tion in the sets of patterns that are correctly classified between learner archives

and the current learner population. As given in Algorithm 19 (called on line 3

of Algorithm 16), the overlap value for an individual is defined as a count (i.e.,

sum) of number of times that each exemplar that is correctly classified is also

correctly classified by other members of the relevant learner archive. Each case
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of overlap (an exemplar satisfying the conditions of lines 3 and 5 of Algorithm

19), adds 1 to the learner’s overlap count on line 6. The overlap count is cal-

culated over the training set TS (line 2) against all members of the relevant

learner archive LA[L.class] (line 4). This approach to overlap count makes a

significant improvement relative to an earlier version of the MOGE classifier of

[82].

4. Minimize expression length: Based on results obtained in [93] and [25], this

objective imposes parsimony in learner expressions. The expression length is

defined as the string length of the unsimplified learner expression and is provided

by the call to the strlen function on line 4 of Algorithm 16).

In summary, the SSE objective captures the quality of the exemplars mapped

to the same LMF; whereas in-class exemplar count naturally discourages degener-

ate behavior. Pattern overlap is a global metric in that it is estimated with respect

to exemplar ‘coverage’ of other learners in the archive. On their own these objec-

tives would not necessarily lead to useful classifiers (e.g., minimizing the SSE can be

achieved without including any in-class exemplars). Taken together, however, they

fully establish properties for a ‘good’ classifier whilst also encouraging problem de-

composition within exemplars associated with the same class. The fourth objective,

parsimony, naturally assumes that classification performed on the basis of multiple

(non linear) mappings is more appropriate than relying on a single mapping, especially

with respect to solution transparency.

Lastly, an overall rank (and therefore fitness) of learners is established by the

call to rankLearners (Algorithm 20) on line 7 of the learner evaluation, Algorithm

12. Learners are ranked using the Pareto-ranking with ties algorithm, described in

Section 3.7.5.

3.7.5 Pareto Ranking and Fitness Assignment.

The method of ranking with ties, Algorithm 20 (called on line 7 of Algorithm 12),

is employed to determine fitness of members of the learner population [66]. This

approach was originally used in MOGA algorithm of Fonseca and Fleming [37] and
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begins by assigning a rank of 1 to all learners L on lines 2-4. Next a double loop over

the learners is used to compare each learner to all others in terms of the dominance

criteria on lines 5-7. The rank of an individual is defined by the number of individuals

by which it is Pareto dominated plus one, where Pareto dominance is described in

Section 2.3.1 and implemented according to Algorithm 21, aDomB. Rank increments

are provided by line 14 of Algorithm 20 in the event of domination by another learner

(i.e., a return value of 1 is assigned to r on line 7). All non-dominated solutions

therefore retain the original rank of 1, and in the event of a tie (i.e., two learners

having the same value in all objectives), a -1 is returned by Algorithm 21 on line 7

of Algorithm 20, and one of the ranks is randomly increased by one on line 11. The

fitness of an individual is finally assigned in direct proportion to Pareto rank on line

17 of Algorithm 20.

3.8 Point and Learner Archive Entry

Following each multi-objective learning cycle (step 4 of Algorithm 3) corresponding

to the first stage, steps 1-3 of the high level Figure 3.7), an archiving process begins,

representing the second logical stage of the CMGE algorithm (steps 4-6 of Figure 3.7).

The archive evaluations (ipcaEvaluation, Algorithm 25 called on line 4 of Algorithm

3) are driven by the notion of providing distinctions between learners [34]. The

particular model that we follow takes as a basis de Jong’s IPCA algorithm [23]. The

concept of distinctions was shown to specifically address the coevolutionary problem

of disengagement [24], where the point population dominate the learner population

resulting in a loss of training gradient. This can occur when points are rewarded for

explicitly defeating the learners rather than distinguishing between them.

The archiving approach employed here differs from IPCA [23] and Lemczyk’s

binary adaptation [70] [71] in two respects. First, multiple independent archives

are maintained concurrently, each corresponding to a different class of the problem.

This is necessary in order to ensure interactions maintain a training gradient that is

relevant with respect to each class. Within each point archive, we enforce a 50-50

balance between {in, out}-of-class points on the archive contents (where the notion

of an ‘in’ or ‘out-of-class’ point is obviously with respect to the class of the archive).
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Secondly, the definition of an outcome has been reformulated to take on real values

as opposed to binary in the outcome evaluation of Algorithm 26 (calcOutcomes). An

outcome is the result of an interaction between a learner and a point. The set of

outcomes defined for each learner with respect to its corresponding archive provides

the basis for which archive entry is assessed in Algorithm 25 (ipcaEvaluation). In

this work, outcomes are evaluated with respect the class of the learner and take on

real values in the range (0,1] based on the the learner’s membership y as defined in

(3.2). Specifically, Algorithm 26, lines 6 and 8 define a learner’s outcome for a given

point as:

outcome =

{
y if point is in-class

1− y otherwise
(3.6)

3.8.1 Archive Entry Criteria: Distinctions and Usefulness

Both point and learner archives are driven by the notion of distinctions [34]. Con-

sistent with IPCA, a point is said to provide a distinction between learners (i.e., it is

considered to be a useful test) if the outcomes of a learner that was previously Pareto

dominated by the learner archive become Pareto equivalent to the learner archive

with the addition of the point. In this situation, the learner in question is said to

become useful with the addition of the point to the point archive.

On each call to the high level archive evaluation, Algorithm 25 (ipcaEvaluation),

IPCA specifies that all useful points and learners are committed to the archives. This

will be relevant for CMGE in the non-converged classes (those in NC), therefore the

learner archive outcomes in relation to the point archives are calculated at the outset

(lines 2-4) for the non-converged classes only. Finding useful points thus first requires

identification of all useful and non-useful learners (lines 5-12). On line 7 the usefulness

of learners is determined by Algorithm 27, isUseful. Usefulness of a learner L with

respect to a set of learners LS is established in the CMGE context if the learner

is non-dominated and unique in terms of the real-valued outcome vectors. This is

satisfied when the aDomB function (of Algorithm 21) returns 0 for every learner in

LS evaluated against L, on line 2.

Next the useful points are identified in Algorithm 25 as those promoting some
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non-useful learner to useful (line 17). Learners thus promoted (becoming useful with

the relevant point addition) are retained on line 16 to be later evaluated and poten-

tially committed to the learner archives. Line 24 passes the useful points UP and

useful learners UL along with the current archives and the number of classes c to the

updateArchives function (Algorithm 28) for final learner evaluations and commitment

of learners and points.

3.8.2 Class-specific Archive Update Rules

CMGE’s archive update function (updateArchives, Algorithm 28) requires class-

specific commitment of points and learners in order to maintain learners and points

that have gradient relevance with respect to their classes. Specifically, points that

have previously been deemed useful (j ∈ UP ) with respect to a learner (of class i)

and the class i learner archive LA[i], are committed to the class i point archive PA[c]

on lines 1-6.

Next, lines 7-10 of Algorithm 28 re-evaluate the previously deemed useful learners

UL against their respective (newly updated) point archives. Those again deemed

useful (line 10) are committed to the learner archive LA matching their class lc (line

12 or 14 for CMGE1 and CMGE2, respectively). Finally lines 16-22 check for the case

of an undefeated learner. When a learner has no outcome less than 1 (line 16), it is

undefeated and a point should be inserted into the undefeated learner’s corresponding

point archive in order to guide the next cycle of learning towards improvement. To do

so, the outcomes of the undefeated learner are calculated relative to the point archive

(line 17) and the point resulting in the minimum outcome (line 18) is added to the

point archive (line 20).

3.8.3 Archive Insertions and Pruning

In order to maintain an upper bound on the archives, pruning may be necessary prior

to insertion of the new learner or point member. A maximum size LAsize, PAsize is

therefore imposed on the learner and point archives, respectively, in order to sustain
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Algorithm 25 ipcaEvaluation( . . . ) - IPCA archive entry criteria evaluations.

Input: Assumes global read / write access to variables described in Table 3.1.
Output: Modified learner, point archives.

1: UL := {∅};UL := {∅};UP := {∅}
2: for i ∈ NC do
3: calcOutcomes( LA[i], PA[i] )
4: end for
5: for i := 0 . . . |LP | − 1 do
6: calcOutcomes( LP [i], PA[LP [i].class] )
7: if ! isUseful( LP [i], LA[LP [i].class] ) then
8: UL := UL ∪ LP [i]
9: else

10: UL := UL ∪ LP [i]
11: end if
12: end for
13: for i := 0 . . . |UL| − 1 do
14: lc := UL[i].class
15: for j := 0 . . . |PP | − 1 do
16: calcOutcomes( LA[lc], PA[lc] ∪ PP [j] )
17: calcOutcomes( UL[i], PA[lc] ∪ PP [j] )
18: if isUseful( UL[i], LA[lc] ) then
19: UL := UL ∪ UL[i]
20: UP [lc] := UP [lc] ∪ PP [j]
21: end if
22: end for
23: end for
24: updateArchives( UL,LA,UP, PA, c )

Algorithm 26 calcOutcomes( L, P ) - IPCA outcome vector evaluation.

Input: Learners L to find real-valued outcomes on points P .
Output: Assumes L passed by reference.

1: for i := 0 . . . |L| − 1 do
2: calcGpOut( L[i], P )
3: wrapGpOut( L[i] )
4: for j := 0 . . . |P | − 1 do
5: if L[i].class = class( P [j] ) then
6: L[i].outcome[j] := L[i].y[j]
7: else
8: L[i].outcome[j] := 1− L[i].y[j]
9: end if

10: end for
11: end for
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Algorithm 27 isUseful( L,LS ) - IPCA ‘useful’ evaluation.

Input: Learner L outcome array is evaluated against the outcome arrays of the set
of learners LS to determine usefulness (i.e. non-dominated and unique).

Output: 1 if useful; 0 otherwise.
1: for i := 0 . . . |LS| − 1 do
2: if aDomB( LS[i], L ) = ± 1 then
3: return 0
4: end if
5: end for
6: return 1

Algorithm 28 updateArchives( UL,LA,UP, PA, PP, c ) - IPCA archive updates.

Input: Useful Learners UL, learner archives LA, useful points UP , point archives
PA, point population PP , number of classes c.

Output: Assumes LA,PA passed by reference.
1: for i := 0 . . . c− 1 do
2: for j := 0 . . . |UP [i]| − 1 do
3: archivePoint( UP [i][j], PA[i] )
4: end for
5: calcOutcomes( LA[i], PA[i] )
6: end for
7: for i := 0 . . . |UL| − 1 do
8: lc := UL[i].class
9: calcOutcomes( UL[i], PA[lc] )

10: if isUseful( UL[i], LA[lc] ) then
11: if CMGE1 then
12: archiveLearner( UL[i], LA[lc] ) /* CMGE1: Greedy prune */
13: else
14: archiveLearnerTs( UL[i], LA[lc], PA[lc] ) /* CMGE2: Two stage prune */
15: end if
16: if @ o ∈ UL[i].outcome | o < 1 then
17: calcOutcomes( UL[i], PP )
18: [omin, imin] := min( UL[i].outcome )
19: if omin < 1 then
20: archivePoint( PP [imin], PA[lc] )
21: end if
22: end if
23: end if
24: end for
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Algorithm 29 archiveLearner( L,LA ) - Greedy learner archive insertion.

Input: Learner L to be archived to learner archive LA.
Output: Assumes LA passed by reference.

1: if |LA| < LAsize then
2: LA := LA ∪ L
3: else
4: imin := 0
5: smin := LAsize
6: for i := 0 . . . |LA| − 1 do
7: if s := sum( LA[i].outcome ) < smin then
8: smin := s
9: imin := i

10: end if
11: end for
12: LA[imin] := L
13: end if

Algorithm 30 archiveLearnerTs( L,LA, PA ) - Two-stage learner archive insertion.

Input: Learner L to be archived to archive LA; corresponding point archive PA.
Output: Assumes LA passed by reference.

1: if |LA| < LAsize then
2: LA := LA ∪ L
3: else
4: imin := 0
5: smin := LAsize
6: Louts := {L.outcome[pout] | pout ∈ PA ∧ class(PA[pout]) 6= L.class}
7: for i := 0 . . . |LA| − 1 do
8: LAouts := {LA[i].outcome[pout] | pout ∈ PA ∧ class(PA[pout]) 6= L.class}
9: if s := sum( LAouts ) < smin then

10: smin := s
11: imin := i
12: end if
13: end for
14: if smin < sum(Louts) then
15: LA[imin] := L
16: else
17: archiveLearner(L,LA)
18: end if
19: end if
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Algorithm 31 archivePoint( P, PA, cPA ) - IPCA point archive insertion.

Input: Point P to be archived to point archive PA (of class cPA).
Output: Assumes PA passed by reference.

1: if class( P ) = cPA then
2: PAc := {p ∈ PA | class(p) = cPA}
3: else
4: PAc := {p ∈ PA | class(p) 6= cPA}
5: end if
6: if |PAc| < PAsize

2
then

7: PA := PA ∪ P
8: else
9: [dmin, imin] := min( dist( P, PAc ) )

10: PAc[imin] := P
11: PA := (PA ∩ PAc) ∪ P
12: end if

computational and resource efficiency in the training algorithm. Efficiency is therefore

achieved at the potential expense of accuracy of learner evaluation.

In the case of point archiving (Algorithm 31, archivePoint) the point is simply

added to the archive so long as the archive has not reached the 50% in or 50% out-of-

class capacity (PAsize

2
), for an in or out-of-class point, respectively (lines 6-8). When

the capacity has been reached, the point (of the same class) having the minimum

Euclidean distance to the incoming point is removed (pruned) in favor of the new

point (lines 9-12). The distance is calculated over the pattern attributes (feature

space) associated with each point [70]. While a point is lost from the archive through

this process, the assumption is that the point inserted into the archive will provide

an alternative test that maintains the previous distinctions while establishing a basis

for further learning.

When a learner archive has reached capacity (LAsize), a member must be chosen

for replacement. In the case of the learner archive, pruning risks correctly identifying

a complete set of expressions that are able to decompose the classification problem,

while in the case of the point archive pruning may introduce errors in identifying

training objectives and cause cycles of forgetting in the learning process. The two

variants of the CMGE algorithm benchmarked in this thesis are distinguished by their

approaches to learner pruning as described in the following sections.
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CMGE1

The CMGE1 is distinguished by the learner archiving algorithm (Algorithm 29,

archiveLearner). Algorithm 29 simply adds the new learner to the archive when

the capacity has not been reached (lines 1-3); otherwise the algorithm proceeds by

pruning the learner archive member having the lowest sum of real-valued outcomes

on lines 6-10 (against its class-appropriate archive), which is then replaced by the

incoming learner (line 12). This pruning architecture is meant to encourage strong,

accurate decisions among learner archive members. Moreover the pruning policy does

not discriminate between the types of errors made by the classifiers (i.e., error that

would contribute toward false positives vs. false negatives); when all else is the same,

pruning therefore favors the learner archive members making strongly decisive clas-

sifications over sheer numbers of correct classifications as predicted by, for example,

the binary (ô) outputs. This policy was designed to encourage survival of potentially

cooperative team members by pruning individuals that respond weakly to archive

points and may therefore cause conflicts in team-based classifications post-training.

CMGE2

The learner archiving algorithm distinguishing CMGE2 from CMGE1 (Algorithm

30, archiveLearnerTs) employs a two part greedy learner pruning policy as follows:

the learner archive member having the lowest sum of real-valued outcomes (against

its class-appropriate archive) across out-of-class points (identified by lines 7-13) is

replaced by the incoming learner if the new learner represents an improvement in

this respect (lines 14-15). Otherwise, the archive member having the lowest sum of

outcomes is replaced as in CMGE1 (lines 16-18). This policy therefore discriminates

against false positive error in the archive members by preferring to prune according

to error type; however, when the incoming learner has a lower sum of out-of-class

outcomes, the replacement policy reverts to the default policy of CMGE1, described

above.

This pruning policy aims first to reduce the potential for false positive errors while

encouraging strong, class-consistent decisions in learner archive members regardless

of the number of total correct classifications. This policy was designed to explicitly
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reduce the occurrence of false positives and thereby improve overall classification per-

formance. Moreover, the policy also encourages the survival of potentially cooperative

team members by pruning individuals that respond weakly to archive points and may

therefore cause conflicts in team-based classifications post-training.

3.9 Early Stopping Criteria

To identify a converged state among learner population members (step 5 of Algorithm

3) we employ the convenient stopping criteria identification method of Pareto-rank

histograms, introduced under a GA context by Kumar and Rockett [66]. CMGE

employs rank histograms, which are generated from the ratio of the number of learners

at each rank in the learner population between the current and previous epochs, are

employed to identify class-wise early stopping in Algorithm 32, stopCmge.

Lines 1 and 2 indicate that separate rank histograms are generated (by the call to

Algorithm 33, rankHist) for each non-converged class in NC in the learner population

LP , such that at most c histograms are constructed for a c class problem.

Class-wise rank histograms are generated by Algorithm 33, rankHist based on [66],

are generated with respect to learner populations of successive epochs (LPt, LPt−1)

by first combining learners of the same class from both populations (into LPc) and

re-ranking all learners on lines 1 and 2, respectively. Each rank histogram entry (in

R) is a ratio of the number of learners of class c in the current population LPt to the

number of learners having the same rank in LPc as determined in the loop of lines

3-7.

Algorithm 32, stopCmge, continues on line 3, where a match (defined as a distance

less than MIN DIFF, Table 4.5) between learner population class rank histograms

of successive epochs (RH,RHt−1) indicates that further progress is unlikely on the

class [66], and the class is therefore removed from the non-converged array NC on

line 42. If more classes remain (skipping lines 6-8), the learners associated with the

2For pragmatic reasons, step 3 of Algorithm 32 also requires that the number of learners
corresponding to the histogram class under consideration must be beyond a minimum threshold
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Algorithm 32 stopCmge( . . . ) - Evaluation of early stopping criteria.

Input: Assumes global read / write access to variables described in Table 3.1.
Output: 1 if a stopping criterion has been reached; 0 otherwise.

1: for i := 0 . . . |NC| − 1 do
2: RH[NC[i]] := rankHist( LP,LPt−1, NC[i] )
3: if dist( RH[NC[i]], RHt−1[NC[i]] ) < MIN DIFF then
4: NC := NC −NC[i]
5: if |NC| = 0 ∨ epochs = MAX EPOCHS then
6: Stop criteria = 1
7: return 1
8: end if
9: initLearners( {l ∈ LP | class(l) = NC[i]} )

10: else
11: RHt−1[NC[i]] := RH[NC[i]]
12: end if
13: end for
14: LPt−1 := LP
15: return 0

Algorithm 33 rankHist( LPt, LPt−1, c ) - Rank histogram calculation.

Input: Current learner population LPt, previous learner population LPt−1 and class
c over which to calculate rank histogram.

Output: R, rank histogram.
1: LPc := {l ∈ LPt ∪ LPt−1 | class(l) = c}
2: rankLearners( LPc )
3: for i := 1 . . . LPsize do
4: Rt[i] := |{l ∈ LPt | l.rank = i ∧ class(l) = c}|
5: Rc[i] := |{l ∈ LPc | l.rank = i}|
6: R[i] := Rt[i]

Rc[i]

7: end for
8: return R
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newly converged class are then re-distributed (to non-converged classes) by the call

to initLearners (Algorithm 5) on line 9. Moreover, lines 5-8 stop the main loop of

cmgeMain (lines 2-6 of Algorithm 3) when the NC array is empty or if the training

cycle counter epochs exceeds MAX EPOCHS (Table 4.5).

3.10 Post-training: Assembly of Classifiers

Algorithm 34 buildSolution( LA, TD ) - Returns final solutions with weights.

Input: Learner Archives LA and training data TD.
Output: Final solution (weighted learners) S.

1: S := LA[1] ∪ . . . ∪ LA[c]
2: for l := 0 . . . |S| − 1 do
3: for i := 1 . . . c do
4: n̂[i] := |{pt ∈ TD | S[l].ô[pt] = 1 ∧ class(pt) = i}|
5: t[i] := |{pt ∈ TD | class(pt) = i}|
6: end for
7: N̂ := sum(n̂)
8: for i := 1 . . . c do
9: F [i] :=

(
n̂[i]
t[i]

)(
n̂[i]

N̂

)
/* ‘Favorability’ for class i [102] */

10: end for
11: weight := max(F )

sum(F )

12: S[l].w := weight
13: end for
14: return S

The main CMGE loop (lines 2-6 of Algorithm 3) is concluded when a stopping

criterion is reached as described in Section 3.9, above. Post-training, the learner

archives are finally merged on line 7 (Algorithm 3) to form a solution set S with the

call to buildSolution (Algorithm 34), which is responsible for processing the learner

archives to identify the degree to which each of the individuals will participate in

making classifications. Such a model assumes that classifiers are deployed in parallel,

thus supporting multi-class as well as single label applications. In this work, we

implement a basic winner-take-all scheme where the individual’s y values (as defined

in (3.2)) are weighted with a confidence, w. The class of the individual having the

(CONV MIN POP) and that the current cycle of learning epoch (see Algorithm 6, trainCmge) must
be beyond a minimum fraction (CONV FRAC) of MAX EPOCHS. For parameter specifications,
see Table 4.5.
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highest confidence weighted membership value (w · y) is predicted by the classifier for

a given input pattern. The confidence weighting (w ∈ [0, 1]) for each individual in

the solution set is calculated and assigned on lines 11-12 in terms of its favorability

set as:

w =
max (F )∑

F
. (3.7)

The elements of the favorability set F (established on lines 8-10) for an individual

are defined over the classes (i = 1 . . . c) of the entire set of training data TD as [102]:

F [i] :=

(
n̂[i]

t[i]

)(
n̂[i]

N̂

)
(3.8)

where

n̂[i] = |{pt ∈ TD : ô = 1 ∧ class(pt) = i}|, (3.9)

t[i] = |{pt ∈ TD : class(pt) = i}|, (3.10)

and

N̂ =
c∑
i=1

n̂i. (3.11)

are calculated over the loop of lines 3-6, with N̂ being assigned on line 7. The

favorability for a class c, F [c], is interpreted as the joint probability of a pattern of

class c being classified by learner l and an exemplar classified by l being of class c

[102]. The weight calculation of line 11 therefore normalizes the maximum probability

by the sum of all (class-wise) probabilities, bringing the final weight w into the range

[0,1].

3.11 The Potential Function

The Potential Function algorithm is an iterative process for defining cluster centers

and hard cluster memberships given an array of points in n dimensions (for the current

application this is 1 dimension) [18]. The algorithm does not make any assumptions

regarding the number of clusters present in the data, but is based on a Gaussian
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Algorithm 35 potentialFn( X ) - Clustering by the Potential Function.

Input: An array of real valued points X
Output: An array of cluster centers C

1: C := {∅}
2: for i := 0 . . . |X| − 1 do
3: P [i] := 0
4: for j := 0 . . . |X| − 1 do
5: P [i] := P [i] + exp(−α‖X[i]−X[j]‖2)
6: end for
7: end for
8: P ∗max := max( P )
9: loop

10: [Pmax, imax] := max( P )
11: if Pmax > γupper · (P ∗max) then
12: C := C ∪ imax
13: for i := 0 . . . |X| − 1 do
14: P [i] := P [i]− Pmax · exp(−β‖X[i]−X[imax]‖2)
15: end for
16: end if
17: X := X −X[imax]
18: if Pmax < γlower · (P ∗max) ∨ |X| = 0 then
19: return C
20: end if
21: end loop

Algorithm 36 dist( P,Q ) - Euclidean distance calculation.

Input: Numeric arrays (points) P and Q having same dimensions.
Output: Euclidean distance d between P and Q.

1: d := 0
2: for i := 0 . . . |P | − 1 do
3: d := d+ (P [i]−Q[i])2

4: end for
5: return

√
d
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kernel and as such requires a priori declaration of two radii parameters, α and β.

Beyond requiring that the number of clusters not be specified a priori, any clustering

algorithm would be appropriate.

The algorithm (Algorithm 35, potentialFn) begins by identifying each point’s

candidate potential with respect to all other points, using a suitable distance metric

(Algorithm 35, lines 2 to 7). The distance metric is referred to as the Potential

Function where α provides a means to influence the granularity of clusters on line 5.

Points having the greatest degree of similarity to the current point, X[i], contribute

the most to the corresponding potential P [i]. Points having many neighbours in near

proximity will therefore be assigned the greatest potentials.

Next the value of the highest total initial potential P ∗max is identified in Algorithm

35, line 8. The point (imax) having the highest current potential (Pmax) is then tested

with respect to γupper ·P ∗max to determine the creation of a new cluster center on lines

10 to 11, where γupper ∈ (0, 1] is chosen as a fraction of the initial potential required

to constitute a new cluster.

If the current value of Pmax is sufficiently large, the assignment to the set of cluster

centers C on line 12 then proceeds and this point’s influence on the remaining points

is removed in lines 13 to 15, where β (> α) is the radius associated with the Potential

decay process and thus each cluster member’s potential is reduced by an amount

proportional to its distance from the current maximum potential Pmax.

The current imax point is removed from further consideration on line 17, and the

entire process iterates until a successful test for the end condition on line 18 triggers

the return of the cluster set C, where γlower ∈ [0, 1] is chosen as a fraction of the

initial potential required to stop further consideration of new clusters.

The assignment of points X[i] to clusters is determined by the point X[imax]

corresponding to the greatest reduction in potential P [i] during the decay loop.

Parameter values for all experiments requiring the Potential Function are provided

in Table 4.5.
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3.12 Summary

Having reviewed the related literature in chapter 2, we present a holistic approach

for dealing with the factors central to reducing the computational overheads of GP

based classification under binary and multi-class domains. Relative to the five factors

of Equation (1.1) we identify the following properties in our approach:

Number of GP runs : Naturally, by assuming a stochastic learning algorithm,

we expect to perform repeated trials for different initializations of the model

populations and stochastic decision makers. However, we might speculate that

by being able to decompose the problem into smaller / easier subproblems,

that the degree of variance in the solutions is lower than when a single ‘super’

classifier is sought.

Number of classes : The proposed model evolves all classifiers from a single pop-

ulation, thus avoiding the need to perform as many sets of GP runs as classes.

Generation limit : The use of a model for dynamically re-directing learners implic-

itly provides a mechanism for detecting early stopping conditions. Moreover,

the approach is based on an analysis of Pareto archive behavior, rather than ’er-

ror’, and as such avoids the problem of setting problem dependent convergence

thresholds.

Population size : This is indirectly adapted through the class wise stopping crite-

rion, with classes converging early resulting in their search resource being made

available for the remaining classes. As such we gain a mechanism for resizing

the population class wise, under a constant population limit.

Data set exemplar count : Adoption of a competitive coevolutionary model en-

ables us to efficiently sub sample the original training data, independently of

the overall exemplar count.

As such, the proposed algorithm has an evaluation count of the following form:

Evals = I × P × SS × ES (3.12)
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where I is the number of initializations, P is the population size, SS is the subset

size, and ES is the worst case epoch limit (ES <= MAX EPOCHS).

Relative to the original expression, Equation 1.2, we have dropped the require-

ment to iterate over each class, and reduced |TD| to SS and G need not rely on an

a priori, possibly conservative estimate, of the generational limit. In addition, we

have incorporated a parsimony bias, care of the multi-objective fitness function, thus

further reducing the cost of the inner loop relative to that of canonical GP.

Central to achieving these ‘speedups’ was adopting a mechanism for describing

class membership in terms of a local membership function, without having to resort

to the heuristic partitioning of the gpOut axis. Evolutionary multi-objective opti-

mization is then used to guide the evolution of desirable subsets of non-overlapping

exemplars to a class consistent membership profile. A natural consequence of this

mechanism is that we how have a model for problem decomposition, whereas previ-

ous approaches at best, produced solutions in the form of one individual per class

[93], [121]. The integration of EMO with competitive coevolution provides the basis

for focusing the search process on the most important goals, whilst doing so with a

minimal computational footprint. Finally, we explicitly make use of previous research

on appropriate biases for sampling the larger data set by assuming a class balance

heuristic. This is particularly important as competitive coevolution is not able to

direct the sampling of test points until useful test points have been discovered.

3.13 Computational Complexity Analysis

The time complexity of each algorithm provided in this chapter will now be analyzed

with brief discussions appearing in Table 3.2. The time complexities of the high level

functions are addressed in more detail in the sections below.

3.13.1 Extended Complexity Discussion

For the high level functions discussed in the next sections, the following simplifying

assumptions are proposed:

1. Point dimension is small, fixed for a problem;
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2. S = LAsize ' PAsize ' PPsize ' LPsize;

3. Number of classes, c << S.

cmgeMain

The time complexity of the main function is dominated by the while loop, which

iterates until stop criteria have been met. At worst, this involves MAX EPOCHS

iterations over high level functions: trainCmge (O (S2 + S · |TS|2)), ipcaEvaluation

(O (S4)) and stopCmge (O (S2)). Finally, the post training call to buildSolutions is

O (c · LAsize · |TD|). These complexities are additive and the overall complexity is

O (MAX EPOCHS · (S4 + S · |TS|2) + c · LAsize · |TD|), assuming that the simplify-

ing assumptions are permitted. Each high level function is discussed in detail below.

Derivations of time complexities for low level functions are provided in Table 3.2.

trainCmge

The first section of this function requires a call to fillPtPop (O (|PP |)) and then a

call to evalArchives and evalLearners. This costs on the order of O (|LP | · |TS|2),

which dominates the complexity of this first section.

The second section begins with the for loop on line 5 which is over |LP | and itera-

tively calls the following functions of significance: select, replace (O (|LP |)), each; ap-

plyXover, applyMutationO (CODONS), each; and evalLearners (O (|L| · |TS|2 + |L|2))

which in this context can be reduced to O (|TS|2), since |L| = |C| = 2. Ignoring the

O (CODONS) term, this leaves O (|LP |2 + |LP | · |TS|2). When additively combined

with the cost of the first section provides O (|PP |+ |LP |2 + |LP | · |TS|2). If the

simplifying assumptions are allowed, this reduces to O (S2 + S · |TS|2).

ipcaEvaluation

Lines 2-4 evaluate the outcomes of the non-converged learner archives against their

respective point archives (|NC| · |LA| · |PA|). Lines 5 to 12 evaluate the outcomes of

the learner population against the point archives (O (|LP | · |PA|)) and evaluates use-

fulness on these outcomes (O (|LP | · |LA| · |PA|)). Lines 13 to 23 introduce a double
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for loop (over learners and points) which calls calcOutcomes and isUseful. The results

of calcOutcomes are over the point archives and so can be cached so that only one

new outcome is required on each iteration, making these calls approximately constant.

The isUseful call requires |LA| · |PA| evaluations in this context, making the double

loop complexity O (|LP | · |PP | · |LA| · |PA|). Finally a call to updateArchives is re-

quired on line 24. Under the simplifying assumptions, the double for loop dominates

the complexity with O (S4)

updateArchives

Lines 1 to 6 require |NC| traversals of the useful points (size |PP |), each of which

calls archivePoint (O (|PA| · |P |)). Additionally the learner outcomes are calculated

against their respective archive (O (|LA| · |PA|)) for each element in NC for a com-

bined complexity of O (|NC|(|PP | · |PA| · |P |+ |LA| · |PA|). If the simplifying as-

sumptions are allowed, this reduces to O (S2).

Lines 7 to 24 loop over the useful learners calling the following functions on each

iteration:

1. calcOutcomes (O (|PA|))

2. isUseful (O (|LA| · |PA|))

3. archiveLearner (O (|LA| · |PA|))

4. calcOutcomes (O (|PP |))

5. min (O (|PP |))

6. archivePoint (O (|PA| · |p|), p ∈ PA))

This provides complexity of O (|LP |(|PA|+ |LA| · |PA|+ |PP |+ |PA| · |p|). If the

simplifying assumptions are allowed, this reduces to O (S3).

stopCmge

The evaluation of early stopping criteria is performed over each non-converged class

requires a call to rankHist which combines and re-ranks learner populations from
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the current and previous epochs at a cost of O (|NC| · |LP |2 · |Objective|). In the

current framework, the number of objectives is small (4) and using the simplifying

assumptions, the complexity reduces to O (S2)

buildSolution

The post training assembly and weighting of solutions is over the total number of

solutions c · LAsize, which additionally requires a loop over the training data, TD

on lines 3-6 to find n̂ and t for each class. Post training complexity is therefore in

O (c · LAsize · |TD|)

3.13.2 Time Complexity Analysis

Table 3.2: Algorithm Time Complexity Analysis

Algorithm Time Complexity Discussion

cmgeMain See section 3.13.1, cmgeMain See section 3.13.1, cmgeMain

initCmge O (|LP | · CODONS) In practice the initialization

of learners on line 2 dominates the

complexity and this algorithm has

the same complexity as initLearners()

trainCmge O
`
S2 + S · |TS|2

´
See section 3.13.1, trainCmge

ipcaEvaluation O
`
S4

´
See section 3.13.1, ipcaEvaluation

updateArchives O
`
S3

´
See section 3.13.1, updateArchives

stopCmge O
`
S2

´
See section 3.13.1, stopCmge

buildSolution O (c · LAsize · |TD|) See section 3.13.1, buildSolution

initLearners O (|L| · CODONS) Loops |L| times over the

number of codons, CODONS with each

iteration being a constant call (random).

Assumes the repeat ... until loop will

map within a constant number of

iterations.

fillPtPop O (PPsize) Assumes that TD can be

sorted by class in advance (required

once only), then loops

over PPsize, each

being constant assignments.

select O (|LP |) Requires to loop twice over LP ,

once to find sum of population fitness

and once to find where the random

value falls.

Continued on next page



116

Table 3.2 Algorithm Time Complexity Analysis – continued from previous page

Algorithm Time Complexity Discussion

applyXover O (CODONS) Requires CODONS iterations to assign

random codon values to L1, L2.

Assumes the repeat ... until loop will

map in constant iterations.

applyMutation O (|L| · CODONS) Requires CODONS iterations to assign

random codon values |L| times. In

practice, |L| is 2, so this is essentially

O (CODONS). Assumes the

repeat ... until loop will map in constant

iterations.

geMap O (|C|) Requires the expansion of at most

|C| non-terminal symbols from the stack.

Each expansion is a constant time lookup

into G. In practice this may be repeated

for a constant number of wrap events

but does not affect complexity.

aDomB O (|Objective|) Requires two comparisons for

each objective, therefore

O(|A,B.Objective|).
replace O

`
|LP |2 · |Objective|

´
Requires a single pass of the learner

population to find minimum rank in

LP for each member of C (in

practice this is two). Finally

requires a call to rankLearners, which

dominates the complexity of the linear

time min function.

rankHist O
`
|LP |2 · |Objective|

´
Requires a call to rankLearners,

which is O
`
|LPc|2

´
where LPc is

at most 2 · |LP | and thus rankLearners

dominates the complexity.

potentialFn O
`
|X|2

´
Initially requires calculation

of distance matrix (in practice these are

all in one dimension, making the distance

constant), therefore O
`
|X|2

´
. The

second section of the algorithm can loop

a maximum of |X| times, removing one

point per iteration and applying the

potential decay process to all |X|
points.

dist O (|P |) Requires a single pass to

calculate difference over all point

dimensions, therefore O (|P |).
evalLearners O

`
|L| · |TS|2 + |L|2

´
Requires that

for all learners in L, calls

Continued on next page
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Table 3.2 Algorithm Time Complexity Analysis – continued from previous page

Algorithm Time Complexity Discussion

assignLMF (O
`
|TS|2

´
); calcGpOut,

wrapGpOut, and evalObjectives are also

called but these are all linear with

respect to |TS|. Finally calls

rankLearners, which adds O
`
|L|2

´
.

evalArchives O (|LA| · |TS|) Two passes

over LA for each element in TS.

calcGpOut O (|TS|) One evaluation per point in TS

wrapGpOut O (|TS|) One evaluation and two

assignments for each point in TS

as passed to calcGpOut.

assignLMF O
`
|TS|2

´
The call to potentialFn

dominates the linear calculation of

s over TS.

evalSse O (|Y |) Requires a single pass over

each label in L, output in Y .

rankLearners O
`
|L|2 · |Objective|

´
Initializes ranks for a

cost O (|L|) then tests dominance

(aDomB) property between all pairs of

learners. In principle this testing adds

O
`
|L|2 · |Objective|

´
but can,

in practice, be reduced to O
`
|L|2

´
.

test O (1) Requires 1 random number.

random O (1) Requires 1 calculation.

evalObjectives O (|TS|) Requires call to evalSse,

countTruePositive, and evalOverlap,

which are all O (|TS|) in this context.

Assume strlen is constant.

archivePoint O (|P | · PAsize) Assuming the point

archives provide class-specific access,

the selection of PAc is constant.

When the condition on line 6 fails,

the a prune is required and the closest

archive point must be found at a

worst-case cost of

O (|P | · PAsize)

archiveLearner O (LAsize · |outcome|) When the initial

condition fails, a prune is required

which calculates the minimum sum

of outcomes over the archive size,

O (LAsize · |outcome|).
calcOutcomes O (|L| · |P |) Requires a call

to calcGpOut and wrapGpOut

(O (|P |), each) over each learner

Continued on next page
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Table 3.2 Algorithm Time Complexity Analysis – continued from previous page

Algorithm Time Complexity Discussion

in L. A constant assignment is

additionally required for each

element in P , however this is

additive and therefore complexity

remains O (|L| · |P |).
isUseful O (|LS| · |outcome|) Requires evaluation of

dominance property (aDomB) against

the set of learners LS, each being

O (|Objective|), where this evaluation

considers learner outcomes as

objectives.



Chapter 4

Benchmarking Methodology

Chapter three established the CMGE model for multi-class classification under a

multi-objective competitive coevolutionary paradigm utilizing a local membership

function. Needless to say, there are multiple differences relative to a canonical GE

classifier. Our objective is now to design a benchmarking methodology that is able to

incrementally demonstrate the utility of different elements of the CMGE framework,

both with respect to related GP classifiers, and the wider machine learning literature.

To this end we approach the problem from three perspectives:

1. Comparison against related GE models: We consider a total of three GE models

incorporating incremental changes from canonical GE to a competitive coevolu-

tionary model of GE, and two variants of CMGE implementing different pruning

heuristics, as follows.

(a) Standard GE (StdGE – Section 4.1.3): We begin by establishing a (stochas-

tic learner) baseline in terms of a GE classifier trained over all exemplars

in the training data, denoting such a model ‘StdGE’. Our motivation here

is to provide a reference point characterizing the classical canonical ap-

proach to GP classification. The canonical GE model is common to all

GP classifiers studied in this thesis, and follows the algorithm detailed in

Section 2.1 (or steps 5 to 18 of Algorithm 9).

(b) Random (Balanced) Subset Selection (Rss GE – Section 4.1.4): The sec-

ond GE model introduces class balanced random sampling of the train-

ing data to fill a subset of exemplars over which fitness evaluation takes

place, RssGE. This represents the most straightforward approach for deal-

ing with the computational overhead of GE, whilst avoiding the likelihood

of degenerate solutions under unbalanced data sets (care of the equal class

representation constraint).

119
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(c) Pareto-coevolutinoary GE Classifier (PGEC – Section 4.1.5): Our third

comparative algorithm adds the IPCA competitive coevolutionary model

of de Jong (and shared by CMGE) to GE, resulting in the PGEC model.

Benchmarking this model quantifies the difference between assuming CMGE’s

multi-objective model (with local membership function) as opposed to a

GE classifier based on an SSE cost function calculated according to a sig-

moid wrapper function. Note that both models return a set of solutions

(the Pareto front). However, we maintain that the CMGE model is able

to provide a much more accurate model for problem decomposition than

PGEC on account of the local membership function and accompanying

multiple objectives.

(d) Competitive Multi-objective GE (CMGE1 and 2 – Sections 4.1.1 and

4.1.2): Finally, we investigate the utility of two pruning heuristics un-

der the CMGE paradigm, one purely greedy in this respect and the other

taking class-specific error into account, resulting in CMGE1 and CMG2

variants of the generic CMGE model.

2. Comparison against other machine learning models requiring free parameter

initialization: EC algorithms by their very nature require multiple initializations

in order to establish sensitivity to the model initialization step1. We therefore

compare GE classifiers to two widely utilized Neural Network (NN) models,

denoting an example of a machine learning algorithm that is also sensitive to

model initialization (in this case weight matrix), therefore requiring multiple

model initializations per data partition. The NN paradigm is also interesting

from the perspective that it generally assumes a rather different set of modeling

biases than those assumed in EC. In particular, NN models generally assume a

fully connected neurological basis for model building in which all features are

explicitly indexed. Conversely, GP runs do not generally result in solutions

that index all features, and have this property embedded as a basic search bias.

Needless to say, there is potentially a wide range of NN models appropriate to

1We differentiate between parameters of the learning algorithm and free parameters of the model
(i.e., representation).
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classification problems with various different representations e.g., ART, RBF,

MLP [48]. In this case we elect to concentrate on the popular paradigm of

feedforward neural networks, a decision that lets us compare linear and non-

linear variants of the same feedforward model.

(a) Linear Perceptron (LP – Section 4.1.6): The linear perceptron is a single

layer architecture trained using a credit assignment policy based on gradi-

ent decent. As such, the model will ‘descend’ to the nearest local minima

relative to the initial location in search space, where such locations are

defined by the initialization of model parameters. Moreover, by assum-

ing a single layer architecture, the model is limited to building solutions

from linearly separable combinations of the input features. However, this

in itself can be of significant utility when attempting to establish the ad-

vantage / disadvantage of non-linear models (such as GE). Finally, unlike

previous studies in which NN methods have been benchmarked against GP

classifiers we make use of an efficient second order policy for performing

gradient decent. That is to say, comparative studies to date have tended

to focus on feedforward models trained using first order gradient decent

with momentum e.g.,, RPROP [15]. Such algorithms have widely been

known to suffer from sensitivity to the initialization of model parameters,

resulting in the utilization of a wide range of second order methods [69],

[10].

(b) Multi-layer Perceptron (MLP – Section 4.1.7): This is a natural extension

of the Linear Perceptron, the only model difference being the inclusion of a

second layer of ‘hidden’ neurons between input features and layer of output

neurons. All other aspects of the model remain unchanged relative to the

linear perceptron. However, the addition of the hidden layer is sufficient to

turn the MLP into a universal approximator [48], although the sensitivity

to initial conditions has also increased on account of the additional model

complexity and greedy credit assignment policy.

3. Comparison against deterministic machine learning models: A wide range of
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machine learning models adopt a greedy model for model construction directly

from the data set without assuming any biological motivation. Moreover, unlike

NN and EC models they do not have a set of model parameters, thus are only

sensitive to the composition of the data set (they will assume a set of learning

parameters, such as pruning factors etc., but both NN and EC models also have

such a set of learning parameters). For pragmatic reasons we limit ourselves to

three examples, presented as follows with increasing complexity:

(a) OneR (1R – Section 4.1.8): The 1R algorithm takes the form of a single

node decision tree, in effect classifying data based on the attribute most

closely correlated with the class label. Despite the simplicity of this model,

an early evaluation on data sets taken from the UCI repository indicated

that the model would provide solutions within 5% of the much more so-

phisticated C4.5 algorithm [52].

(b) Näıve Bayes (NB – Section 4.1.9): The Näıve Bayes algorithm is a widely

used statistical model based on prior probabilities estimated from the

training data partition. Although comparatively ‘simple’ to formulate,

the model is widely acknowledged to perform well on ‘difficult’ real world

problems [31], [97].

(c) C4.5 decision tree (J48 – Section 4.1.10): C4.5 is the very widely utilized

decision tree model of Ross Quinlan [96]. The model uses a greedy heuristic

based on normalized entropy estimates to inductively construct a decision

tree classifier. In common with OneR and Näıve Bayes it is very widely

utilized in benchmarking studies [74] [1].

In order to compare the CMGE paradigm to a cross section of alternative machine

learning algorithms, we are also interested in identifying models of classification that

scale to large data sets, are equally at home in multi-class and binary domains, and

are resilient to unbalanced distributions of class labels. In order to investigate the

resilience of the CMGE paradigm to these factors it is necessary to explicitly identify

data sets that demonstrate these properties to varying degrees. To this end we make

use of previous benchmarking studies to explicitly seek out the more interesting data
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sets [74], [117], [22], [15], as well as data sets explicitly compiled for international

competitions [30]. Section 4.3 presents the twelve data sets identified, where eight

are multi-class, and thee involve training data sets with over 10,000 exemplars.

Factors of interest include establishing the metrics used to qualify post training

performance, and relevant statistical methodology. We therefore complete our bench-

marking methodology by presenting our approach to evaluation in Section 4.4. The

latter point is particularly important when attempting to compare EC or NN models

against deterministic models. That is to say, deterministic models will produce a

single solution per data partition. Even with 10-fold cross-validation this only re-

sults in ten performance points, where this is not sufficient to establish the basis for

statistical tests. Conversely, EC and NN solutions require multiple runs per model

initialization, resulting in fifty or more solutions per data partition. A framework

is therefore necessary that enables us to compare single point solutions from a de-

terministic algorithm with sets of solutions from the EC paradigm. We address this

problem by considering the likelihood of EC solutions matching or exceeding the per-

formance point set by a deterministic method. Section 4.4 concludes by summarizing

the approach to assessing solution ‘coverage’ or diversity, where this is an important

attribute of learning models that present solutions in the form of an ensemble or team

of classifiers (as is the case with CMGE and PGEC).

Finally, Section 4.6 summarizes the experimental design, where this consists of five

sets of comparisons. In the first case various GE models are compared, beginning with

canonical GE (iterates over the entire data set), and finishing with std GE versus RSS

GE versus CMGE (all with a fixed evaluation limit) over all twelve data sets. Such

an analysis is performed with respect to both accuracy and the more robust ‘score’

metric. A specific ranking of model performance results in which CMGE appears as

a clearly superior model. CMGE is therefore retained for comparison against NN and

the deterministic machine learning models, with RSS GE also reported to establish

a GE performance base line. The remaining two experimental designs are used to

investigate more specialist properties of CMGE. Specifically a ‘coverage analysis’ is

established to demonstrate the different behavioral properties of the Pareto fronts.

Lastly we review the sensitivity of CMGE to learning parameter selection.
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4.1 Evaluation Limits and Methodology for Model Initialization

This section provides a summary of the algorithms employed in the benchmarking

framework and describes the approach taken to establishing common computing lim-

its. From the perspective of EC models this implies the utility of a common evaluation

and initialization limits. In the case of ANN models initialization limits are required,

whereas the deterministic (and therefore EC and ANN) models will require cross-

validation in selective cases.

All (GE) systems were tested with an upper limit on the total number of individual

evaluations. By holding constant the number of evaluations we are able to provide

comparisons between algorithms such that learning efficiency per evaluation is taken

into consideration. Specifically, the evaluation limit for each algorithm is defined as:

PPsize × LPsize ×MAX EPOCHS (4.1)

per class, where these values are supplied in Table 4.5. Each run of RssGE would

therefore be permitted the number of evaluations defined in (4.1) and the algorithm

run for each class of the data set, whereas the equivalent CMGE result would be from a

single run that was permitted the maximum number of evaluations of (4.1) multiplied

by the number of classes. Each stochastic experiment was run for 50 initializations. In

the case of the two Neural Network models, we use the MATLAB R© Neural Network

toolbox [28] to model perceptron and MLP models, also under 50 initilizations (in

this case referring to initialization of the ‘weight’ matrix). Deterministic systems

are provided through the Waikato Environment for Knowledge Analysis (WEKA)

machine learning software workbench2, version 3.4.9 and include OneR (Section 4.1.8),

Näıve Bayes (Section 4.1.9) and the C4.5 (release 8) decision tree (Section 4.1.10). The

deterministic models assume a greedy algorithm for model building and are therefore

only sensitive to the composition of the training data3.

2http://www.cs.waikato.ac.nz/∼ml/index.html
3As such we will introduce the utility of ten fold cross-validation under the smaller data sets.
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4.1.1 CMGE1

CMGE1 represents the Competitve Multi-objective GE described in the current work

that employs a basic, greedy learner archive pruning strategy as follows: the learner

archive member having the lowest sum of real-valued outcomes (against its class-

appropriate archive) is replaced by the incoming learner. Here the outcome entries

are defined for the ith exemplar as follows:

outcome(i) =

{
y(gpOut) if class(i) = in-class

1− y(gpOut) otherwise
(4.2)

This pruning architecture is meant to encourage strong, accurate decisions among

learner archive members. Moreover the pruning policy does not discriminate between

the types of errors made by the classifiers (i.e., error that would contribute toward false

positives vs. false negatives); when all else is the same, pruning therefore favors the

learner archive members making strongly decisive classifications over sheer numbers

of correct classifications as predicted by the binary (ô) outputs. This policy was

designed to encourage survival of potentially cooperative team members by pruning

individuals that respond weakly to archive points and may therefore cause conflicts

in team-based classifications post-training.

4.1.2 CMGE2

CMGE2 represents the Competitve Multi-objective GE described in the current work

that employs a two-stage greedy learner pruning policy as follows: the learner archive

member having the lowest sum of real-valued outcomes (against its class-appropriate

archive) across out-of-class points is replaced by the incoming learner if the new

learner represents an improvement in this respect. Otherwise, the archive member

having the lowest sum of outcomes is replaced as in CMGE1 (Section 4.1.1). This

policy therefore discriminates against false positive error in the archive members by

preferring to prune according to error type; however, when the incoming learner has

a lower sum of out-of-class outcomes, the replacement policy reverts to the default

policy of CMGE1, described in Section 4.1.1.

This pruning policy aims firstly to reduce the potential for false positive errors
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while encouraging strong, class-consistent decisions in learner archive members re-

gardless of the number of total correct classifications. This policy was designed to

explicitly reduce the occurrence of false positives and thereby improve overall classifi-

cation performance. Moreover, the policy also encourages the survival of potentially

cooperative team members by pruning individuals that respond weakly to archive

points and may therefore cause conflicts in team-based classifications post-training.

4.1.3 StdGE

StdGE is a standard canonical binary GE classifier implementation (Section 3.3)

that employs a sigmoid wrapper function and performs fitness evaluation over all

training exemplars (i.e., there is no subset selection mechanism; as such the learning

follows Algorithm 1). As a binary classifier, each class requires a separate classifier

expression, and a winner-take-all voting policy is therefore employed for consistency

in comparisons. Such a policy represents a more strict model of classification than

is typically used within the context of binary classification; however, such a model is

implicit in the Neural Network classifiers and would be necessary for paradigms in

which multiple labels are appropriate per class. Fitness under this model takes the

form of a scalar SSE in conjunction with a sigmoid wrapper function evaluated over

all training examples; adopting such an approach provides the basis for a more robust

differentiation between classes than a switching function, as discussed in Section 2.2.1.

4.1.4 RssGE

RssGE provides a computationally tractable model of StdGE that employs a class-

aware (balanced) version of the random subset selection (RSS) algorithm [42] in place

of a point archive. RSS thus replaces the notion of point population and training set

(PP and TS of Algorithm 6) and there is no concept of archives or early stopping in

this algorithm (i.e., steps 4 and 5 of Algorithm 3 are removed). Fitness is based on

a single metric that employs the error provided by the sigmoid wrapper evaluation,

as per StdGE (Section 4.1.3). As a binary classifier, each class requires a separate

classifier expression, and a winner-take-all voting policy is therefore employed for

consistency in comparisons.
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4.1.5 PGEC

The PGEC classifier is a basic GE implementation of Lemczyk’s Pareto competi-

tive coevolutionary Genetic Programming Classifier (PGPC) algorithm [70] [71], a

multi-individual classification model with problem decomposition. Specifically the

PGEC algorithm employs binary archiving where archive membership is driven by

Pareto dominance on binary outcome vectors. Our deployment of PGPC utilizes a

sigmoid wrapper function, replacing Lemczyk’s switching wrapper (Figure 2.3, (b)

vs. (a)). That is to say, a global sigmoid type wrapper is employed, as (unlike the

CMGE model) there is no mechanism for guiding the development of suitable local

membership functions and fitness is therefore evaluated on a single SSE metric (Al-

gorithm 17) that employs the error provided by the sigmoid wrapper evaluation. We

note, however, that the Pareto archiving criteria (binary outcomes) remain based on

a switching wrapper at 0.5, as does the final majority voting policy. Early stopping

is provided exclusively by the maximum number of evaluations specified in Equation

4.1. As a binary classifier, each class requires a separate collection of classifier expres-

sions (meaning a separate run of PGEC per class), with the majority voting policy

employed in combining the outputs.

4.1.6 Linear Perceptron (LP)

The Linear Perceptron model is configured as a single layer feed-forward backpropa-

gation network of c (number of classes) nodes employing logarithmic sigmoid transfer

functions and trained for 50 epochs using the Conjugate Gradient Method (CGM).

That is to say we use an efficient second order method as opposed to the more com-

mon first order update rules, with the objective of reducing the sensitivity to local

minima. As such, weights and bias terms are initialized to values over the inter-

val [-1,1] with uniform probability. Weight and bias values are updated according

to the conjugate gradient backpropagation algorithm with Fletcher-Reeves updates

[69] [10]. Classification decisions are determined by the node having the maximum

output value, max(yo), o ∈ {1 . . . c} where y(o) = f(w · x) and f(·) is the sigmoid

activation function (tansig); w ·x is the inner vector product between input exemplars

and (neuron) weights. Input features (xi) of the data set are subject to the following
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normalization, where this is necessary to avoid biasing the weight update procedure

in favor of features with larger dynamic ranges:

x∗i =
xi − µi
σi

(4.3)

where µi and σi are the mean and standard deviations of the ith feature for the entire

data set and x∗i is the normalized feature value.

Finally as a sigmoid activation function is employed (Figure 2.3 (b)), class labels

take the form of -0.9 and 0.9 for in and out-of-class exemplars, respectively. Such a

procedure avoids setting the artificial objective of reaching target values of -1 and 1,

which would require weight values that tend toward ±∞ on account of the asymptotic

properties of the activation function.

4.1.7 Multi-layer Perceptron (MLP)

The Multi-layer Perceptron (MLP) extends the capabilities of the LP to perform

non-linear mappings through the use of an intermediate layer of ‘hidden’ neurons. As

such the resulting model has the proprieties of a universal function approximator [48].

The principal design decision now takes the form of determining the number of hidden

layer neurons. Use of too many results in a ‘memorization’ behavior on the training

data, whereas too few will result in failure to converge [48]. In order to arrive at our

count of hidden neurons, we assume that the data sets described in terms of more

features are likely to require more hidden layer neurons; however, we also employ a

lower bound of six neurons, where this appears to represent a suitable minimum net-

work complexity for the data sets considered4. The resulting Multi-layer Perceptron

model is configured as a feed-forward backpropagation network with a hidden layer

of size max(df
2
e, 6) and an output layer of c (number of classes) nodes. Each node

employs the logarithmic sigmoid transfer function. As with the Linear model of Sec-

tion 4.1.6, the network is trained for 50 epochs using the Conjugate Gradient Method

(CGM) that updates weights and bias values according to the conjugate gradient

4Reference was also made to the Proben Neural Network benchmarking initiative when estab-
lishing our network configuration. Proben benchmarks the MLP architecture on various UCI data
sets using the first order RPROP weight updating procedure [78].
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backpropagation with Fletcher-Reeves updates [69] [10].

Conjugate gradient is a classical second order training model that provides robust

performance relative to the traditional (first-order) gradient decent models; moreover,

conjugate gradient methods are generally able reach convergence much faster than

first order steepest decent directions used in the basic backpropagation algorithms

[28] [69] [10]. The CGM update starts out by searching in the steepest direction

(along the negative gradient) on its first iteration (Equation 4.4) using a line search

to determine the optimal distance to move along the search direction (Equation 4.5)

[28] [10].

p0 = −g0 (4.4)

xk+1 = xk + αk · pk (4.5)

Subsequent search directions are chosen to be conjugate to the previous direction

by combining a weighting of the old direction with the new gradient (Equation 4.6).

The calculation of the weight term βk is by way of the Fletcher-Reeves update given

in Equation 4.7, which provides the ratio of the norm squared of the current gradient

to the norm squared of the previous gradient.

pk = −gk + βk · pk−1 (4.6)

βk =
gTk · gk

gTk−1 · gk−1

(4.7)

Unlike most second order approaches which require the costly calculation of the

Hessian matrix of partial derivatives (O (N2)) [10], the CGM remains in O (N) com-

plexity while requiring only slightly more storage than the simpler algorithms [28].

The training efficiency and low storage complexity of this robust second order model

motivate its use in the current work.

As per the LP model, the input features are normalized according to Equation
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4.3, and outputs are normalized to avoid setting unreachable target values. The ad-

dition of the hidden layer of neurons does, unfortunately, make the model sensitive to

initial conditions, on account of the non-linear properties of the network, introducing

additional complexity into the search space. Fifty runs are therefore performed per

data partition.

4.1.8 OneR

Robert Holte’s OneR (1R or 1-Rule) algorithm is a single level decision tree which

classifies data based on the attribute having the lowest error rate on the training data

[52]. The algorithm is deterministic which assumes that class label and input features

are correlated. In the early 1990s, Holte demonstrated that selecting the single most

correlated feature was sufficient for providing performance competitive with the C4.5

algorithm on most data sets then available from the UCI repository [52]5.

4.1.9 Näıve Bayes (NB)

Näıve Bayes is a multi-class, statistical classifier that uses Bayes’ theorem to model

the conditional posterior (or a posteriori) probabilities for each of c classes: P (Ci|X),

where Ci is a hypothesis (e.g., class = Ci; i = 1 . . . c) and X is an observation, or

evidence in the form of an exemplar. The largest posterior probability for hypothesis

Ci conditioned on X determines the label assigned by the classifier [45] [31].

Building the class-wise posterior probability models requires analyzing the training

data to estimate prior probabilities, (or simply, priors), P (Ci) along with probabilities

of X conditioned on Ci (P (X|Ci)) and the basic probability of seeing exemplar X in

the training data, P (X). Bayes’ theorem relates the conditional probabilities P (Ci|X)

and P (X|Ci) by [45]:

P (Ci|X) =
P (X|Ci) · P (Ci)

P (X)
(4.8)

Given data with many attributes, the P (X|Ci) term can be computationally expensive

to estimate directly thus a simplifying (näıve) assumption is made that input features

5The C4.5 variant used in Holte’s original comparison was an earlier version of the algorithm
discussed in Section 4.1.10.
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(x0 . . . xd) are conditionally independent given a class label. This reduces the estimate

to [45]:

P (X|Ci) =
d∏

k=1

P (xk|Ci) (4.9)

The values P (xk|Ci) can now be estimated directly from training data6 and with the

posterior models in place, Näıve Bayes classifications take the form of:

class = argmaxi(P (Ci) ·
d∏

k=1

P (xk|Ci)) (4.10)

Despite widely acknowledged criticism of the ‘näıve’ independence assumption,

Näıve Bayes models have been shown to perform very well in difficult real-world

problems [31] [97]. The Näıve Bayes training process is deterministic in that it pro-

vides the same classifier for a given set of training exemplars. Comparisons with

the GP models will be therefore in terms of the deterministic comparison method

introduced in Section 4.5.3.

4.1.10 C4.5

C4.5 is a decision tree classifier based on the ID3 algorithm that is built by recur-

sively splitting the training data based on greedy selection of the attribute providing

maximum normalized information gain over the training set [96]. At each split, a

conditional (if / then) node is introduced into the decision tree model based on the

current attribute, creating branches that partition the data into subsets correspond-

ing to each of the mutually exclusive outcomes. The algorithm is applied recursively

on the non-uniform class partitions so that the ith branch leads to the decision tree

constructed from the corresponding data partition.

The information conveyed by a message is defined by the negative logarithm of

the message probability. The expected information or entropy regarding class given

a set of exemplars S is provided in Equation 4.11.

6If features are (e.g.,) categorical then P (xk|Ci) can be estimated directly as the number of
exemplars of class Ci in TD having value xk for attribute k divided by the total number of exemplars
of class Ci in TD [45].
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info(S) = −
k∑
j=1

f(S, j) · log2(f(S, j)) bits (4.11)

where

f(S, j) =
|{i ∈ S | class(i) = j}|

|S|
(4.12)

A test X that partitions a training set TS by n outcomes into TS1 . . . TSn has entropy

provided by Equation 4.13.

infoX(TS) = −
n∑
i=1

|TSi|
|TS|

· info(TSi) (4.13)

Information gain (Equation 4.14) is calculated by taking the difference in entropy

before and after the partitioning according to X.

gain(X) = info(TS)− infoX(TS) (4.14)

In order to control for bias in favor of tests having many outcomes, the normalizing

term of Equation 4.15 is used to divide the information gain by the potential infor-

mation generated by dividing TS into n subsets [96]. Equation 4.16 provides the

information gain ratio criterion for selecting tests in C4.5.

infosplit(X) = −
n∑
i=1

|TSi|
|TS|

· log2

(
|TSi|
|TS|

)
(4.15)

gainratio(X) =
gain(X)

infosplit(X)
(4.16)

J48, the WEKA implementation of Quinlan’s C4.5 (release 8) algorithm, is em-

ployed in the current work. The J48 classifier was run in batch mode using default

parameter settings with no pruning.
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4.2 Cross-validation

Cross-validation (or k-fold cross-validation) is a commonly used technique that in-

volves splitting data into k (e.g., training / test) partitions to be used in repeated

evaluation procedures such that subsequent analyses have less sensitivity to the bias

inherent in partitioning. A k-fold cross-validation analysis begins with uniform ran-

dom partitioning of the data into k stratified sub sets, or folds (i.e., each fold F1 . . . Fk

contains 1
k

of the data from each class and F1 ∩F2 ∩ . . .∩Fk = {∅}), as illustrated in

Figure 4.1. On the first initialization, folds F2 . . . Fk comprise the training data and

F1 (the holdout) is used for test; evaluations are then carried out using the typical

procedures. The holdout for the ith evaluation is then Fi, and the training set is

comprised of the folds Fj (∀j 6= i). The distribution of the k evaluations is finally

analyzed to provide a robust estimate of algorithm performance.

The current work employs ten fold cross-validation when no default partitions have

been defined for the problem domain. This provides a training set comprised of 90% of

the data with the remaining 10% being test on each of the 10 separate initializations.

Moreover, the partitions are held constant across each of the algorithms employed in

this work.

4.3 Data Sets and Partitioning

All experiments are undertaken using classification problems from the University of

California at Irvine’s (UCI) Machine Learning Repository [88]; two are specifically

well-known as large and complex data sets from the UCI Knowledge Discovery in

Databases (KDD) Archive [50]. All data sets were preprocessed by first taking the

union of all partitions and mapping nominal attributes to integer values. Any repeat-

ing, incomplete or inconsistent records were then removed from the set and the train /

test partitions (if pre-defined) were restored. Problems that did not pre-define train-

ing and test partitions were evaluated by ten fold cross validation, described above.

Moreover, the same partitions of the data were used for all experiments, irrespective

of the algorithm.

The 12 data sets for this work (Table 4.3) were chosen on the basis of number of
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Figure 4.1: Partitioning of an n class problem for k-fold cross validation.

classes, number of features, number of exemplars, reported difficulty, and prominence

in the literature so as to represent a diverse benchmark of binary and multi-class

problems [74] [122] [55] [16] [116] [117] [22]. The data sets selected for this work,

along with their general characteristics, relevant abbreviations and identifiers are

summarized in Table 4.4. Below a brief discussion of each data set is provided in

turn, including the range of previous performance results from the literature and any

special considerations made for pre-processing / partitioning in the current work.

4.3.1 Boston Housing

The Boston Housing database is an approximately balanced, three class problem

having 506 exemplars with 13 neumeric-valued attributes (not including the medv

column). The data concerns housing values in the suburbs of Boston, MA. Classes

are defined according to the medv column (median value of owner occupied homes in

1000s) as follows [74]:

• Class 1: medv <= 9.84× 10−3;

• Class 2: medv <= 10.075× 10−3;

• Class 3 otherwise.
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There is no pre-defined partitioning of train and test sets for this problem, therefore

ten-fold cross validation is applied.

The study of [74] reported overall training accuracy rates in the range of 75 to 78%

with test accuracies in the literature (typically in terms of ten fold cross-validation)

over a cross-section of approximately 40 machine learning algorithms providing accu-

racies in the range 63 - 78% [74] [40] [72].

4.3.2 Bupa Liver Disease

The Bupa Liver Disease database is an unbalanced binary (two class) classification

problem containing 345 exemplars with 6 numeric attributes. There are four duplicate

records and have been removed for the current work, leaving 341 exemplars. Of these,

142 (41.6%) belong to class 1 and the remaining 199 (58.4%) to class 2. There is no

pre-defined partitioning of train and test sets for this problem, therefore ten-fold cross

validation is applied.

This is generally considered a difficult problem domain with training accuracy

in the region of 67-70% [40]; moreover, the data set has a history of use in the GP

literature [55] [1]. Ten fold cross-validation results range from 54-72% (accuracy)

[106] [9] [74], while very good results with arbitrary train / test partitioning have

been reported in the range of 61-75% using GP approaches [87] [51] [72].

4.3.3 KDD: Census Income

The KDD Census Income database is an unbalanced binary (two class) classification

problem containing 299,285 exemplars with 13 numeric and 28 nominal valued at-

tributes. The data concerns the census statistics of total personal income, with the

two classes being divided into those earning greater or less than $50,000. The data

has pre-defined partitions for train (199,523) and test (99,762). Among the training

data, there are 3,229 duplicate exemplars that have been removed for the current

work leaving 196,294 training exemplars. Of these, 183,912 (93.7%) belong to class 1

(< $50,000) and 12,382 (6.3%) belong to class 2 (≥ $50,000). Among the test data,

there are 883 duplicate records that have been removed for the current work leaving

98,879 test exemplars. Of these, 92,693 (93.7%) belong to class 1 and 6,186 (6.3%)
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belong to class 2.

The highly unbalanced (class-wise) nature of this data set make it a particularly

challenging problem, with degenerate solutions being the norm; that is, test accuracies

have been reported as high as 94-96% with detection rates (Equation 4.18) of 0.92-

0.97, however this is typically offset by false positive rates (Equation 4.19) in the

0.79-0.85 range. [22].

4.3.4 Contraceptive Method Choice

The Contraceptive Method Choice database is an unbalanced three class classification

problem containing 1,473 exemplars with 9 numeric attributes. There are 48 duplicate

records that have been removed for the current work, leaving 1425 exemplars. Of

these, 614 (43.1%) belong to class 1; 316 (22.2%) belong to class 2 and 495 (34.7%)

belong to class 3. The data concerns prediction of the current contraceptive method

choice (no use (class 1), long term (class 2) or short term (class 3)) of a woman

based on her demographic and socio-economic characteristics. There is no pre-defined

partitioning of data into train and test sets for this problem, therefore ten-fold cross

validation is applied.

The study of [74] reported accuracies in the range of 40-57% over the 33 algorithms

tested, which is largely consistent with the GP literature where test accuracies are

frequently reported between 43 and 57% [40] [9].

4.3.5 Image Segmentation

The Image Segmentation database is a balanced, seven class classification problem

containing 2310 exemplars with 19 numeric attributes. The data concerns the clas-

sification of 3 × 3 pixel segments taken from seven digital images of outdoor scenes:

brick, sky, foliage, cement, window, path and grass, for classes 1 through 7 respec-

tively. The data has pre-defined partitions for train (210) and test (2100), which are

employed again here. There are 30 exemplars in each class of training, while in the

test data there are 14 duplicate exemplars (3 of class 1; 1 of class 3; 2 of class 5 and 8

of class 6) that have been removed for the current work leaving 2086 test exemplars.

The 33 algorithms tested in the study of [74] reported accuracies in the range of
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48-98%. Notably, however, only two algorithms were able to achieve results within

one unit of standard error of the best result.

4.3.6 Iris Plant

Fisher’s Iris Plant database is a balanced three class classification problem containing

150 exemplars with four numeric attributes: sepal length, sepal width, petal length

and petal width. The data concerns the classification of Iris plants into one of three

classes: Iris Setosa (class 1), Iris Versicolour (class 2), and Iris Virginica (class 3). One

class is linearly separable from the other 2 but the latter are not linearly separable.

Among the data, 3 duplicates exemplars have been removed for the current work,

leaving 147 exemplars. There is no pre-defined partitioning of train and test sets for

this problem, therefore ten-fold cross validation is applied.

Fisher’s Iris data set is one of the most widely referenced in the machine learning

literature and is generally considered to be a straightforward problem as compared to

(e.g.,) Liver. The GP literature routinely reports test accuracy results in the range

of 95-100% [72] [9] [93] [75].

4.3.7 KDD: KDD 99 Cup

The KDD 99 (KDD Cup) database was taken from the Third International Knowl-

edge Discovery and Data Mining Tools Competition from KDD-99, The Fifth In-

ternational Conference on Knowledge Discovery and Data Mining [50]. The KDD

Cup competition involved generating a classifier able to discriminate ‘normal’ from

‘attack’ (intrusion) network connection types. The data set has been configured as

a five class problem by categorizing each of the original 40 nominal connection type

labels into ‘normal’ or one of four attack types7. Appendix H provides a full listing

of the original nominal descriptors with associated class labels. The original training

data set has 41 attributes (3 nominal, 38 numeric), with pre-defined partitions for

train (494,020) and test (311,029). Among the training data there are 348,436 dupli-

cates, while test contains 233,742 duplicate exemplars which have been removed for

7Details of attack definitions can be found at MIT Lincon Laboratory web site:
http://www.ll.mit.edu/IST/ideval/data/data index.html
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the current work, leaving 145,584 train and 77,287 exemplars for test. The data set is

highly unbalanced with the majority of exemplars associated with class 1; moreover,

the class distribution differs between training and test sets. The characteristics of the

train and test distributions are summarized in Table 4.1.

Results on KDD 99 have recently been reported for an unsupervised learning

context between 67-71% accuracy, with ‘scores’ (Equation 4.21) of 0.55 and 0.60,

respectively [57]. The winning result of Pfahringer corresponded to 92.7% accuracy

(a ‘score’ of 60.4) [30]. Moreover, the 1-nearest neighbor approach is known to perform

very well on KDD with test results approaching those of Pfahringer (92.3% accuracy,

and ‘score’ of 55.2) [30].

Table 4.1: Processed KD99 data set characteristics (class-wise train / test exemplar
distributions)

Class Train % Test %

1 87,831 60.33 47,913 61.99
2 999 0.69 3,058 3.96
3 54,572 37.48 23,568 30.49
4 2,130 1.46 2,678 3.47
5 52 0.04 70 0.09

4.3.8 Pima Indians Diabetes

The Pima database is an unbalanced binary classification problem containing 768

exemplars with 8 numeric attributes related to the task of diabetes diagnosis according

to World Health Organization criteria. Of these, 500 exemplars (65%) are normal

(class 0), and 268 (35%) are positive for diabetes (class 1). There is no pre-defined

partitioning of the data into train and test sets for the problem, therefore ten-fold

cross validation is applied.

The study of [74] reported test accuracies in the range of 69-78% for the Pima

data set using ten fold cross-validation. Test results in the GP literature (typically

involving an arbitrary partitioning into train / test sets) have been reported in the

range of 68-80% [15] [106].
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4.3.9 Statlog Project: Shuttle

The UCI Statlog Shuttle data set is a highly unbalanced seven class problem with

9 numeric attributes and a total of 58,000 exemplars. The problem has pre-defined

partitions for train (43,500) and test (14,500) with approximately 80% of all data

coming from class 1, while as few as 6 patterns are provided for class 6 in the training

data. The characteristics of the train and test distributions are summarized in Table

4.2.

Table 4.2: Processed SHUT data set characteristics (class-wise train / test exemplar
distributions)

Class Train % Test %

1 34,108 78.41 11,478 79.16
2 37 0.09 13 0.09
3 132 0.30 39 0.27
4 6,748 15.51 2,155 14.86
5 2,458 5.65 809 5.58
6 6 0.01 4 0.03
7 11 0.03 2 0.01

4.3.10 Thyroid Disease

The Thyroid Disease ANN database is a highly unbalanced three class classification

problem containing 7200 exemplars with 21 numeric attributes. The data concerns

the medical diagnosis of Thyroid Disease; the problem is to determine whether a

patient referred to the clinic is hypothyroid. The three classes are defined as follows:

class 1 is normal (not hypothyroid), class 2 is hyperfunction and class 3 is subnormal

functioning [88]. Among the training data, there are 63 duplicate exemplars that

have been removed for the current work leaving 3709 training exemplars. Of these,

93 (2.5%) belong to class 1, 191 belong to class 2 (5.1%) and 3425 (92.3%) belong to

class 3. Among the test data, there are 8 duplicate records that have been removed

for the current work leaving 3420 test exemplars. Of these, 73 (2.1%) belong to class

1, while 177 belong to class 2 (5.2%) and 3170 (92.7%) belong to class 3. The data
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set is naturally of interest to this work on account of the widely unbalanced class

distributions.

This data set has a history of use in the machine learning literature [74] and

was employed in a simplified binary form by Gathercole and Ross in the original

formulations of the RSS / HSS / DSS subset selection algorithm [42] [15]. The 33

algorithms tested in the study of [74] reported accuracies in the range of 11-98%, with

typical figures from GP literature indicating results in the 95-98% range [15] [75].

4.3.11 Wine Recognition

The Wine Recognition database is an unbalanced three class problem containing 178

exemplars with 13 numeric numeric attributes related to the chemical analysis of wines

grown in the same region in Italy. The task involves classification of the exemplars

according to the cultivar from which they were derived. Class 1 is represented by 59

exemplars (33%), class 2 has 71(40%) and class 3 has 48 (27%). There is no pre-

defined partitioning of the data into train and test sets for the problem, therefore

ten-fold cross validation is applied.

The Wine Recognition data set is frequently employed in the GP classification

literature where ten fold cross-validation results in the range of 92-98% are not un-

common [9] [106].

4.3.12 Wisconsin Breast Cancer

The Wisconsin Breast Cancer database (also known as Breast Cancer, Original) is

a binary classification problem that contains 699 exemplars with 9 numeric-valued

features per pattern. This is an unbalanced data set, with 244 patterns of class 1 and

455 of class 0. The data has 16 exemplars with missing attributes and 8 repeated

exemplars that were removed for the current work, leaving 675 exemplars in total.

Of these, 439 (65%) belong to class 1 and 236 (45%) belong to class 2. There is no

pre-defined partitioning of the data into train and test sets for the problem, therefore

ten-fold cross validation is applied.

The Wisconsin Breast Cancer data set is widely used in the literature [55] [15]

[74] but in comparison to the (e.g.,) Liver data set (Section 4.3.2), it is much easier to
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classify. The ten fold cross-validation results presented in [74], for example, indicate

frequent results in the range 96-97%; however both training and test accuracies have

been reported at 98-99% in recent GP literature [87] [40].

Table 4.3: Data set abbreviations

ID DB Name Abbreviation

D1 Boston Housing BOST
D2 BUPA Liver Disease BUPA
D3 KDD: Census Income CENS
D4 Contraceptive Method Choice CONT
D5 Image Segmentation IMAG
D6 Iris Plant IRIS
D7 KDD: KDD 99 Cup KD99
D8 Pima Indians Diabetes PIMA
D9 Statlog Project: Shuttle SHUT
D10 Thyroid Disease (ANN) THYD
D11 Wine Recognition WINE
D12 Wisconsin Breast Cancer WISC

4.4 Performance Measures

4.4.1 Classification Performance

Given the unbalanced nature of the data sets we make extensive use of a combination

of post-training performance evaluation metrics. Moreover, we chose metrics that

measure ‘orthogonal’ properties, in the case of Detection Rate and False Positive

Rate, to provide additional insight into the resulting models. Accuracy is included

as it is still one of the most widely used, albeit not particularly informative, metrics

in the wider literature. We also adopt class-wise reporting of performance, following

an initial evaluation in terms of accuracy, assuming median and quartile reporting in

performance to the more biased mean and standard deviation based statistics. The

three performance metrics are defined as follows, in terms of true positive (tp), true

negative (tn), false positive (fp) and false negative (fn) [54]:
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Table 4.4: Data set characteristics: exemplar counts (Total, Train, Test), number of
features (F), number of classes (C) and class distributions (% Class Distribution).

DB Total Train Test F C % Class Distribution

BOST 506 10-fold 10-fold 13 3 ∼ Balanced
BUPA 341 10-fold 10-fold 6 2 42:58
CENS 295,173 196,294 98,879 41 2 94:6
CONT 1,425 10-fold 10-fold 9 3 43:22:35
IMAG 2,310 210 2,086 19 7 ∼ Balanced
IRIS 147 10-fold 10-fold 4 3 ∼ Balanced
KD99 222,871 145,584 77,287 41 5 Table 4.1
PIMA 768 10-fold 10-fold 8 2 65:35
SHUT 58,000 43,500 14,500 9 7 Table 4.2
THYD 7,129 3,709 3,420 21 3 2:5:93
WINE 178 10-fold 10-fold 13 3 33:40:27
WISC 675 10-fold 10-fold 10 2 65:45

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4.17)

Sensitivity = DR =
tp

tp+ fn
(4.18)

FPR =
fp

fp+ tn
(4.19)

Finally, we also adopt a paired ‘score’ metric (Equation 4.21) which evaluates the

equally weighted combined behavior of a candidate solution. In doing so we are able

to capture whether the classifiers with good detection (sensitivity) are also capable

of providing high specificity (Equation 4.20). In an n-class scenario, score is (more

generally) calculated as an equal weighting of the class-wise detection rates.

Specificity =
tn

tn+ fp
(4.20)
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Score =
Sensitivity + Specificity

2
=
DR1 +DR2 + . . .+DRn

n
(4.21)

The above ‘score’ based policy is adopted in preference to the more general ROC /

AUC approach for pragmatic reasons. The ROC / AUC metric builds a complete pic-

ture of pairwise ‘orthogonal’ performance metrics, as discussed above, by effectively

thresholding a classifier at different intervals between two performance extremes (all

examples in vs. all examples out-of-class). This is a relatively straightforward proce-

dure for binary single model solutions (as in the ‘super individual’ returned under a

canonical GP classifier). However, we have solutions comprised of tens of classifiers

(in the case of CMGE and PGEC) with local and global activation functions. As such,

there are now multiple possibilities for thresholding the overall model to produce the

ensuing ROC curve. Examples including establishing ROC curves per individual par-

ticipating in a solution to taking a group of individuals associated with each class

and subjecting them to a group thresholding process. Clearly, the process of building

such curves introduces a series of tradeoffs in the reported AUC. In addition to this

the computational cost of building such an analysis over data sets consisting of tens

or hundreds of thousands of exemplars also becomes prohibitive, especially given the

number of model initializations / model types reviewed. In short, the combination of

the three metrics (plus overall accuracy) represents our compromise solution adoped

on the ensuing benchmark study for reporting / analysis of post-training classifier

performance.

4.4.2 Computational Overhead

Total (processor) run time will be reported in terms of number of seconds elapsed as

reported by the UNIX time utility. Specifically the value returned for the user time

(the processor time charged for the execution of user instructions) will be considered

as the total run time. All times include time to initialize, train and test the GP

models8.

8See the Unix (Darwin) manual page for time.
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Table 4.5: Parameter Specifications

Grammatical evolution

MAX EXP LEN 4096
CODONS 256

MAX EPOCHS 500

Clustering

α 150
β 155

γlower 0.5
γupper 0.75

Archives and populations

LPsize 50
LAsize 30
PPsize 30
PAsize 30

Crossover and mutation

PXO, PCXO 0.50, 0.90
PM, PTSM 0.01, 0.90

Early stopping

MIN DIFF 0.1
CONV MIN POP 20

CONV FRAC 1
5
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4.4.3 Solution Complexity

Solution sizes are reported in terms of median string length of the unsimplified ex-

pression. In the case of models providing solutions in terms of multiple individuals

(CMGE and PGEC), we report median and quartile lengths over the individual mod-

els contributing to the solution.

4.4.4 Significance Measures

Notched box plots are used to summarize results in terms of median, first and third

quartiles as well as maximum and minimum values. The horizontal line in the middle

of a box indicates the median while the lower and upper lines of the box represent the

first and third quartiles, respectively with the inter-quartile range being the difference

between these values. Box notches about the median represent a confidence interval;

non-overlapping notches between a pair of results indicate a difference of statistical

significance at a 95% confidence level. Whiskers (dashed lines extending beyond

the top and bottom of the box) indicate the minimum and maximum values in the

data, unless outliers are present. Outliers are defined as points being 1.5 times the

interquartile range away from the quartiles.

To confirm the statistical significance of differences between the groups of results

the Analysis of Variance (ANOVA) F test procedure is first applied to test the null

hypothesis that all groups come from distributions having the same means (i.e., H0 :

µ1 = µ2 = ... = µc ) [8]. ANOVA models assume independence of samples as well as

normality and equal variance of the underlying distributions [8]. The latter two of

these assumptions may be in question; consequently, ANOVA results will be provided

based on F test as well as the non-parametric (Kruskal-Wallis H test) version of

ANOVA, which tests the null hypothesis that all groups have the same probability

distribution against the alternate hypothesis that at least two of the distributions

differ in location [83]. The advantage of the Kruskal-Wallis H test over the F test

is that it is based on the analysis of variance using the ranks of values rather than

the values of the samples themselves and therefore no assumptions need to be made

about the shape of the sampled populations [83].

Once the initial ANOVA tests are performed, an a posteriori multiple comparison
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procedure is applied using Tukey’s honestly significant difference criterion based on

the Studentized range distribution [8]. Multiple comparison plots provide graphical

representation of pairwise comparison results between means and mean ranks at the

95% confidence level. Within the multiple comparison plots, pairwise groups having

vertically non-overlapping bars have a statistically significant difference in terms of

group means and rank means. For the purposes of the current work, significance

will be indicated by agreement in both ANOVA and Kruskal-Wallis based multiple

comparison results.

4.4.5 Coverage Measures

Coverage plots are class-grouped histograms that indicate the distribution of differ-

ence in vote strength between the winning output and the median output of the other

individuals having the same class. In this way a difference value is calculated for each

exemplar over the relevant number of partitions and initializations. The histogram

uses twenty bins to display the difference values (between zero and one). A differ-

ence of zero indicates no difference between winner and median case of other in-class

voters – i.e., a large degree of overlap, while a difference of 1 indicates the maximum

difference between winner and median case of other in-class voters – i.e., a low degree

of overlap.

4.5 Experiments

For the current work an initialization is defined as a single run of a classifier algo-

rithm against a particular data set, while an experiment represents a set of one or

more initializations of a classifier algorithm over a collection of data sets. All experi-

ments were run on commodity-class Apple (iMac, Mac Pro or Xserve) dual-processor

hardware with between 1 and 2 Gigabytes of RAM and running the Mac OSX Tiger

operating system.

Twelve experiments were designed to establish comparative results over the set

of problems in terms of classification accuracy, scalability, problem decomposition,

and solution complexity. Generally speaking, the results of five experiment types

(outlined in Table 4.6) are presented in this research.
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4.5.1 Direct comparisons

Experiments E1 to E4 (Table 4.6) provide a direct means to compare the results of the

current classifier with other classification approaches considered standard in the GP

context. Classification performance will be established in terms of Accuracy, False

Positive Rate, Detection Rate (Sensitivity), Specificity and Score. The significance of

the comparisons between algorithms will be established using notched box plots along

with multiple comparison analysis based on one-way ANOVA and its non-parametric

counterpart, the Kruskall / Wallis analysis (see Section 4.4.4).

4.5.2 Artificial Neural Network (ANN) comparisons

Experiments E5 to E6 in Table 4.6 provide a means to compare the results of the

current (CMGE) classifier with the standard Linear Perceptron (LP) in Experiment

E5 and non-linear, multi-layer perceptron (MLP) in Experiment E6. Two Neural

Network (NN) models trained using the conjugate gradient algorithm are used to

establish the performance baseline, the motivation being:

1. Efficient credit assignment: Credit assignment in NN is typically based on some

form of gradient optimization algorithm. The original first order methods pop-

ularized by the back propagation algorithm were very sensitive to local minima

(weight initialization). Conversely second order methods have proved to be

much more robust [69] [10]. However, a trade off exists between accuracy and

computational expense, with the most accurate second order gradient optimiza-

tion routine of the LM algorithm having a complexity of O (N3) (with N being

the number of training exemplars). This work therefore employs the conju-

gate gradient approximation to provide a linear complexity whilst maintaining

a second order model [69] [10].

2. Linear versus non-linear: Both single layer (perceptron or linear) and hidden

layer (non-linear) NN are built. The training algorithm remains unchanged

(conjugate gradient), thus providing baselines for both linear and non-linear

models trained over the same paradigm.
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Classification performance will be established on the basis of Accuracy, False

Positive Rate, Detection Rate (Sensitivity), Specificity and Score. The significance of

the comparisons between algorithms will be established using notched box plots along

with multiple comparison analysis based on one-way ANOVA and its non-parametric

counterpart, the Kruskall / Wallis analysis (Section 4.4.4).

4.5.3 Deterministic comparisons

GPs and NNs are sensitive to the model parameter initialization. As such both NN

and GP models require evaluation over a set of initializations; weight values in the

case of NNs and populations in the case of GP. The same is not necessarily true of

all machine learning algorithms, such as decision trees. Experiments E7 to E9 in

Table 4.6 therefore provide a means to compare the results of the current classifier

with these standard Deterministic approaches to classification, introduced in Section

4.1, specifically OneR in Experiment E7, Näıve Bayes in Experiment E8 and C4.5 in

Experiment E9.

The procedure that we adopt for the deterministic comparison involves first es-

tablishing the baseline result statistic rb in terms of the deterministic algorithm in

question. The stochastic algorithm is then run over a set of N initializations, collect-

ing the relevant statistic for each run in rs[i] (i ∈ {0 . . . N−1}). This set of stochastic

results is then analyzed in terms of the set of points falling at or above (Rgte) and

below (Rlt) the single baseline result (rb) returned by the deterministic algorithm9:

Rgte = {i ∈ {0 . . . N − 1} | rs[i] ≥ rb} (4.22)

Rlt = {i ∈ {0 . . . N − 1} | rs[i] < rb} (4.23)

The probability of an equal or improved result, relative to the baseline is then the

fraction of points falling at or above the baseline (|Rgte|) to the total number of

initializations (N):

9In the case of (e.g.,) false positive rate, a lower result indicates improvement and these expres-
sions must be modified accordingly.
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P (rs ≥ rb) =
|Rgte|
N

(4.24)

Similarly, the probability of a result that performs worse than the deterministic base-

line is given by:

P (rs < rb) =
|Rlt|
N

(4.25)

Such a procedure is adopted in favor of the comparison of distributions used in the

case of EC and NN comparisons on account of the implicit disjunction in the number

of solutions. That is to say, thirty points is generally assumed to be the minimum

number of points necessary to establish a distribution [19]. However, conducting

thirty fold cross-validation on fifty EC (or NN) initializations per fold is clearly not

a feasible experimental design. Moreover, this does nothing to address the disparity

in the number of solutions that require comparison. Conversely, the above approach

addresses what we feel to be the real question when comparing stochastic methods

such as EC to strictly deterministic or greedy machine learning algorithms. That is

to say, EC machine learning is built on the premise that the stochastic model has the

‘potential’ to identify solutions that a deterministic model would never encounter.

The above metric is specifically designed to answer how likely the stochastic model

is to perform equally or better as a result of the ability to make alternative decisions

during model building.

The results of Experiments E7 to E9 (Table 4.6) will permit comparisons between

the current classifier and deterministic algorithms on the basis of Accuracy, False

Positive Rate, Detection Rate (Sensitivity), Specificity and Score statistics (Section

4.4).

4.5.4 Coverage analysis

The characterization of the pattern coverage achieved through problem decomposition

will be established based on Experiments E10 and E11(Table 4.6). Specifically, both

PGEC and CMGE return a ‘front’ of solutions per class. As such we are interested

in determining how distinct these solutions are relative to other members of the same



150

front. To do so, a ‘coverage’ metric is employed that addresses the difference in the

winning output and the median of other in-class outputs on each exemplar. Thus if

the winning classifier has a behavior shared by the majority of the other individuals in

the Pareto front, then a ‘weak learner’ or ensemble type of interaction will have taken

place. In contrast, if the degree of classifier specialization is high / unique, then a

larger difference will be measured relative to the median behavior of the Pareto front

of classifiers. Coverage is plotted as a histogram of difference values, as described in

Section 4.4.5.

4.5.5 Parameter analysis

Experiment E12 (Table 4.6) represents a series of initializations over three data sets

intended to investigate the key parameters driving the CMGE algorithm complexity

and classification performance, namely the learner and point archive sizes. Five set-

tings were chosen for each archive parameter (10 to 50 inclusive, in increments of 10)

and all 25 possible combinations were tested for 30 initializations on each of the three

data sets. Surface plots indicate the results in terms of Accuracy, False Positive Rate,

Detection Rate (Sensitivity), Specificity and Score (Section 4.4).

4.6 Summary

A multi-faceted experimental design has been proposed in which we incrementally

establish the contribution of different components of EC models to the proposed

CMGE classifier. Moreover, we consider methodologies for comparison against ANN

and deterministic machine learning models. Relative to previous EC benchmarking

research, we utilize a more sophisticated ANN learning algorithm, and recognize the

difficulty in directly comparing EC to deterministic models directly. Finally, we make

use of previous benchmarking studies to identify a wide cross-section of data sets that

are illustrative of the many facets of real-world data sets, such as unbalanced exemplar

distributions, non-linear interactions between features, and large exemplar counts.
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Table 4.6: Experiment abbreviations

Direct (GE) Comparisons

ID Algorithm Inits Data Sets
E1 CanGE 50, 20 D10, D3
E2 RssGE 50 D1-D12
E3 StdGE 50 D1-D12
E4 CMGE1 50 D1-D12
E5 CMGE2 50 D1-D12

ANN Comparisons

ID Algorithm Inits Data Sets
E6 LP 50 D1-D12
E7 MLP 50 D1-D12

Deterministic Comparisons

ID Algorithm Inits Data Sets
E8 OneR 1 D1-D12
E9 NB 1 D1-D12
E10 C4.5 1 D1-D12

Coverage Analysis

ID Algorithm Inits Data Sets
E11 PGEC 30 D1-D12
E12 CMGE1 30 D1-D12

Parameter Analysis

ID Algorithm Inits Data Sets
E13 CMGE1 30× 25 D1, D4, D10



Chapter 5

Results of Direct Comparisons

Experiments E1-E5 provide results that establish the baseline performance character-

istics the GP classifiers employed in the current work. The following sections will first

analyze the canonical form of GP (CanGE) with respect to performance against the

four ‘scalable’ models. The results of experiment E1 will demonstrate the pathologies

of the classical approach to multi-class classification using multiple class-wise runs

of the traditional form of GP. Specifically, the canonical GP classifier will be shown

to require multiple runs, each involving prohibitive training time while returning so-

lutions that are significantly more complex and typically degenerate in the face of

the class imbalance problem. Moreover, the monolithic solution form (employing a

global wrapper function) will be discussed and provide motivation for the local mem-

bership function and problem decomposition approach employed by the proposed

CMGE framework. The results of experiments E2 - E5 will provide a preference or-

dering of the scalable models in terms of classification performance, scalability, and

solution complexity. A significant preference for the Competitive Multi-objective GE

framework will be established across each of the comparison metrics.

A brief discussion of multi-class PGEC performance will also be provided; however,

we do not examine these results in detail as the PGEC algorithm was originally tai-

lored to the binary classification context and our multi-class variant was not generally

competitive with the other multi-class GP approaches considered in this work. The

complete set of PGEC classification results are, nonetheless, supplied in Appendix G.

Fitness assignment on all comparative GP models is based on an SSE evaluation

in conjunction with a sigmoid wrapper function, while the CMGE algorithms employ

a multiobjective evaluation scheme and a local (Gaussian) membership function. In

the case of CanGE and StdGE, the fitness evaluation is over the entire training

data set, whereas the RssGE, PGEC and CMGE models perform fitness evaluation

152
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Table 5.1: CAN-GE - CENS Quartile Summary
Overall Score (Train / Test)

C Q1 MED Q3
- 0.500 / 0.500 0.500 / 0.500 0.531 / 0.531

Overall Accuracy (Train / Test)

C Q1 MED Q3
- 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941

Training time (s)

C Q1 MED Q3
- 139020.1 172408.7 269413.7

Classwise Soln Size

C Q1 MED Q3
1 12.0 27.5 78.5
2 13.0 41.5 67.5

Classwise Accuracy (Train / Test)

C Q1 MED Q3
1 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941
2 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941

Classwise Det Rate (Train / Test)

C Q1 MED Q3
1 0.998 / 0.998 1.000 / 1.000 1.000 / 1.000
2 0.000 / 0.000 0.000 / 0.000 0.063 / 0.063

Classwise FP Rate (Train / Test)

C Q1 MED Q3
1 0.937 / 0.937 1.000 / 1.000 1.000 / 1.000
2 0.000 / 0.000 0.000 / 0.000 0.002 / 0.002

over a training subset. Notably, none of these approaches employs the post training

performance metrics (e.g., accuracy, score) in the training algorithm.

5.1 Canonical GP Results

The large and unbalanced Census and Thyroid data sets provide the basis for the

canonical multi-class GP experiments undertaken in the current study. These prob-

lems were selected for their size and traditional difficulty as unbalanced problems in

order to clearly demonstrate the classical pathologies associated with the traditional

approach to multi-class classification in the GP context.
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5.1.1 Classification Performance

Experiment E1 Census-Income quartile summary results are provided in Table 5.1.

In terms of overall classification performance, an obvious contrast exists between the

Overall Accuracy and Score results with a substantially larger result in accuracy,

while the score result indicates a guessing or degenerate classification behavior with

very little variation in this result. The accuracy / score disparity is present over

all three quartiles on both training and test results, which is highly indicative of

degenerate solutions. This is readily confirmed using Table 5.1 by examining the

class-wise Detection Rate and False Positive rate rows, where both train and test

results achieve near unity on all three of the class 1 detection rate quartiles, while

attaining approximately zero detection on class 2 (aside from quartile 3 which reaches

a nominal performance of approximately 6.3%). Similarly, the class-wise false positive

results reach unity on on all three quartiles of class 1 (indicating the worst possible

FPR performance), while there are no false positives recorded for class 2 over the first

two quartiles.

Being an unbalanced, binary data set with approximately 93% of data belonging

to class 1, and 6% of data belonging to class 2, the Census-Income problem clearly

demonstrates the canonical GP’s reluctance to train beyond degeneracy in the face

of a substantial class imbalance. This phenomenon is straightforward to explain;

being that the canonical model is trained with predominantly class 1 data, the error

function reaches a local minimum when a simple global ‘guessing’ behavior (in favor

of class 1) is evolved. In the event that new individuals appear with a trade-off

behavior (correctly identifying some small fraction of class 2 in place of the entirety

of class 1), the error associated with missed class 1 exemplars will now outweigh the

error gained by correctly identifying the exemplars of class 2, resulting in a relatively

low fitness assignment and therefore a low probability of selection. In other words

training gradient for this behavior is not readily established. Needless to say, the

accuracy metric completely fails to reflect this behavior [54], thus the discrepancy is

specifically recorded in the discrepancy between ‘score’ and accuracy metrics.

E1 Thyroid quartile summary results are provided in Table 5.2. The classification

results demonstrate a trend similar to that of E1 Census-Income. Though the result is
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Table 5.2: CAN-GE - THYD Quartile Summary
Overall Score (Train / Test)

C Q1 MED Q3
- 0.441 / 0.438 0.625 / 0.610 0.718 / 0.706

Overall Accuracy (Train / Test)

C Q1 MED Q3
- 0.933 / 0.933 0.944 / 0.942 0.957 / 0.953

Training time (s)

C Q1 MED Q3
- 5241.0 7148.2 8529.2

Classwise Soln Size

C Q1 MED Q3
1 25.0 54.5 112.0
2 29.0 72.0 111.0
3 36.0 67.0 116.0

Classwise Accuracy (Train / Test)

C Q1 MED Q3
1 0.980 / 0.983 0.989 / 0.989 0.991 / 0.990
2 0.949 / 0.948 0.950 / 0.949 0.960 / 0.958
3 0.939 / 0.940 0.951 / 0.947 0.969 / 0.960

Classwise Det Rate (Train / Test)

C Q1 MED Q3
1 0.183 / 0.247 0.715 / 0.678 0.806 / 0.795
2 0.000 / 0.000 0.102 / 0.082 0.524 / 0.469
3 0.996 / 0.992 0.999 / 0.996 0.999 / 0.997

Classwise FP Rate (Train / Test)

C Q1 MED Q3
1 0.000 / 0.001 0.002 / 0.003 0.004 / 0.006
2 0.000 / 0.000 0.002 / 0.004 0.009 / 0.011
3 0.349 / 0.408 0.623 / 0.674 0.785 / 0.788



156

more subtle, the same score / accuracy disparity is present and this is consistent over

the train and test results. Of particular interest is the wide range of results returned

in terms of score with consistently high values for results in overall accuracy. In

the lower score quartile, a value of approximately 0.44 is returned while the upper

quartile provides results above 0.7. In contrast, the overall accuracy results range

from 0.933 to 0.935 between first and third quartiles, which again indicates a degree

of degeneracy present in the solutions. This is confirmed by the class-wise results for

detection and false positive rates, with a clear indication of preference for solutions

strictly predicting the 92% majority class (3, or subnormal). Detection rate on all

three quartiles for class 3 is near unity while false positive rates range from 0.4 to

0.78, with results being reasonably consistent over both train and test. Despite this

indication of degeneracy, some highly specific learning appears to be taking place on

class 1 with detection generalization being between .25 and .8 between the first and

third quartiles, while false positive rates remain near zero. This is an interesting

result as the training data for class 2 (hyperfunction) holds a 2:1 representational

advantage over exemplars of class 1 (not hyperthyroid) on Thyroid, however this

concept is clearly not being readily learned by the canonical GP.

Regardless of the modest success on class 1, the canonical GP results from E1 on

Thyroid are further evidence of the class imbalance problems facing canonical multi-

class GP classifiers. The inability of GP to sample an appropriate representation of

each class naturally leads to guessing behavior representing a degenerate state (a local

optima) that provides solutions that are not generally acceptable in the classification

context. The CMGE system presented in this thesis employs balanced multi-class

archiving of relevant training exemplars as evolution progresses and thereby directly

enforces an appropriate sampling of the data from all class distributions. Comparative

results will be provided in Section 5.2 that demonstrate improved robustness to the

class imbalance problem, with the CMGE models providing significant improvements

over the canonical results whilst greatly reducing training time and containing solution

complexity over the large and unbalanced Census and Thyroid data sets. Moreover,

the next natural modification to make to canonical GE will be to incorporate class

balanced sub sampling (RssGE) where the two models will be benchmarked in Section
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5.2.

5.1.2 Training Time

The widely acknowledged problem of scalability [6] [86], that is the ability to train the

GP algorithm on large data sets, is frequently cited as a primary disadvantage of GP

in comparison to other machine learning approaches. This is readily demonstrated for

the canonical GP system by Experiment E1 over both the Census-Income and Thy-

roid data sets. Table 5.1 indicates the quartiles for GP training time in seconds under

the ‘Training time’ heading. The median time to train the canonical GP on Census

was 172,409 seconds (approximately 2,873 minutes, or roughly 48 hours). Only 25%

of the time did the canonical framework train in under 39 hours, while another 25% of

the initializations required at least 75 hours. As a result, the 20 independent initial-

izations on Census required over a month to carry out on modern hardware, without

the utility of parallel hardware. The Census data set contains approximately 200,000

training patterns and clearly demonstrates the inappropriateness of the traditional

approach to training GP under a large-scale classification context.

Similarly, the considerably smaller Thyroid problem (3709 training exemplars)

reflects the scalability pathology of canonical GP. Quartile training times, provided

in table Table 5.2, ranged from 5241 to 8529 seconds (quartiles 1 and 3, respectively)

with a median training time over 7000 seconds, or approximately 2 hours. The 50

independent initializations for E1 on the Thyroid problem required nearly a full week

to complete, clearly demonstrating the prohibitive cost of the canonical GP approach

to training on real-world classification tasks (in this three-class case, we naturally

required construction of three separate classifiers).

Two factors contribute to the training pathology of canonical multi-class GP. The

main impediment (in terms of training set size) is directly related to the requirement

of the inner training loop: GP evaluates each individual in the population over the

entirety of the training set to determine error as outlined in Section 2.5. The second

issue is the requirement of separate initializations for each class. The degree to

which this training overhead can be reduced by evaluation constraints, active learning

and Pareto-coevoultionary frameworks will be addressed by the comparative results,
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presented in Section 5.2. The CMGE system presented in this thesis will be shown

to provide scalability by reducing the training time by orders of magnitude while

containing solution complexity and simultaneously providing improved classification

results across the current data sets.

5.1.3 Solution Complexity

Table 5.1 demonstrates the solution complexity of canonical GE over the Census

problem under the ‘Class-wise Soln Size’ section. All solution sizes are provided as

string lengths of the unsimplified phenotype expressions. Class 1 of the canonical

Census solutions indicate more variability over the quartiles, ranging from 12 to 78.5

versus 13 to 67.5, despite a considerably smaller median solution size (27.5) than that

of class 2 (41.5). This large degree of variation indicates the inability of canonical

GP to contain code growth (or bloat), however this effect may be partly a result of

utilizing only 20 runs to constrain the experiment times.

Solution sizes for the Thyroid problem under the canonical GP approach are

provided in the solution size quartile summary of Table 5.2. Between the three classes

the solution size results are approximately comparable over the three quartiles in

terms of variation, with solution sizes ranging from the mid 20s to low 100s. The two

classes demonstrating better detection rates (classes 1 and 3) having smaller median

solution sizes. Of the two, class 1 solutions (providing modest median detection rates

results whilst maintaining a low false positive rate) returned the smaller solution

sizes over all quartiles; however, neither result is evidently different in terms of size

or variation from the largely degenerate solutions of class 2. This result provides

further evidence of canonical GP’s inability to contain code growth during evolution.

In the following sections, the CMGE framework presented in the current work will

demonstrate that code growth can be contained by using explicit multi-objective

optimization measures to apply evolutionary pressure for parsimony whilst learning

classifiers that meet or improve upon classification results and training times returned

by the canonical GP approach.
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5.2 Comparisons: Canonical vs. Scalable GP

The results of Experiments E2-E5 (Table 4.6) will now be introduced in a compar-

ison context with those of canonical GP. The degeneracy of canonical GP on both

data sets in E1 (described in Section 5.1.1) will allow the overall accuracy results

of classification performance to be ignored in the following comparisons in favor of

the score metric, which indicates a balanced (class-wise) measure of overall classifi-

cation performance. Results of classification performance, training time and solution

complexity will demonstrate improvements due to the CMGE framework as well as

the approximate equivalence of the canonical GE method with StdGE, the standard

GE approach with runtime constrained by total number of evaluations that will be

employed as a baseline indicator hereafter, Equation 4.1.

5.2.1 Classification Performance

Figure 5.1 provides graphical representations of train and test results of E1 (canonical

GP) on Census as compared to E2-E5 results compiled for Census. The canonical

results are indicated with the label GE in the box plots of Figure 5.1 (a) and (b) (train

and test, respectively) and multiple comparison plots (c) (d) (e) and (f). Subplots (c)

and (d) of Figure 5.1 provide multiple comparison of means based on ANOVA F-test

results for train and test, respectively; while subplots (e) and (f) provide multiple

comparison results based on the Kruskal Wallis non-parametric version of ANOVA

(see Section 4.4.4) of train and test, respectively. As there is limited evidence that

the assumptions of the classical ANOVA F-test are valid (particularly those requiring

performance results having equal variance and approximate normality), statistical sig-

nificance will be indicated by an agreement in results of the two multiple comparison

analysis models. Figure 5.2 provides similar classification performance comparisons

between E1 and E2-E5 on the Thyroid data set.

The Census score results of Figure 5.1, subplots (a) and (b) indicate that the

low median score returned by canonical GP (indicated simply by GE) is, in fact,

the worst in terms of classification performance of all GE systems examined in this

study, with StdGE providing a very similar result with less variation (near zero)

over the quartiles. These results are extremely consistent between train and test,
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Figure 5.1: Direct comparison of Canonical GP (GE) performance on CENS.
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indicating that both systems are providing essentially degenerate results on this highly

unbalanced data set. Moreover, the score results of StdGE and canonical GP are

shown to be the same, from the perspective of statistical significance; both the F-

Test and Kruskal Wallis multiple comparison plots demonstrate that only RssGE

and the two CMGE models returned score results that were improved with statistical

significance. Of the improved results, RssGE appears to return the best score results

with the least variation over the quartiles, however both CMGE1 and CMGE2 provide

meaningful improvements over the standard models and both return maximum results

that were in the same range as those of the RssGE model. These results are consistent

between train and test, indicating that the three models returning improved results

generalized readily on the Census data. Of the CMGE systems, CMGE2 was more

consistent in terms of score and returned better maximum score, however there is no

statistical significance in the difference between these results according to the multiple

comparison results of Figure 5.1 subplots (c) - (f).

Thyroid score results of Figure 5.2, subplots (a) and (b) again indicate poor results

for the standard models (canonical GP and StdGE), however there is a significant

preference for the canonical model over the limited evaluation StdGE. In both train

and test results the basic models provide the lowest median scores and canonical GP

exhibits the most variation with quartile scores ranging from values of .45 to ap-

proximately 0.70, however the maximum result on test does not exceed 0.85. StdGE

consistently returns degenerate solutions, with some outlying points in both train and

test which indicates only a modest number of cases where learning extends beyond

one class. RssGE, while not statistically improving on canonical GP, does return

better median and maximum scores on test than either StdGE or canonical GP, indi-

cating better generalization in the high-end results. The CMGE approaches are not

significantly different from one and other however provide significant and apprecia-

ble improvements over all other models. In terms of consistency, both CMGE1 and

CMGE2 demonstrate marked improvements over canonical GE in terms of interquar-

tile range.
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Figure 5.2: Direct comparison of Canonical GP (GE) performance on THYD.
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5.2.2 Training Time

Comparative results for training time on the Census data set are presented in Figure

5.3. The y-axis of subplot (a) is a log-scale of time in seconds. This result indi-

cates a clear and substantial difference in the training times between the canonical

and scalable GP approaches, where there is a difference of four orders of magnitude.

The multiple comparison of means (subplot (b)) bears out this difference indicating

statistical significance at the 95% confidence level. The results of the four scalable

approaches are isolated for comparison in Figure 5.4, where CMGE2 returns the

largest median training time with quartiles ranging from approximately 500-600 sec-

onds; CMGE1 and StdGE return similar medians with quartiles ranging from 200-300

seconds, and RssGE the lowest median at just over 100 seconds, with very little vari-

ation in this result. While there appears to be a significant difference in training

times between these methods, the practical significance of minutes is debatable when

significant performance gains are attainable.

A similar comparison outcome is demonstrated by the results for training time on

the Thyroid data set in Figure 5.5, where the log scale of seconds is again used on

the y-axis of subplot (a). This result indicates a difference of an order of magnitude

between canonical GP and the scalable models, with the multiple comparisons of

subplots (b) and (c) confirming that this is a statistically significant result. Of the

scalable results (presented in isolation on a linear time scale in Figure 5.6), CMGE2

again returns the greatest median training time of just over 100 seconds, followed

by CMGE1 at around 1 minute; StdGE and RssGE both returned median training

times of under a minute. The difference between the fastest and slowest training

times among the scalable GP models is thus approximately one minute.

5.2.3 Solution Complexity

Solution complexity comparisons (as measured by expression string length) for the

Census and Thyroid Data sets are presented in Figures 5.7 and 5.8, respectively. In

the case Census results, the canonical form of GP returned solution complexities with

the most variability as well as largest solutions according to the upper outlier and

third quartile results of subplot (a); these results were followed closely by StdGE,
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Figure 5.4: Direct (GE) comparison of training time on CENS.
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which also returned the greatest maximum solution complexity of any approach.

Of the three remaining models, RssGE had the lowest median complexity, followed

closely by CMGE2; however, according to the multiple comparisons of subplots (b)

and (c), none of these results carry statistical signifance. Both of the competitive

models were able contain the variability in solution complexity better than any of the

other approaches.

Comparative results for Thyroid solution complexity (Table 5.8) illustrate the

tendency toward solution growth in the standard models, with the canonical and

StdGE models returning the largest complexity results across all quartiles (subplot

(a)), with subplots (b) and (c) confirming the statistical significance of these results.

Moreover, the variability in the canonical and StdGE results is appreciably greater

than any of RssGE or the CMGE models. RssGE returned the lowest first and second

(median) quartile results however, these groups were not shown to be statistically

different by the multiple comparison plots in subplots (b) and (c). Similarly to the

Census results, both of the CMGE results demonstrated less variation in solution

complexity than any of the other approaches.

5.3 Scalable Framework Comparisons

Experiments E2-E5 provide the basis for comparisons across the scalable GP models

(RssGE, StdGE, and the competitive multi-objective models CMGE1 and CMGE2)

over 12 classification problems. Results will be discussed in the following sections,

using summary tables indicating performance rankings on overall classification (in

terms of accuracy and score on both train and test data), training time and solution

complexity. Bold rankings under the CMGE headings denote statistically significant

improvements over the best performing model between RssGE or StdGE according to

both F-Test and Kruskal Wallis multiple comparison plots. Similarly, bold rankings

under the RssGE or StdGE headings represent statistically significant improvements

from the best performing CMGE model. Underlined rankings indicate results that are

statistically significant improvements over all competing GP models. The lower por-

tion of each rank summary table provides performance summaries, in terms of sum of

ranks (Total), average rank (Avg.), standard deviation of rank (Std.), number of best
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rankings (N1), number of worst ranks (N4), number of bold ranks (N) and number of

underlined ranks (N). Where appropriate, quartile summaries, box plots and multiple

comparison charts will be provided in addition to the rank summary tables in order

to highlight representative (or atypical) results in detail on each performance metric.

Full scalable GP quartile summary listings are provided in Appendix G, Sections G.3

and G.2. Scalable GP comparison results for each model / data set combination are

provided in Appendix A, Section A.2.

5.3.1 Classification Performance

Table 5.3: Comparison of scalable GP accuracy ranks (train)

Data Set Rss-GE Std-GE CMGE1 CMGE2

BOST 3 4 2 1
BUPA 4 3 2 1
CENS 4 1 3 2
CONT 4 3 2 1
IMAG 4 3 1 2
IRIS 4 3 2 1
KD99 3 4 2 1
PIMA 4 3 1 2
SHUT 4 3 2 1
THYD 4 3 2 1
WINE 4 3 1 2
WISC 4 3 2 1
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 46 36 22 16
Avg. 3.83 3 1.83 1.33
Std. 0.39 0.74 0.58 0.49
N1 0 1 3 8
N4 10 2 0 0
N 0 0 8 10
N 0 0 0 1

Table 5.3 lists rankings of median overall accuracy results on training data for the

four scalable GP models. Over the 12 data sets, the CMGE models return median

training accuracies that claim the top two rankings 23 out of 24 times with 18 of

these results representing significantly better training accuracies than either of the

StdGE or RssGE baselines. Of the CMGE models, the two-stage pruning CMGE2

provides the best training accuracy results, being top ranked 8 times, improving on the

baselines 10 times and once returning results significantly better than the competing

frameworks. CMGE2 thus had the best average rank of 1.33 and standard deviation
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of 0.49, while the worst results were returned by RssGE, which was ranked last 10

of 12 times. The StdGE framework returned results that appeared to moderately

improve on RssGE in training, however many of these training results (including the

top ranked training accuracy returned on CENS) will be shown to have produced

degenerate solutions.

Table 5.4: Comparison of scalable GP accuracy ranks (test)

Data Set Rss-GE Std-GE CMGE1 CMGE2

BOST 3 4 1 2
BUPA 4 3 2 1
CENS 4 1 3 2
CONT 4 3 2 1
IMAG 4 3 1 2
IRIS 4 3 1 2
KD99 3 4 1 2
PIMA 4 3 1 2
SHUT 4 3 2 1
THYD 4 1 3 2
WINE 4 3 1 2
WISC 4 3 2 1
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 46 34 20 20
Avg. 3.83 2.83 1.67 1.67
Std. 0.39 0.94 0.78 0.49
N1 0 2 6 4
N4 10 2 0 0
N 0 0 9 10
N 0 0 1 2

Median test accuracy rankings for the scalable GP models are provided in Table

5.4. The best generalization performance according to accuracy was associated with

the CMGE frameworks, with 22 of the top 24 ranks being occupied by either CMGE1

or CMGE2. Of these results, 19 represent significant improvements over the baseline

approaches. Between the two CMGE models, CMGE1 (despite lower training results)

may have tended to generalize slightly better than CMGE2, with 6 top ranked median

test accuracies; however both CMGE systems have the same average median test

ranking, with CMGE2 showing less variation in this statistic (being ranked either 1

or 2 on every data set). Both the CENS and THYD problems resulted in CMGE1

having a rank of 3 and StdGE being ranked 1; however, neither of these results are

representative of the true generalization performance of StdGE because of the widely

unbalanced class distributions that allow degenerate solutions (that return the largest
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Figure 5.9: Direct comparison of scalable GP (GE) performance on SHUT.
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class by default) to receive a high accuracy. An example of the degenerate behavior in

StdGE (on THYD) was provided in Figure 5.2 and discussed along with the canonical

comparative results in Section 5.2.1. Figure 5.9 (train / test accuracy on the Shuttle

data set) provides a typical example of the comparative accuracy results over the four

scalable models in detail. Subplots (a) and (b) demonstrate that, despite considerably

more variation in accuracy on both train and test respectively, the CMGE frameworks

return median accuracies that are in the mid 0.8 to mid 0.9 range, with both baseline

medians being less than 0.85. Moreover, the CMGE2 model’s lower quartile results are

considerably better than the upper quartiles of either baseline approach and near the

median CMGE1 result. Subplots (d) and (f) demonstrate the statistical significance

of the CMGE2 results over all competing models in test, resulting the underlined

rank of 1 in the SHUT row, CMGE2 column of Table 5.4. The results are consistent

over Shuttle train and test data, however CMGE2 did not demonstrate significant

improvement according to the Kruskal Wallis multiple comparison on training data

(subplot (e)) against CMGE1.

Table 5.5: Comparison of scalable GP score ranks (train)

Data Set Rss-GE Std-GE CMGE1 CMGE2

BOST 3 4 2 1
BUPA 3 4 2 1
CENS 1 4 2 3
CONT 1 4 2 3
IMAG 4 3 1 2
IRIS 4 3 2 1
KD99 3 4 1 2
PIMA 3 4 2 1
SHUT 3 4 1 2
THYD 3 4 1 2
WINE 4 3 1 2
WISC 4 3 2 1
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 36 44 19 21
Avg. 3 3.67 1.58 1.75
Std. 1.04 0.49 0.51 0.75
N1 2 0 5 5
N4 4 8 0 0
N 2 0 9 10
N 2 0 0 3

Median score rank results are presented in Tables 5.5 and 5.6 for training and

test, respectively. In the training results of Table 5.5, 22 of the top 24 ranks are
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Table 5.6: Comparison of scalable GP score ranks (test)

Data Set Rss-GE Std-GE CMGE1 CMGE2

BOST 3 4 1 2
BUPA 3 4 2 1
CENS 1 4 2 3
CONT 1 4 2 3
IMAG 4 3 1 2
IRIS 4 3 1 2
KD99 3 4 1 2
PIMA 3 4 2 1
SHUT 3 4 2 1
THYD 3 4 1 2
WINE 4 3 1 2
WISC 4 3 2 1
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 36 44 18 22
Avg. 3 3.67 1.5 1.83
Std. 1.04 0.49 0.52 0.72
N1 2 0 6 4
N4 4 8 0 0
N 2 0 9 9
N 2 0 1 2

occupied by the CMGE models with 19 of these being supported by statistically sig-

nificant improvements over the two baselines, RssGE and StdGE. CMGE2 returned

training scores that were statistically significant improvements over all of the com-

peting models on three occasions (the BUPA, PIMA and WISC problems), and each

of the CMGE systems had the top ranking 5 times. The CMGE approaches tended

to trade off the top ranking between data sets, however twice neither was able to

improve on RssGE, these being the CENS and CONT problems where RssGE re-

sults were top ranked and significant improvements over all competing approaches.

Of the score training results, StdGE tended to acquire the worst ranking the most

frequently (8 times in total) and the third ranking on 4 occasions, where 3 of these

results corresponded to relatively easy problems including IRIS, WINE, and WISC.

We attribute this to all three data sets being unbalanced. That is to say, although

IRIS and WINE have an equal number of exemplars per class, the multi-class nature

of the data sets renders them ‘unbalanced’ from the binary classification context. In

the case of WISC, the problem is binary, however with an unequal class distribution.

The best results in terms of training score were clearly CMGE1 and CMGE2, with

a slight preference for CMGE1, having the lowest average rank (1.58) and the least
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amount of variation in rank (0.51) as it was always assigned a rank of either 1 or 2.

Test score rankings generally confirm the results of accuracy with both the CMGE

models able to generalize better than either RssGE or StdGE on 22 of 24 occasions.

CMGE1 always received one of the top two rankings, resulting in the best average

rank (1.5) and lowest variation (0.52). In all systems, average rankings and standard

deviation of rank on test score statistics are very consistent with the score perfor-

mances on training data. CMGE2 was again able to perform significantly better than

any other competing model on BUPA and WISC while still maintaining the top rank-

ing on PIMA from the training results; however, it was CMGE1 that had the most

top rankings (6) and tied with CMGE2 with 9 rankings that carried improvements

that were statistically significant over the baseline models. On all but the easiest data

sets (including IRIS, WINE and WISC) and IMAG, StdGE received the lowest rank,

resulting in the worst average rank (3.67) with very low standard deviation (0.49).

Figures 5.10 and 5.11 are indicative of the typical comparisons between the scalable

systems in terms of of train and test score differences. Figure 5.10, subplots (a) and

(b) illustrate the small margins of improvement in median score that StdGE had over

RssGE in training and test. The CMGE models were typically much better in terms

of score on both train and test while being better able to contain the variation in re-

sults. Moreover, the larger data sets (e.g., KD99 of Figure 5.11 subplots (a) and (b)

for train and test, respectively) typically had larger margins in performance between

baseline and CMGE, while the smaller or easier data sets typically returned modest

improvements in terms of score in favor of CMGE1 and CMGE2.

5.3.2 Training Time

Table 5.7 provides the results of the four scalable GP median training time ranks. On

all but one of the data sets, both RssGE and StdGE were able to train significantly

faster than the CMGE models; however, the practical difference in terms of training

time was typically negligible (seconds or a few minutes) when compared with the

times that would be required for an unconstrained run of canonical GP (hours or days

on large data sets). Certain CMGE results, specifically those returned by CMGE2,

were as much as several times slower than the limited RssGE or StdGE training
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Figure 5.10: Direct comparison of scalable GP (GE) performance on IMAG.
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Figure 5.11: Direct comparison of scalable GP (GE) performance on KD99.
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Table 5.7: Comparison of scalable GP training time ranks

Data Set Rss-GE Std-GE CMGE1 CMGE2

BOST 1 2 3 4
BUPA 2 1 3 4
CENS 1 2 3 4
CONT 2 1 3 4
IMAG 2 1 3 4
IRIS 2 1 3 4
KD99 1 2 3 4
PIMA 2 1 4 3
SHUT 1 2 3 4
THYD 2 1 3 4
WINE 2 1 3 4
WISC 2 1 3 4
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 20 16 37 47
Avg. 1.67 1.33 3.08 3.92
Std. 0.49 0.49 0.29 0.29
N1 4 8 0 0
N4 0 0 1 11
N 12 11 0 0
N 3 6 0 0

times. The typical differences will be illustrated with timing box plots; however, in

the majority of cases training times for the CMGE models did not exceeding several

minutes per initialization, well within tolerable bounds for most learning applications

in contrast to time typically required to train canonical GP. Between the CMGE

models, CMGE1 (employing a simple pruning algorithm) always ranked better than

CMGE2 (aside from the PIMA data set where the ranks were reversed) and on 6 of

the data sets there was a statistically significant difference in favor of CMGE1. Figure

5.6 illustrates the comparative training times on THYD, discussed earlier in Section

5.2.2 and is indicative of a typical difference in medians (approximately one minute)

and a moderate difference was demonstrated by the box plot results for CENS in

Figure 5.4. Perhaps the largest difference across all data sets in the current results

is represented by the Shuttle results of Figure 5.12 where both CMGE1 and CMGE2

required hundreds of seconds to train. Naturally the major contributing factor to

the training overhead of CMGE relative to RssGE and StdGE is the addition of the

clustering algorithm and the multiple objective evaluations; moreover the runtime

of the clustering algorithm is problem dependent (i.e., a function of the number of

clusters identified).
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5.3.3 Solution Complexity

Table 5.8: Comparison of scalable GP solution length ranks

Data Rss-GE Std-GE CMGE1 CMGE2

BOST 3 4 2 1
BUPA 2 1 3 4
CENS 1 3 4 2
CONT 3 1 4 2
IMAG 4 3 2 1
IRIS 4 3 2 1
KD99 3 1 4 2
PIMA 4 1 3 2
SHUT 3 2 4 1
THYD 1 4 2 3
WINE 3 4 2 1
WISC 4 3 2 1
Stat Rss-GE Std-GE CMGE1 CMGE2

Total 35 30 34 21
Avg. 2.92 2.5 2.83 1.75
Std. 1.08 1.24 0.94 0.97
N1 2 4 0 6
N4 4 3 4 1
N 0 0 2 4
N 0 0 0 2

Median solution complexity ranks are provided in Table 5.8. Sixteen of the top

24 ranks are assigned to the CMGE models, with CMGE2 being top ranked (having

smallest median solution size) on half of all data sets, 4 of these indicating statistical

improvements over RssGE and StdGE results. On IMAG and WISC, the CMGE2

results were improvements that carried statistical significance over all other models.

With an average rank of 1.75 and standard deviation of 0.97, CMGE2 outperforms

CMGE1 (average rank of 2.83 with approximately the same variability in ranks). The

worst results in terms of complexity ranks is RssGE, with a mean rank of 2.92; how-

ever StdGE returns the most variation in rank at 1.24. No baseline models were able

to show a statistically significant improvement over the CMGE results, despite the

fact that code growth should be at a minimum in these systems employing limited

evaluations. Typical comparisons in terms of actual quartiles of string length are

provided by Figures 5.13 (PIMA) and 5.14 (IRIS). PIMA solution length comparison

results (subplot (a)) are representative of the cases where CMGE models return short

expressions with well contained variation (indicated by quartiles) but do not signif-

icantly improve on both baselines as indicated by the multiple comparison results



182

RSS!GE STD!GE CM!GE1 CM!GE2
0

50

100

150

200

250

300

Ex
pr

es
si

on
 L

en
gt

h

Pima ! Median Expression Length

(a) Solution Length (strlen)

34 36 38 40 42 44 46 48 50 52 54

(M!*+2

(M!*+1

ST/!*+

0SS!*+

M12ti52e (o95arison o> Means ! Pi9a ! Median +A5ression LenCtD

TDe 9eans o> Cro15s (M!*+1 and 0SS!*+ are siCni>icant2F di>>erent

(b) Comparison of Means

800 850 900 950 %000 %050 %%00 %%50 %&00

CM!GE&

CM!GE%

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Pima ! Median Expression Aength

& groups have mean ranks significantly different from CM!GE%

(c) Comparison of Mean Ranks

Figure 5.13: Direct (GE) comparison of solution length on PIMA.



183

RSS!GE STD!GE CM!GE1 CM!GE2
0

50

100

150

200

250

300

Ex
pr

es
si

on
 L

en
gt

h

Iris ! Median Expression Length

(a) Solution Length (strlen)

30 32 34 36 38 40 42 44 46 48 50

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Means ! Iris ! Median Expression Length

2 groups have means significantly different from CM!GE2

(b) Comparison of Means

800 850 900 950 1000 1050 1100 1150 1200

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Iris ! Median Expression Length

2 groups have mean ranks significantly different from CM!GE2

(c) Comparison of Mean Ranks

Figure 5.14: Direct (GE) comparison of solution length on IRIS.



184

in subplots (b) and (c). The IRIS results of Figure 5.14 indicate a typical scenario

for the cases where classification performance is near perfect over all classifiers (e.g.,

IRIS, WINE, WISC). In these situations both of the CMGE frameworks are able

to provide equal or better classification performance while finding solutions that are

significantly smaller than the baseline approaches, as demonstrated by the multiple

comparison results of Figure 5.14 subplots (b) and (c).

5.4 Concerning Multi-class PGEC Results

A complete analysis of multi-class PGEC results is omitted as our variant of the PGEC

algorithm (configured as a multi-initialization classifier) returns multi-class solutions

that are largely degenerate and not competitive with the baseline models. This is

readily confirmed by the overall and class-wise quartile result summaries supplied

in Appendix G, where PGEC typically returns the lowest classification performance

independent of the data set. Basic observation of PGEC runs appears to indicate

that the model does not perform well in a multi-class configuration on account of

inconsistency or incompatibility between initializations corresponding to the various

classes. For example, a typical multi-class run might find a good (majority voting)

team for one specific class – i.e., strong intra-class behavior, having high detection

rate with a low false positive rate; however, the teams evolved on the separate ini-

tializations for the remaining classes can be so poor (or have such detrimental effects

on the end results) that the performance of the final solutions can be highly unreli-

able. In other words, the team models rely on strong intra-class behavior as well as

strong inter-class behavior to achieve acceptable performance. In the case of PGEC,

teams (corresponding to classes) are evolved independently without consideration for

the multi-class voting context and therefore the latter behavior might occur only by

chance. Specifically, PGEC’s fragile inter-class behavior can occur when teams from

separate initializations are of considerably different sizes (i.e., large class-wise varia-

tion in team size) are finally employed in the multi-class, majority vote setting. In

such a scenario, large teams of learners can be more likely to ‘win’ majority votes in

the multi-class setting, resulting in degenerate behavior. Other examples may include

instances of non-voting (or tied voting) on patterns, or simply poor inter-class voting
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performance by one or more classes that reduces the overall result. In general, strong

PGEC results appeared to be very infrequent (i.e., rarely were ‘good’ teams for all

classes (across initializations) seen on the same ‘run’), with the likelihood of strong

results decreasing with more classes.

An obvious difference with respect to inter-class team behavior between PGEC

and CMGE is that CMGE learners (of all classes) evolve together, seeing all of the

various point archives at once, whereas PGEC learners can only see one point archive

per class-specific initialization. Even though the PGEC point archive is (like CMGE)

balanced with respect to in versus out-of-class points, the out-of-class points seen by

the various learner populations do not necessarily carry any significance in terms of

the inter-class team behaviors. In other words the PGEC learners have, for example,

no incentive to learn to ‘pass’ on points that are being correctly handled by the

potential team members from other classes.

Further discussion of team behavior including a comparison of the intra-class

behaviors of PGEC and CMGE will be provided in Chapter 8, where evidence for

‘weak learner’ versus ‘problem decomposition’ behaviors will be established for PGEC

and CMGE, respectively.

5.5 Summary

We began our evaluation of GE methods by clearly establishing that canonical GE,

trained as a binary classifier over all training exemplars using and SSE-based fitness

function, represents a rather näıve model for classification (Section 5.1). This result

has as much to do with the ‘sampling’ scheme as the classifier model or fitness func-

tion, with the accuracy metric being minimized but the much more discerning ‘score’

metric reflecting the degenerate nature of the ensuing models. Sections 5.2 and 5.3

introduce a constant evaluation limit and repeat the comparison with StdGE (iterate

over all fitness cases), RssGE (balanced sub set selection with uniform sampling), and

CMGE models. It now becomes very clear that the RssGE represents a significant

improvement over the StdGE model on the more informative ‘score’ metric, where

StdGE naturally performs very poorly. However, it is the CMGE models which si-

multaneously optimize the both the accuracy and score metrics, providing the vast
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majority of statistically significant results under either metric. Moreover, the simplic-

ity of the CMGE models (despite being multi-individual models) is typically lower

per individual than Std or RssGE. From the computational cost perspective, the ad-

ditional pass through subsets incurred by the CMGE clustering step in addition to

the multiple objective calculation and the management of archives naturally results

in longer run times relative to the RssGE and StdGE models but all algorithms are

many orders of magnitude faster than canonical GE.



Chapter 6

Results of Neural Network Comparisons

Results presented in this chapter for experiments E6 and E7 (Table 4.6) compare the

current CMGE framework with linear (LP) and non-linear (MLP) Artificial Neural

Network (ANN) classifiers in terms of overall performance. These results provide

the basis for comparisons between the Competitive Multi-Objective GEs (CMGE1

and CMGE2) over 12 classification problems. RssGE ranks are also included in the

comparison plots; however, as a baseline indicator only. Results will be discussed

in the following sections, using summary tables indicating performance rankings on

overall classification in terms of accuracy and score on both train and test data. Bold

rankings under the CMGE headings denote statistically significant improvements over

the best performing model between MLP or LP according to both F-Test and Kruskal

Wallis multiple comparison plots. Similarly, bold rankings under the LP or MLP

headings represent statistically significant improvements from the best performing

CMGE model. Underlined rankings indicate results that are statistically significant

improvements over all other models. The lower portion of each rank summary table

provides performance summaries, in terms of sum of ranks (Total), average rank

(Avg.), standard deviation of rank (Std.), number of best rankings (N1), number

of worst ranks (N5), number of bold ranks (N) and number of underlined ranks

(N). Where appropriate, quartile summaries, box plots and multiple comparison

charts will be provided in addition to the rank summary tables in order to highlight

representative (or atypical) results in detail on each performance metric. Full ANN

quartile summary listings are provided in Appendix G, Section G.4 and the full set

of ANN vs. CMGE comparison results for each data set are provided in Appendix B.
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6.1 Overall Classification Performance

6.1.1 Accuracy

Ranks of the median training accuracies are provided in Table 6.1. LP and MLP

Neural Network classifiers receive 20 of the top 24 ranks returned in the training

accuracy results, with MLP twice receiving the worst rank (on the IMAG and IRIS

problems), and the LP configuration receiving the fourth rank on IRIS. While the

Neural Network models typically returned the top two ranking accuracy results on

the training data, only half of the time were these results significantly better than

both of the CMGE models. Of the CMGE models, CMGE2 appeared to provide the

best training context under the overall accuracy metric, twice receiving the top rank

and once being significantly better than either ANN approach. Whereas the RssGE

baseline was the lowest ranking of all approaches (with an average rank of 4.75), the

MLP had the most variation in its ranks at 1.4. Typically the MLP either provided

a top ranked training result or the worst (in two cases).

Table 6.1: Comparisons with ANN: accuracy ranks (train)

Data set Rss-GE CMGE1 CMGE2 LP MLP

BOST 5 4 3 2 1
BUPA 5 4 3 2 1
CENS 5 4 3 1 2
CONT 5 4 3 1 2
IMAG 4 2 3 1 5
IRIS 3 2 1 4 5
KD99 5 4 3 2 1
PIMA 5 3 4 1 2
SHUT 5 4 1 3 2
THYD 5 4 3 1 2
WINE 5 3 4 1 2
WISC 5 4 3 2 1
Stat Rss-GE CMGE1 CMGE2 LP MLP

Total 57 42 34 21 26
Avg. 4.75 3.5 2.83 1.75 2.17
Std. 0.62 0.8 0.94 0.97 1.4
N1 0 0 2 6 4
N5 10 0 0 0 2
N 0 1 1 5 6
N 0 0 0 3 2

Results in terms of the test accuracy ranks are presented in Table 6.2. Test results

were similarly distributed to those observed in the training accuracy results discussed
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Figure 6.1: ANN comparison of BUPA Overall Accuracy performance.
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Figure 6.2: ANN comparison of IMAG Overall Accuracy performance.
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Table 6.2: Comparisons with ANN: accuracy ranks (test)

Data set Rss-GE CMGE1 CMGE2 LP MLP

BOST 5 3 4 1 2
BUPA 5 4 2 1 3
CENS 5 4 3 1 2
CONT 5 4 3 1 2
IMAG 4 2 3 1 5
IRIS 3 1 2 4 5
KD99 5 3 4 2 1
PIMA 5 3 4 1 2
SHUT 5 4 1 3 2
THYD 5 4 3 1 2
WINE 5 3 4 1 2
WISC 5 4 3 1 2
Stat Rss-GE CMGE1 CMGE2 LP MLP

Total 57 39 36 18 30
Avg. 4.75 3.25 3 1.5 2.5
Std. 0.62 0.97 0.95 1 1.24
N1 0 1 1 9 1
N5 10 0 0 0 2
N 0 1 1 7 4
N 0 0 0 7 0

above, with the Neural Network configurations being assigned the top two ranks 19

times out of a possible 24, with 11 of these results being an improvement over CMGE

by a statistically significant margin, while 13 of the Neural Network results were not

statistically different from the CMGE models. Interestingly, on 7 occasions the basic

LP model returned an accuracy that was the outright best among all alternatives, with

this being statistically significant at the 95% level based on the multiple-comparison

plots. Notably this was never the case for the MLP nor either of the CMGE models

although the CMGE approaches were both significant improvements over the Neural

Network results on IRIS. Between the MLP and CMGE, only 4 of the 12 data sets

provided statistically significant results in favor of the MLP. Similarly to the train-

ing results, MLP had the most variation in its ranks (standard deviation of 1.24).

Moreover, on 4 of the 12 problems (CENS, KD99, SHUT and THYD) there was not

a statistically significant difference between the ANN and CMGE results in terms of

test accuracy.

An example that characterizes typical performance is provided in Figure 6.1, where

the training results of subplot (a) are not significantly different between the ANN and

CMGE models according to the multiple comparison results indicated in subplot (c)
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and (e). The BUPA training result in subplot (a) is also typical in that the results

show CMGE1 was not able return training accuracies as high as CMGE2; moreover,

this represents a significant difference according to the multiple comparison subplots

(c) and (e). Despite many outlier points indicating a number of initializations having

very low training accuracies, the LP configuration is able to consistently generalize

significantly better than any other approach on the BUPA test data, as indicated in

subplot (b). Subplots (a) and (b) of Figure 6.1 indicate the typically large amount

of variation in the MLP result, particularly in the training results of subplot (a).

The results on IMAG (Figure 6.2) again demonstrate the high variability in both

ANN results over both train and test (subplots (a) and (b), respectively) with MLP

returning the worst results and by far the most spread. While there was no significant

difference in the training between LP and the CMGE models, the LP results on test

(subplot (b)) again indicate better generalization in terms of the accuracy metric.

6.1.2 Score

Ranks of the class-balanced score metric results are provided in Table 6.3. In contrast

to the results based on training accuracy, score ranks were more evenly distributed

between the CMGE and ANN classifiers; in general the score may provide a better

indication of multi-class performance with this being particularly true in the present

case since many of the problems chosen for this work involve a large degree of class

imbalance. Of the 24 top ranks, 10 were assigned to CMGE results (5 to each config-

uration) and 12 were assigned to ANN results (8 to the LP and 4 to MLP), while the

RssGE received the final two top rankings on CENS and CONT with training results

on CENS being significantly better than any other classifier. The LP results, on the

surface, appears to provide the best training context, with an average ranking of 2.25

and on 4 occasions provide the best results of any classifier by a significant margin;

however, the variation in this result is the highest, at 1.6, in part because of twice

returning the worst result among all classifiers. Moreover, the LP classifier had only

1 result that was significantly better than the CMGE results when it did not have

the best result of all classifiers, and it returned results that were significantly worse

or statistically no different from CMGE on more than half of all data sets. In terms



193

of average rank, CMGE1 had the next highest result (2.67) with the second lowest

standard deviation (1.23), while having a rank of 1 or 2 on 5 data sets, with three

of these results being the top rank and three being statistically significant. CMGE2

provides the next best training result with an average rank of 2.83 and the lowest

standard deviation (1.11). Aside from the baseline RssGE approach, the MLP had

the worst average rank at 3.42 and the most variation in rank at 1.44. This incon-

sistency is interestingly demonstrated by the fact that on 4 data sets MLP had the

worst result and on 4 other problems it had results that were significantly better than

the CMGE approaches. In general, the LP and MLP classifiers either performed very

well on the training data or else they returned results that tended to be the worst.

Table 6.3: Comparisons with ANN: score ranks (train)

Data set Rss-GE CMGE1 CMGE2 LP MLP

BOST 5 4 3 1 2
BUPA 5 4 2 1 3
CENS 1 3 4 2 5
CONT 2 3 5 1 4
IMAG 4 2 3 1 5
IRIS 3 2 1 4 5
KD99 4 1 2 5 3
PIMA 5 4 3 1 2
SHUT 3 1 2 5 4
THYD 4 1 2 3 5
WINE 5 3 4 1 2
WISC 5 4 3 2 1
Stat Rss-GE CMGE1 CMGE2 LP MLP

Total 46 32 34 27 41
Avg. 3.83 2.67 2.83 2.25 3.42
Std. 1.34 1.23 1.11 1.6 1.44
N1 1 3 1 6 1
N5 5 0 1 2 4
N 1 3 3 5 4
N 1 0 0 4 0

Test results in terms of the score metric are summarized by the performance

ranks in Table 6.4. In large part, the test results on the score metric are similar

to those of score on training, with the best generalization being the LP and CMGE

models depending on the data set. The one exception to this being the RssGE

baseline classifier on CENS which again returned results that were significantly and

appreciably better than any other approach. Aside from this result, the baseline was

approximately the worst in terms of generalization with half of all data sets resulting
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Table 6.4: Comparisons with ANN: score ranks (test)

Data set Rss-GE CMGE1 CMGE2 LP MLP

BOST 5 3 4 1 2
BUPA 5 4 2 1 3
CENS 1 3 4 2 5
CONT 2 4 5 1 3
IMAG 4 2 3 1 5
IRIS 3 1 2 4 5
KD99 5 1 3 4 2
PIMA 5 4 3 1 2
SHUT 3 2 1 5 4
THYD 4 1 2 3 5
WINE 5 3 4 1 2
WISC 5 4 3 1 2
Stat Rss-GE CMGE1 CMGE2 LP MLP

Total 47 32 36 25 40
Avg. 3.92 2.67 3 2.08 3.33
Std. 1.38 1.23 1.13 1.51 1.37
N1 1 3 1 7 0
N5 6 0 1 1 4
N 1 3 3 7 3
N 1 0 0 7 0

in the lowest rank for this classifier.

In similar results to training, the LP classifier either provided the best generaliza-

tion context by a difference that was statistically significant from all other classifiers (7

cases) or else it returned results that were approximately the worst, resulting in a low

average rank of 2.08 but the largest standard deviation of 1.51. When the LP failed

to produce the best overall result, it was never significantly better than the CMGE

results. Moreover, LP returned the worst results overall on the highly unbalanced

7-class Shuttle problem, while CMGE2 and CMGE1 provided the best and second

best results on this data set, respectively. CMGE1 had the next highest average rank

at 2.67 with the second least variation in rank of 1.23, followed closely by CMGE2

with an average of 3 and the lowest standard deviation of 1.13. The CMGE models

provided statistically significant improvements over the ANN configurations on IRIS,

SHUT and THYD. Aside from the baseline, the MLP results typically provided the

worst generalization with an average rank of 3.33 and having a rank of 5 on 4 of the

data sets while never returning the top rank.

Detailed score comparisons for train and test are provided in Figures 6.3, 6.4,
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Figure 6.3: ANN comparison of IRIS Score performance.
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Figure 6.4: ANN comparison of SHUT Score performance.
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Figure 6.5: ANN comparison of KDD Score performance.
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and 6.5. The IRIS results of Figure 6.3 is a somewhat atypical example, being un-

usual in that the CMGE models are both able to outperform the ANN approaches

on both train (subplot (a)) and test (subplot (b)). Moreover, the ANN results on

test demonstrate a large degree of skew toward the lower quartile while both of the

CMGE configurations regularly return better test scores and, in fact, have ideal test

results (score = 1.0) on approximately 25% of the initializations. It is surprising that

the ANN classifiers did not perform better on this relatively straightforward data

set, however this is perhaps not unreasonable given the variability associated with

the ANN approaches. A similar result is illustrated by the Shuttle score compar-

isons presented in Figure 6.4. On this problem, the training results for CMGE1 and

CMGE2 were approximately the same, as seen in subplot (a) and showed very little

variation as compared to the MLP result. Interestingly neither of the ANN models

were able to return scores on train or test that could compete with even the base-

line RssGE, while both CMGE models were significantly better on train and test (as

shown by multiple comparisons in subplots (c),(e) and (d),(f) respectively) indicating

excellent class-wise generalization which can be verified by the class-wise detection

rates presented in Section G.3 of Appendix G.

The KDD box plots with multiple comparisons of Figure 6.5 provide a typical

score comparison where no significant differences exists between CMGE1 and CMGE2

against the MLP model on subplots (a) and (b), for train and test scores, respectively.

Despite the insignificance between these results, large variations in the MLP scores

were again observed, particularly with respect to the results of subplot (a) (train).

Both CMGE models return significantly better training results as compared to the

LP on the KDD problem, as indicated in multiple comparison subplots (c) and (e);

however, CMGE2 does not generalize as well as CMGE1 in this case, and fails to

provide statistical significance in its improvement over LP on test, indicated in multi-

ple comparison subplots (d) and (f). The CMGE1 model does, however, significantly

outperform the LP classifier on the KDD problem, which fails to outperform the

RssGE baseline, indicated by the overlap in multiple comparison groups in subplots

(c) and (e) on train, (d) and (f) on test.
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6.2 Summary

Benchmarking is performed against two feed forward NN architectures in which the

conjugate gradient update rule is utilized. Previous studies [15] [74] limit ANN meth-

ods to first order gradient decent methods, despite the drawbacks of such a scheme

[69] [10]. In this respect, the ANN models under this study were observed to represent

more of a challenge, although the LP model was generally more effective than the

non-linear MLP model. Indeed, the LP model either ‘worked’ or ‘failed’, thus pro-

viding useful feedback in terms of the consistency of a linear model bias; whereas the

MLP model was exceptionally inconsistent, typically failing to ‘follow up’ on the first

ranked performance of the LP model. Moreover, cases where the LP might have been

expected to perform well (i.e., the ‘easier’ IRIS data set), the model was not ranked

highly; conversely on ‘difficult’ data sets that might have benefited from a non-linear

model, the LP model received the highest rank e.g.,, BOST, BUPA, CONT, PIMA.

Conversely, the CMGE models provide relatively consistent performance across all

data sets. This is an interesting result, given the inherently stochastic basis for the

EC paradigm, and a reflection of the ability of the CMGE multi-objective fitness func-

tion to direct credit assignment to where it is most required. The RssGE algorithm

maintains the previously observed speciality towards the CENS problem, but results

in the largest number of lowest ranked solutions, again emphasizing the contribu-

tions apparent in CMGE towards correcting the drawbacks in GE as a classification

paradigm.



Chapter 7

Results of Deterministic Comparisons

This chapter describes the results of experiments E8 - E10 (Table 4.6), used to com-

pare the proposed CMGE framework with three widely employed and readily available

deterministic classifiers (OneR, Näıve Bayes, and C4.5) over the 12-problem classifi-

cation benchmark. Comparisons between deterministic and non-deterministic (GP)

models are not directly accessible since all GP results require multiple independent

initializations while deterministic classifiers, by definition, always return the same

result given the same collection of exemplars. As a direct consequence, statistical

analyses of result distributions, such as the those provided in previous chapters, are

not immediately applicable and the following deterministic comparison framework is

therefore proposed. All comparisons between deterministic and GP classifiers will

be provided through the use of single-result baselines returned by each of the three

aforementioned deterministic classifiers. In the case of problems requiring ten-fold

cross validation the median deterministic result, calculated over the 10 partition re-

sults, establishes the deterministic performance baseline. Comparisons are drawn by

plotting the distribution of multiple initializations of the GP classifier for the same

metric and recording the total number of results being equal to, or improving on the

baseline. This method provides a straightforward means to estimate the probability

of any given GP initialization returning a result that equals or improves upon the

baseline classifier. A more formal description of this comparison framework is pro-

vided in Section 4.5.3, of Chapter 4. The comparative results begin with a graphical

comparison of the CMGE2 framework and OneR classifier on the difficult two-class

BUPA data set. Figures 7.2 and 7.3 illustrate the deterministic comparison process

for class-wise metrics (detection rate and false positive rate, respectively), using his-

togram depictions of the GP distributions with a vertical dashed line to indicate the

baseline value. Results on the overall performance metrics, accuracy and score, are

200
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provided in Figure 7.1. Summary results for all deterministic / GP classifier combi-

nations will be provided for overall accuracy and score results. Summary box plots

will be employed to indicate the degree of class-wise performance achieved by the

CMGE frameworks in comparison to each deterministic approach, while detailed ta-

bles of overall as well as class-wise comparative results are provided in Appendix C.

Entries in all tabular summaries of deterministic comparisons indicate the percentage

of GP initializations that equal or improve on the deterministic classifier in question.

Values between 25% and 50% are highlighted in bold, while results above 50% are

underlined. Improvement is defined by larger values in the case of overall accuracy,

score and detection rate and smaller values in false positive rate. Quartile summaries

of all deterministic classifier performances are provided in Appendix G, Section G.5.

A typical analysis of CMGE’s overall performance against OneR is provided in

Figure 7.1. Results on overall accuracy in subplots (a) and (b) indicate consistency

between train and test results, respectively with CMGE2 matching or outperforming

OneR approximately 68% of the time on training data and nearly 97% of the time

on test. While the OneR classifier returns a median training accuracy of only 0.69

over the 10 folds, the CMGE2 results are clearly clustered around 0.72, with the

upper tail of the distribution reaching 0.76. In terms of test results of subplot (b),

the OneR is unable to generalize, effectively returning a 50% accuracy classifier while

most of the CMGE2 accuracy results appear to fall above 0.65 and extend beyond 0.8.

This analysis provides a good indication that a typical initialization of the CMGE2

classifier will perform much better than OneR in terms of accuracy.

The accuracy results are supported by the score comparison of Figure 7.1, subplots

(c) and (d) for training and test scores, respectively. Nearly 70% of the CMGE2

initializations result in improvements on training data while 92% improve on test

in terms of score. Moreover the distributions of CMGE2 results in both train and

test indicate that the results are typically substantial with the distribution centers

appearing well beyond the baselines, particularly with respect to the generalization

ability on test.

A detailed view of the CMGE2 performance is provided by the class-wise compar-

isons of Figures 7.2 and 7.3 for detection and false positive rates respectively. Figure



202

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
0

10

20

30

40

50

60

70

80

80.2% of the results fall at or above 0.68567

C
ou

nt

1R vs. CM−GE2 on Liver − Overall Accuracy (Train)

(a) Overall Accuracy (Train)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

10

20

30

40

50

60

70

80

96.6% of the results fall at or above 0.52185
C

ou
nt

1R vs. CM−GE2 on Liver − Overall Accuracy (Test)

(b) Overall Accuracy (Test)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0

10

20

30

40

50

60

70

80

68.4% of the results fall at or above 0.6675

C
ou

nt

1R vs. CM−GE2 on Liver − Score (Train)

(c) Score (Train)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

91.8% of the results fall at or above 0.5125

C
ou

nt

1R vs. CM−GE2 on Liver − Score (Test)

(d) Score (Test)

Figure 7.1: Comparison of accuracy and score results. Subplots (a),(b) for Class 1
(Train, Test) and (c),(d) Class 2 (Train, Test). Histograms indicate distribution of
GP results and percentage of initializations providing equal or improved values over
deterministic classifier OneR on the BUPA data set.
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Figure 7.2: Comparison of class-wise detection rates. Subplots (a),(b) for Class 1
(Train, Test) and (c),(d) Class 2 (Train, Test). Histograms indicate distribution of
GP results and percentage of initializations providing equal or improved values over
deterministic classifier OneR on the BUPA data set.
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Figure 7.3: Comparison of class-wise false positive rates. Subplots (a),(b) for Class
1 (Train, Test) and (c),(d) Class 2 (Train, Test). Histograms indicate distribution of
GP results and percentage of initializations providing equal or improved values over
deterministic classifier OneR on the BUPA data set.
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7.2, subplots (a) and (b) provide results on class 1 over train and test with 23% of all

initializations showing improvement in detection rates on the training data. However

the OneR algorithm is not able to generalize as well as CMGE2, returning a detec-

tion rate of 0.4 with 64% of initializations being an improvement. A more decisive

advantage for CMGE2 is shown on class 2, Figure 7.2 subplots (c) and (d), where

more than 90% of all initializations match or improve on OneR regardless of train or

test data.

Being a two-class problem, the same advantage for CMGE2 on BUPA is seen

from the perspective of false-positive rates in Figure 7.3. Because of the inter-class

relationship between detection rate and false positive rate on two-class problems (e.g.,

detection rate of class 1, Figure 7.2, subplot (a), and false positive rate of class

2, Figure 7.3, subplot (c)), their distributions are horizontal mirrors1 and therefore

provide the same advantages over OneR, expressed differently. This behavior can be

observed on all two class problems among the results presented in Appendix C.

Due to the large number of comparisons required for the deterministic procedures,

all remaining results have been summarized as overall (accuracy and score) perfor-

mance summary tables and class-wise (detection and false positive rate) notched box

plots and will be discussed on a classifier by classifier basis in the following sections.

7.1 OneR Comparisons

Performance summaries of the current framework against the deterministic OneR

classifier in terms of the overall accuracy metric are provided in Tables 7.1 and 7.2

for training and test, respectively. Training results for CMGE1 and CMGE2 are

similar, with each providing three instances where performance of OneR is equaled or

improved in more than one third of all initializations; moreover the CMGE 1 returns

percentages above 50 on WISC, IMAG, IRIS, and WINE (all initializations matched

or improved on OneR). The same accuracy performance applies to CMGE2, which

additionally returns equal or better training results on 80.2% of all initializations on

BUPA.

1The histograms provided do not depict exactly mirrored distributions because of the binning of
the plotting software.
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Table 7.1: 1R Comparison - Overall Accuracy (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 1 0 0 0.2
WISC 71 61.6 93 98.8
CENS 0 0 0 0
CONT 7 8.2 44.6 45.8
IMAG 70 68 96 100
IRIS 57.6 43.2 90.6 95.2
KD99 0 4 40 46
BUPA 19.4 5 36.6 80.2
PIMA 0.6 0 6.4 5.6
SHUT 0 2 18 44
THYD 0 0 2 8
WINE 76.8 66.2 100 100

Table 7.2: 1R Comparison - Overall Accuracy (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 8.8 8.6 11 10
WISC 70 67 82.8 90.6
CENS 0 0 0 0
CONT 18.4 18.8 39.4 44.2
IMAG 84 88 98 100
IRIS 62.4 60.6 47.2 44.8
KD99 0 0 10 8
BUPA 95.2 76.8 96.8 96.6
PIMA 7.6 10 45 38
SHUT 0 2 18 44
THYD 0 0 4 8
WINE 84.4 79.4 98.8 97
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In terms of the overall test accuracy results of Table 7.2, performance remains

highly consistent and both CMGE models perform strongly relative to OneR on all

but the CENS, KD99 and THYD data sets. Notably, both CMGE models provide

some fraction of results that improve on OneR for all data sets other than CENS. Of

these, the best results include BUPA, IMAG and WINE where both CMGE models

are equal or favorable to OneR in more than 96% of all initializations. CONT,

PIMA and IRIS also provide very strong results for both CMGE models (returning

percentages of at least 38% for each). CMGE2 additionally provides strong results

on SHUT, being equal or improving on OneR on 44% of its initializations.

Table 7.3: 1R Comparison - Score (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 1 0 0 0.2
WISC 79.2 74.2 94.6 99.8
CENS 0 100 50 50
CONT 24.2 86.8 78.6 70.6
IMAG 70 68 96 100
IRIS 58.4 43.8 90.8 95.2
KD99 2 76 98 94
BUPA 10.2 7.2 23 68.4
PIMA 1.2 5.6 8.8 19
SHUT 0 72 100 100
THYD 0 2 46 36
WINE 77.2 68 100 99.8

Table 7.4: 1R Comparison - Score (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 8 7.6 13.8 12.4
WISC 80.4 80.2 89.8 97
CENS 0 100 52 52
CONT 30.2 75.6 63.8 59.4
IMAG 82 88 98 100
IRIS 69.2 67.4 80.6 78.8
KD99 0 28 64 48
BUPA 72 77.6 79.2 91.8
PIMA 5.4 23.6 35.2 34.8
SHUT 0 70 100 100
THYD 0 8 58 42
WINE 76.8 70 94.8 92.4

Performance summaries of the CMGE models against the deterministic OneR

classifier in terms of score are provided in Tables 7.3 and 7.4 for training and test,
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respectively. Both of the CMGE models again provide very strong training contexts

when compared with the OneR results. Of the 24 training summary results against

OneR, CMGE returned percentages of equal or improved performance of at least 50

on 19 occasions; more than half of these were above 90%. The notable exceptions to

the strong training results were BOST and PIMA, where OneR appeared to provide

competitive training results. Of the two, CMGE2 appeared to provide more train-

ing improvements over the deterministic classifier with both of the difficult PIMA

and BUPA problems indicating substantial preference over CMGE1. In both cases,

CMGE2 returned equal or improved results over OneR approximately two to three

times as often as CMGE1.

Test results in terms of score, provided in Table 7.4, provide additional support

of the CMGE model’s strong performance against the OneR classifier, with all data

sets showing some percentage of initializations resulting in test score improvements

for both CMGE models. Of the 24 results, 18 equal or improve on OneR at least 50%

of the time with 9 of these being equal or improving at 90% of the time or more. The

other 4 results show improvement at least 35% of the time. Only the BOST data set

was competitive, with CMGE models returning equal or improved results on at least

10% of initializations. Between the two, CMGE1 appears to have again provided the

better generalization context, with only 3 data sets returning comparative results in

favor of CMGE2, despite its slight advantage on the training results.

7.1.1 Class-wise Analysis

A class-wise confirmation of the superior results of the CMGE models over the de-

terministic OneR classifier is presented in Figure 7.4. Notched box plots present the

quartile distributions of equal or improved results for class-wise detection in subplots

(a) and (b) for training and test, respectively. Similarly the quartiles of training and

test false positive rates demonstrating equal or improved results are given in sub-

plots (c) and (d), respectively. Detailed tables of all results are supplied problem by

problem in Appendix C.

Medians of percentage initializations equal or improving over OneR in terms of
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Figure 7.4: Comparison of class-wise Detection Rate (a), (b) and False Positive Rate
(c), (d) as percentage of GP initializations providing equal or improved results over
deterministic classifier OneR across data sets D1-D12.
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detection rate on training data again indicate an advantage for the CMGE2 algo-

rithm, with a median percentage of approximately 78 as compared to just over 70 for

CMGE1. First and third quartiles indicate similar results between the CMGE mod-

els at each level with first quartiles of approximately 35% and third quartiles nearing

100%. While both CMGE models show considerable improvements over the baseline

approach the difference does not appear to be statistically significant. Test results of

subplot (b) reveal nearly identical boxes for CMGE1 and CMGE2, with both provid-

ing robust generalization over OneR. The third quartile results indicate that about

one quarter of the time the CMGE models are able to return equal or improved results

on 95% of their initializations in terms of test detection rates. The median percentage

of favorable initializations returned for detection is nearly 70, while the lower quartile

is approximately 35.

Class-wise false positive rates appear provide strong support for the superiority of

the CMGE models over the deterministic OneR classifier, with upper quartile results

indicating approximately 95% of initializations having equal or improved performance

on the training data. Medians in both CMGE frameworks are above 50%, however

the CMGE1 appears to hold a slight advantage over CMGE2 in this case. The lower

quartile results are similar between the CMGE models, at approximately 10% which

is not a particularly strong result as it indicates that some initializations having

improved results in detection may actually be over focusing and causing these false

positives.

Test results in terms of false positive rates indicated in subplot (d) are again strong

positive indications of the CMGE performance in comparison to OneR. The CMGE1

approach appears to provide the slightly superior false positive rate test results in com-

parison to the deterministic result of OneR; however, both CMGE medians indicate

equal or improved results being returned by more than 50% of initializations each,

with upper quartile results being approximately 85% of initializations for CMGE1

and 90% for CMGE2. While all CMGE results appear to provide an appreciable

improvement over the baseline, the statistical significance of the difference is unclear

based on the notches provided in the box plots.
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7.2 Näıve Bayes Comparisons

Performance summaries of the current framework against the deterministic NB clas-

sifier in terms of the overall accuracy metric are provided in Tables 7.5 and 7.6 for

training and test, respectively. Recall from Section 4.5.3 that the tables report the

percentage of CMGE initializations equalling or improving on the deterministic so-

lution. Notably, the CMGE models provide equal or improved results over all 12

data sets on training, though the WINE and PIMA results are tenuous at less than

1% and 5% of all initializations being equal or improved, respectively. The strongest

comparative results returned by CMGE1 were on BOST, CENS, IRIS, KD99, BUPA,

and SHUT; all corresponded to equal or improved training accuracy on at least one

third of the initializations. CMGE2 provided even stronger results on each of these

multi-class problems (along with the 2-class BUPA) with a minimum of 45% of ini-

tializations while additionally comparing favorably on the WISC problem. In general,

and aside from the CENS data set, none of the baseline GPs compared as favorably

in comparison to NB. Similar results are observed in terms of test accuracy, however

the generalization on the IMAG data set is reduced to 4% in the case of CMGE1

while failing to equal NB entirely in the case of CMGE2. Conversely, the generaliza-

tion results improved over training in the cases of WINE, PIMA and CONT with a

preference for CMGE1 over CMGE2.

Table 7.5: NB Comparison - Overall Accuracy (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 11 7 37.8 44.6
WISC 27.8 22.6 11.2 37.2
CENS 100 10 94 94
CONT 3.2 2.8 24.8 21
IMAG 0 0 24 12
IRIS 56.4 41 88.2 94
KD99 58 72 94 94
BUPA 99.8 86.4 100 100
PIMA 0.2 0 3 2.8
SHUT 0 4 32 56
THYD 0 0 20 22
WINE 0.2 0 0.2 0.2

Score results support the favorable performance of CMGE observed on the overall

accuracy metric. CMGE2 typically returned the best training scores, with results
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Table 7.6: NB Comparison - Overall Accuracy (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 16 14.8 23.8 25.4
WISC 25 20.2 22.6 28.4
CENS 100 10 94 94
CONT 12.8 13 29.6 32
IMAG 0 0 4 0
IRIS 36.8 31 47.2 44.8
KD99 20 28 66 50
BUPA 88.8 65 92.8 92.8
PIMA 3.2 5.2 24.6 16.6
SHUT 0 4 32 52
THYD 0 0 16 10
WINE 8.8 6.6 20.2 15.2

on BOST, WISC, and SHUT being equal or better in terms of score at least 25%

of the time; moreover, the IRIS, BUPA and THYD comparisons were favorable for

CMGE2 on at least 94% of the initializations. Training results on CENS, CONT,

KD99 and WINE were mainly preferable for NB, with CMGE2 returning very few

classifiers (in fact, none on KD99 and CENS) that matched the training scores of

NB. While CMGE1 performance on the training data was typically less dominant

than CMGE2, the performances on test scores were largely homologous, with 5 data

sets (BOST, WISC, BUPA, SHUT and THYD) indicating a preference for CMGE1

and 6 (CONT, IMAG, IRIS, KD99, PIMA and WINE) providing results in favor or

CMGE2. Aside from CENS, CONT, IMAG and KD99, the score test results were

strong with 3 data sets showing preferable performance for CMGE models on 25 -

50% of the initializations and 3 indicating preferable initializations at least 50% of

the time.

In contrast to the results provided by overall accuracy, the score test results on

CENS failed to match NB, which indicates that the NB classifiers were typically able

to achieve an improved degree of performance on the minority class of the highly un-

balance CENS data set. This is confirmed by examining the NB class-wise detection

rates provided in Appendix G, Section G.5, where results are provided as 0.88 for

class 1 and 0.63 for class 2, whereas CMGE1 and CMGE2 class-wise detection rates

of Appendix G, Section G.5 are provided as 0.98, 0.198 for CMGE1 (class 1, class
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Table 7.7: NB Comparison - Score (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 10.4 6.8 39 45.2
WISC 20.8 21.2 6.4 25.2
CENS 0 28 0 0
CONT 0 2 1.2 0.4
IMAG 0 0 24 12
IRIS 56.4 41 88.2 94
KD99 0 0 8 0
BUPA 55.4 69.8 67 97.8
PIMA 0 0.8 0.8 4
SHUT 0 0 58 60
THYD 0 22 94 94
WINE 0 0 0 0.2

Table 7.8: NB Comparison - Score (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 15.2 15 24 26.4
WISC 21 19 21.6 29.6
CENS 0 20 0 0
CONT 1.6 12.8 7 2
IMAG 0 0 4 0
IRIS 36.8 31 47.2 44.8
KD99 0 0 2 0
BUPA 52.6 60 60.8 78.4
PIMA 1.8 9.2 16.6 12.6
SHUT 0 6 60 70
THYD 0 22 90 92
WINE 8.8 6.6 20.2 15.2
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2) and 0.986, 0.175 for CMGE2 (class 1, class 2). This result is approximately con-

sistent over train and test data and therefore does not indicate brittle performance

on on the minority class; rather it illustrates an over-focusing behavior on class 1 in

both CMGE approaches. Given the strong performance of StdGE under the accuracy

metric and RssGE under the score metric for the CENS data set, it is clear that the

class-distribution provides a difficult test for any of the sub sampling algorithms. This

pattern of performance follows the behavior recognized by Weiss and Provost with

respect to a C4.5-based sub sampling algorithm [116]. Conversely, CMGE and NB

provide solutions that lie between the two extremes established by StdGE and RssGE

(accuracy optimization versus score optimization). Notably the NB performance is

not dominant in a class-wise comparison, however the score metric identifies a pref-

erence for NB that would be relevant for many practical applications. This issue will

be revisited in the following class-wise analysis.

7.2.1 Class-wise Analysis

A class-wise confirmation of the predominantly superior results of the CMGE models

over the deterministic NB classifier is presented in Figure 7.5. Notched box plots

present the quartile distributions of equal or improved results for class-wise detection

in subplots (a) and (b) for training and test, respectively. Similarly the quartiles

of training and test false positive rates demonstrating equal or improved results are

given in subplots (c) and (d), respectively. Detailed tables of all results are supplied

problem by problem in Appendix C.

The medians of percentage improvement in detection rate over NB for CMGE1

and CMGE2 in training are very similar, with both values being above 50%; the

third quartiles are similarly comparable at approximately 90%. A small advantage in

training appears to be demonstrated by the CMGE2 model results in that the lower

quartile is clearly above 10%, while CMGE1 is closer to 5%. While the presence of

overlapping of notches indicates a non-statistically significant difference, both of the

CMGE approaches are clearly more successful than the baseline (RssGE) in match-

ing or improving the NB results in terms of detection in training. Regarding the

test results presented in Figure 7.5 subplot (b), the median percentages are indicative
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Figure 7.5: Comparison of class-wise Detection Rate (a), (b) and False Positive Rate
(c), (d) as percentage of GP initializations providing equal or improved results over
deterministic classifier NB across data sets D1-D12.



216

of the larger trend; specifically the CMGE1 model provides better generalization in

test detection with a median percentage above 60, while the training performance

of CMGE2 did not generalize to test as well, returning a median percentage of ini-

tializations matching or improving NB below 60. Similarly the third quartile results

demonstrate a slightly better degree of generalization in CMGE1 (approximately 85%)

as compared to CMGE2 (approximately 80%); this difference is perhaps offset by the

modestly improved performance by CMGE2 in the first quartile, however the clear

preference is for CMGE1 in terms of generalization of detection rate. Again both

CMGE approaches are clearly improvements over the baseline scalable GP approach.

Train and test false positive rates of Figure 7.5, subplots (a) and (b) respectively

are similar to those provided by detection rate. In terms of training, CMGE2 me-

dians indicate that half the detection rate comparisons report 55% of initializations

that result in equal or favorable performance over NB. This represents a difference

of approximately 10% over CMGE1, while the percentages indicated at the first and

third quartiles are nearly identical. Test results of subplot (b) show that CMGE1

again gains in terms of performance on CMGE2 as the median values for percent-

age improvement over NB are approximately equal at 55%. Clearly both CMGE

models provide highly favorable class-wise comparisons against the deterministic NB

classifier.

7.3 J48 Comparisons

Performance summaries of the current framework against the deterministic J48 (the

Weka implementation of the standard C4.5 (revision 8) decision tree) classifier in

terms of the overall accuracy metric are provided in Tables 7.9 and 7.10 for training

and test, respectively. Based on training result summaries of Table 7.9, it is readily

evident that neither the CMGE nor baseline models are able to compete with J48 in

terms of training accuracy on the majority of data sets. The two exceptions being

the relatively straightforward IRIS and WINE problems, where CMGE1 is able to

match or improve on 14.4% of IRIS initializations and CMGE2 has only a slightly

better result of 25%, while the WINE results are tenuous at 0.2%.

Despite the obvious disparity in training, the summary results of test provided
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Table 7.9: J48 Comparison - Overall Accuracy (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 0 0 0 0
WISC 0 0 0 0
CENS 0 0 0 0
CONT 0 0 0 0
IMAG 0 0 0 0
IRIS 9.8 3.8 14.4 25
KD99 0 0 0 0
BUPA 0 0 0 0
PIMA 0 0 0 0
SHUT 0 0 0 0
THYD 0 0 0 0
WINE 0.2 0 0.2 0.2

Table 7.10: J48 Comparison - Overall Accuracy (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 7.4 7.2 11 10
WISC 26.4 22.2 32.8 40.4
CENS 0 0 0 0
CONT 9.6 9.8 24.4 20.8
IMAG 0 0 0 0
IRIS 62.4 60.6 47.2 44.8
KD99 0 0 0 0
BUPA 18.6 12.4 23 31.8
PIMA 3 4.6 24.4 16
SHUT 0 0 0 0
THYD 0 0 0 0
WINE 25.4 21.8 23.6 18
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in Table 7.10 clearly demonstrate that competitive classifiers are returned for more

than half of all problems when considering generalization. Specifically, the CMGE1

models return competitive or improved test accuracies more than 20% of the time on

WISC, CONT, IRIS, BUPA, PIMA and WINE with WISC and IRIS having at least

one third of results in the competitive or improved range. Results are very similar

for CMGE2; however, stronger results are provided on WISC, and BUPA. Moreover,

both CMGE models are able to return a fraction of test results matching or improving

on BOST, however only in approximately 10% of all initializations each.

Table 7.11: J48 Comparison - Score (Train)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 0 0 0 0
WISC 0.2 0 0 0
CENS 0 0 0 0
CONT 0 0 0 0
IMAG 0 0 0 0
IRIS 8.8 2.6 12.6 21.8
KD99 0 0 0 0
BUPA 0 0 0 0
PIMA 0 0 0 0
SHUT 0 0 0 8
THYD 0 0 0 0
WINE 0 0 0 0.2

Table 7.12: J48 Comparison - Score (Test)

Data Set StdGE RssGE CMGE1 CMGE2

BOST 7.2 6.6 12.6 11.4
WISC 31.8 29.8 37.2 46.6
CENS 0 74 2 4
CONT 6 23.2 16 9
IMAG 0 0 0 0
IRIS 69.2 67.4 80.6 78.8
KD99 0 0 8 0
BUPA 15.4 14.8 15 24.8
PIMA 1.8 9 16.6 11.4
SHUT 0 0 36 40
THYD 0 0 0 0
WINE 29.6 24.2 58.2 46.4

Score results for train and test are provided in Tables 7.11 and 7.12 for training and

test, respectively. Once again the training results provided little comparison between

the CMGE models and the deterministic J48 classifier. Notably, the CMGE2 is able
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to provide some competitive results on the SHUT data set in terms of training scores,

with all other results being similar to those discussed in training accuracy, above.

The results of test scores of Table 7.12 are more indicative of the practical multi-

class performance since the score provides equal weighting to performance on each

class so that the class-wise distributions of the data do not affect the contributions

to performance on the score statistic. Despite the lower training results, CMGE

models are able to compete convincingly in terms of the test scores with results on

only two data sets (IMAG and THYD) failing to return competitive or improved

results. The strongest comparative results for CMGE1 are WISC, IRIS, SHUT and

WINE, all returning equal or improved results with at least 36% of the initializations.

Similar generalization performance is returned by CMGE2 with BUPA also returning

a result of approximately 25% and again stronger results for WISC (46.6%) and SHUT

(40%). While many of the overall results appear to be in favor of the J48 decision tree

classifier, the obvious difficulty associated with its performance appears to be related

to over learning, where many training exemplars are reliably learned. However, they

are learned largely to the extent of J48’s detriment as the generalization is clearly

reduced to the point that both CMGE models (as well as some of the baseline GP

approaches) are able to provide consistently competitive or stronger results.

7.3.1 Class-wise Analysis

A similar trend to that observed in the score results is apparent in the class-wise

detection and false positive comparison plots provided in Figure 7.6. While both

the detection and false positive statistics (subplots (a) and (c), respectively) indicate

typically no better than 25% of initializations improving on either of the CMGE

models, test results provided in subplots (b) and (d) indicate that many cases improve

on J48’s generalization. Of the two CMGE approaches, CMGE1 demonstrates a

higher percentage of equal and improved detection rates in test with third quartile

of results at 70% as compared to approximately 65% for CMGE2. Similarly, the

median and lower quartiles (approximately 35% and 8% respectively) are preferable

to those of CMGE2 (near 25% and 5%, respectively). False positive results appear

to be nearly the same for both CMGE models with a slight preference for CMGE2
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Figure 7.6: Comparison of class-wise Detection Rate (a), (b) and False Positive Rate
(c), (d) as percentage of GP initializations providing equal or improved results over
deterministic classifier C4.5 across data sets D1-D12.
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in terms of median. These results provide additional evidence of over learning in the

J48 classifier and demonstrate the competitive generalization abilities of the CMGE

framework.

7.4 Summary

Three widely used deterministic (greedy) machine learning algorithms of increasing

complexity have been compared against the baseline Std and RssGE models and

CMGE variants. To do so we adopt a unique approach to performance evaluation

that directly addresses the question of what the likelihood is of a non-deterministic

machine learning model (in this case GE) matching or improving the performance

threshold set by the deterministic model. With respect to OneR, the CMGE models

perform consistently better, irrespective of the data set; whereas the NB model was

able to consistently perform better in the case of three of the 12 classification problems

(CENS, IMAG, KD99). Under the strongest deterministic learner, C4.5, CMGE

algorithms appeared to provide a distinct advantage under test data. Interestingly,

CMGE was more effective under a mixture of the easier (IRIS, WINE, WISC) and

more difficult (BUPA, SHUT, PIMA, BOST) data sets. Naturally we do not expect

to do better than all algorithms under all data sets all of the time, however, it was

naturally gratifying that the EC models were only ‘shut out’ of two data sets entirely

(CONT and THYD). Moreover, CMGE was by far the best EC method relative to

the deterministic algorithms considered.

With respect to the baseline EC models of StdGE and RssGE it is interesting

that the StdGE algorithm is actually ‘shut out’ by the OneR heuristic on four of

the data sets under both accuracy and score (CENS, KD99, SHUT, THYD). RssGE

receives a similar fate under the accuracy metric, although this is understandable

when considering the OneR heuristic’s implicit bias towards classifying the major

class correctly. In short, although the OneR algorithm has obvious deficiencies it

is still able to act as a surprisingly effective classifier, as recognized in the original

presentation of the algorithm [52]. The performance of NB is much stronger under

the score metric than OneR, with StdGE being ’shut out’ on IMAG in addition to

CENS, KD99, SHUT, and THYD (the latter four also being being the case for OneR)
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and other than the CENS data set, RssGE receives a similar fate. C4.5 demonstrates

the same tendency, thus all the deterministic algorithms share a common data set

(learning) bias. Conversely, the most consistent ANN method from Section 6, the

Linear Perceptron, was weakest on IRIS, KD99, SHUT, and THYD thus representing

an entirely different learning bias than the deterministic models. The only data

set that deterministic and ANN models consistently performed poorly on was IRIS,

whereas all EC models appeared to favor this problem.



Chapter 8

Problem Decomposition and Feature Selection

Multi-class classification and automatic intra-class problem decomposition are prin-

cipal contributions of the present classification framework as laid out in the stated

objectives at the introduction of this thesis. The inter-class voting behavior leading to

multi-class classification has been demonstrated empirically through the strong team-

based results of the CMGE models, presented in Chapter 5. The intra-class coverage

behavior leading to problem decomposition will be established in the current chapter

and attributed the following aspects of the algorithm design:

• A local (Gaussian) wrapper function;

• Enforcement of class consistency in GP evaluations;

• Explicit cooperation objective;

• Real-valued outcome vectors associated with classification strength;

• Class-wise Parteto-coevolutionary archiving.

These characteristics will be discussed in the context of voting behavior and com-

pared to the binary PGEC classification algorithm in Section 8.1. Moreover, a natural

consequence of the CMGE framework is the automatic and problem specific selection

of relevant features for classification. This property has significance for both perfor-

mance in terms of training overhead as well as online (post-training) performance and

solution complexity. Section 8.3 will examine this aspect of the current framework in

detail and provide examples for selected data sets.

223
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Figure 8.1: Coverage associated with ‘weak learning’ as opposed to explicitly coop-
erative, ‘orthogonal’ coverage corresponding to problem decomposition.

8.1 Intra-class Voting Behavior

Teamwork implies the presence of constructive interactions between individuals, or

team members. Informally this refers to non-conflicting inter-class voting and orthog-

onal intra-class coverage. Indecisive voting between classes is likely to cause collisions

or incorrect classifications (particularly under a WTA policy), therefore voting that

is accurate in terms of class-consistentcy while supporting a high degree of certainty

is expected to be preferable when identifying team members. To this end, real-valued

outcomes have been established such that individual / exemplar interactions pro-

vide precisely this information in an outcome-vector context to the archiving process.

This behavior is driven by a winner-take-all (WTA) voting policy which implies a

meaningful voting range over which a ‘winning’ expression may be defined for a given

exemplar. The local (Gaussian) output wrapper provides for this functionality in two

ways. First, it defines a real-valued range ([0,1]) in which an individual’s output may

fall. Second, the enforcement of cluster consistency on individuals (in terms of the

Gaussian error evaluation) establishes this output as a meaningful degree of certainty

in each classification, where a value near 1 indicates a greater degree of confidence.
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The explicit intra-class cooperation objective maintains evolutionary pressure to-

ward individuals that provide coverage in the problem at any stage of training. Specif-

ically, the overlap objective defined against the coverage of the learner archive is de-

signed to guide the search toward individuals that perform well on intra-class subsets

of the problem where coverage is weak or non-existent and thus affords a focusing

mechanism that promotes the establishment of orthogonal decompositions defining

cooperative problem decomposition as opposed to ensembles of ‘weak learners’ where

coverage is a result of multiple (supporting) membership values (or votes) leading to

classifications (Figure 8.1).

8.2 Coverage

CMGE’s problem decomposition is achieved by application of the WTA voting policy,

with the maintenance of relevant team members and the responsibility of remember-

ing progress being guaranteed by the class-wise archiving of the modified IPCA algo-

rithm. The following coverage plots demonstrate CMGE intra-class voting behaviors

as histograms of differences between winning individual outputs and the median out-

put of the remaining same-class individuals. These differences in output characterize

the pattern coverage among same-class team members where a small difference (near

zero) between winner and team output indicates a large degree of overlap in coverage,

whereas a large difference (near 1) is associated with a non-overlapping classification.

The coverage of CMGE1 and CMGE2 over 9 of the 12 benchmark data sets1 will be

compared with the coverage provided by PGEC, the multi-class GE implementation

of Lemczyk’s PGPC [71].

A detailed discussion of the significance of the difference cases is provided in the

following sections. A selection of representative coverage histograms will be provided

in the ensuing comparative analysis, with all remaining coverage histogram results

being provided in Appendix D.

8.2.1 Small Median Difference

Small differences (∼ 0) can arise in one of two ways:

1Due to their large sizes, CENS, KD99 and SHUT have been omitted from the coverage analysis.
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1. A strong winning output (∼ 1) that has similarly strong median in-class team

support;

2. A moderate to low winning output where the choice of winner among in-class

team members is small.

While the first of these scenarios indicates support for the winning classification, the

second corresponds to a more tenuous classification as the winning output approaches

zero.

8.2.2 Moderate Median Difference

A difference near 0.5 can occur in one of two ways:

1. A strong winning output that has comparatively moderate median in-class team

support;

2. A moderate winning output with weak or low support from in-class team mem-

bers.

Intuitively, this mid-range situation involving winner / team differences near 0.5 seems

to be the least desirable in the problem decomposition context in that such behavior

corresponds to ambiguous or weak decomposition. Moreover, a weak decomposition

can lead to a difficult analysis of the solution invoked by the classifier since either

partial or weak relationships exist between exemplars and responses (see also Figure

8.1).

8.2.3 Large Median Difference

In contrast to the small and moderate difference scenarios, large margins of output

difference require a strong output from the winner and low output in median team

response, suggesting specialized behavior in the winning individual and indicating

strong problem decomposition (disjoint exemplar-wise coverage); moreover, this pro-

motes solution understandability as a single solution can now be associated with a

each exemplar. While the current framework specifically aims to encourage this latter

behavior, there are no steps taken to explicitly preclude the others.
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8.2.4 Comparative Results

Coverage comparisons are generally categorized into one of three types, each will be

discussed with a select example in the following. In each figure, subplots (a) and

(b) correspond to CMGE1 train and test, respectively; similarly CMGE2 results are

provided in subplots (c) and (d) and PGEC in subplots (e) and (f). For all types,

the behavior of the comparison framework (PGEC – Chapter 4, Section 4.1.5) will

be demonstrated to be substantially different from the current CMGE models.

The BOST coverage results presented in Figure 8.2 are typical of coverage re-

sults returned for the THYD, WINE and WISC problems (Appendix D). In terms of

CMGE1 (subplots (a) and (b) for train, test respectively), the majority of the winner

/ team differences (regardless of class) fall in the extreme bins, approximately 0 or 1,

where these correspond to strong support or strong problem decomposition, respec-

tively. Subplots (c) and (d) indicate similar results for CMGE2 with considerably

fewer supportive results, irrespective training vs. test scenarios. Class 2 demon-

strates the clearest case of this comparison with a large majority of differences being

approximately 1. PGEC results on training and test (subplots (e) and (f)) have

clearly different distributions from either CMGE model, being approximately sym-

metric and normal over the range [0,0.95] while having a small response in the final

(1.0) bin. These results are highly different from either of the CMGE models and

indicate primarily weak or ambiguous responses in PGEC; however, the few cases in

the strong difference region indicate some modest potential to make clear distinctions

on all three classes. Of the three models, CMGE2 can be seen as making the most

strong distinctions between winner and team responses with the fewest moderate and

small differences. CMGE1 would be second in this regard, while the inverse is true

for PGEC. Of the data sets that demonstrated similar results, THYD revealed per-

haps most similarity between CMGE1 and CMGE2, with both models using strong

support on the majority class (3) while having the usual distributions on classes 1

and 2. Of the two, CMGE2 again demonstrated more strong distinctive behavior,

however with far less regularity than was typically the case for this class of results.

IRIS coverage results are presented in Figure 8.3 and are typical of coverage re-

turned in the IMAG problem (provided in Appendix D). On the whole these results
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Figure 8.2: Coverage comparison of CMGE 1, 2 and PGEC on BOST.
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Figure 8.3: Coverage comparison of CMGE 1, 2 and PGEC on IRIS.
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are similar to those of BOST, in that the extreme bins are the most common; however,

IRIS has the most results falling near 0 for both CMGE models on the non-linearly

separable classes 2 and 3 with most results for class 1 being at either 1 or 0.5. The

notable response at 0.5 can be attributed to the median statistic itself; in most in-

stances there are equal number of differences at 0 and 1, making the median difference

between the winner and team output equal to the average (0.5) for class 1. Typi-

cally only one highly specific solution is required for this class. A similar behavior

is observed on class 7 of IMAG. In all other respects, IMAG results are similar to

BOST. IRIS also returns the most diverse behavior for the PGEC model, with classes

2 and 3 returning a distribution similar to that of PGEC on BOST; however class 1

behavior is notably different with peaks at 0.7, 0.85, 0.9, 0.95 and 1. These appear

to be specific to the IRIS problem, where the linearly separable class 1 can be readily

handled with a high-degree of accuracy using a variety of approaches. Of the two

CMGE models, CMGE2 employs more moderate to strongly distinctive classifiers

on all three classes than CMGE1 and in general both CMGE approaches appear to

favor the exclusive use of strong support models over distinctive on classes 2 and 3 as

compared with PGEC, which employs weak solutions approximately twice as often

as strong, distinctive solutions.

CONT coverage results are presented in Figure 8.4 and are typical of coverage

returned in the BUPA and PIMA problems (provided in Appendix D). Of the coverage

results compiled, these correspond to the more difficult classification problems and

share the preference for strong differences (particularly in test) between CMGE1 and

CMGE2, where this is more pronounced in the CMGE2 model on BUPA and PIMA

while both are primarily in the 1.0 bin on the CONT problem of Figure 8.4, subplots

(a) (b) (c) and (d). Distributions on each of these problems are consistent over train

and test within each approach. In all cases, PGEC (subplots (e) and (f)) again

employs the weak approach involving moderate differences between winner and team

outputs.

These results indicate a clearly different approach to classification problem decom-

position with the CMGE models typically representing stronger, decisive decomposi-

tions or strong supporting classification as opposed to the moderate and ambiguous
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Figure 8.4: Coverage comparison of CMGE 1, 2 and PGEC on CONT.
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differences observed in all problems for the PGEC approach. The extent of this pref-

erence varies between problems and CMGE model employed. CMGE1 makes more

intermittent use of strong support or moderate differences on the straightforward

problems (e.g., WISC and WINE), where large differences are frequently relied upon

by CMGE2.

8.3 Feature Selection

The CMGE framework performs automatic selection of discriminating features, de-

creasing evaluation overhead and solution complexity. This section will highlight two

representative problems (CENS in Figure 8.5 and PIMA in Figure 8.6) in terms of

number of unique features appearing in solutions and number of occurrences of each

feature. Counts of unique features per individual are provided in subplots (a) and

(b) for CMGE1 and CMGE2, respectively. Feature occurrences are examined from

two perspectives: as solution appearance counts in subplots (c) and (d), and as total

counts in subplots (e) and (f), for CMGE1 and CMGE2 models respectively. The key

difference between feature occurrence counts provided in each figure is that feature

repetition (within a solution) is not captured by individual occurrence plots, whereas

this property is retained in total occurrence plots. All plots are presented as class-wise

stacked histograms. Full feature selection results are provided in Appendix E.

Figure 8.5 provides the results of the CENS feature analysis. These results are

typical of several problems in the low number of unique features involved in most

solutions and a high degree of selectivity in terms of the choice of features actually

employed in the solutions. Comparing subplots (a) and (b), it is clear that the two

CMGE models have different distributions of feature counts for the CENS problem;

specifically CMGE1 results of subplot (a) indicate considerably fewer solutions with

3 or fewer unique features than CMGE2 results of subplot (b); however, the CMGE1

results are noticeably more concentrated between 1 and 10 features, while CMGE2

results have slightly more prominent tail extending into higher feature usage. This

effect is more apparent in the class 1 results on CENS however this can be observed on

several other problems, including IMAG, KD99 and THYD. In terms of feature pref-

erence, both models demonstrate a clear bias toward features 5, 13, and 19. CMGE1
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Figure 8.5: Feature Analysis: CMGE 1, 2 on CENS.
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Figure 8.6: Feature Analysis: CMGE 1, 2 on PIMA.
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results of subplots (c) and (e) additionally identify features 1-4, 8, 40, and 41, with

the latter two also being specific to class 2. The feature selection behavior is also

readily apparent on BOST, THYD, KD99, SHUT and WINE where between 3 and

5 features are obviously preferred by solutions while several features remain notice-

ably underrepresented in each of these problems. The total occurrence histogram of

subplot (e) appears to indicate more repetition of features in CMGE1 than CMGE2

(subplot (f)), and this additionally appears to be the case for the IMAGE, SHUT and

WISC problems, with all others being generally indistinguishable in this respect.

Figure 8.6 presents the results of the PIMA problem which are representative

of a second type of result that is typical of most other problems (including BOST,

CONT, IRIS, SHUT, WINE and WISC) in terms of high degrees of similarity between

feature usage distributions returned by CMGE1 and CMGE2 in subplots (a) and (b),

respecitvely. Despite the visual differences between these histograms due to disparities

in scale of y-axes, both CMGE1 and CMGE2 return highly similar results, with both

indicating only marginal preference for using fewer unique features. Moreover, the

inability of either CMGE to select specific features (as indicated in subplots (c) and

(d) for CMGE1 and CMGE2, respectively), is consistent with results returned by

other difficult problems, including BUPA and CONT.

8.4 Summary

The PGEC methodology, from which CMGE borrows, integrates RssGE with a com-

petitive coevolutionary model for retaining the most appropriate learners and dis-

criminatory test points during training (due to de Jong’s IPCA style algorithms,

Algorithm 25, Section 3.8). As such, both models result in solutions that take the

form of a Pareto front of learners. PGEC is configured to recombine labels using a

majority vote under unseen data. Conversely, CMGE has a winner-take-all basis, re-

flecting the explicit problem decomposition approach to performing the feature space

to class label mapping. In this chapter we provide empirical evidence to support these

assumptions. The PGEC model is shown to take a classical ensemble / weak learner

approach to team building; whereas the CMGE model generally produces classifiers

that respond to unique subsets of the data set. In effect, we have validated that
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the explicitly cooperative mechanism enforced by objective three of CMGE (Section

3.7.4) in combination with the local membership function, does provide an effective

mechanism for problem decomposition.

We conclude this chapter by verifying the bias of EC to select samples of features

where appropriate, although on the more difficult problem domains all features may

well be utilized.



Chapter 9

Archive Size Parameter Analysis

Results presented in this chapter pertain to experiment E12 (Table 4.6) and examine

the performance of the CMGE1 classification framework as applied to three of the

benchmark data sets over a systematic range of learner and point archive capacities.

These results establish a general set of recommendations for parameterization of the

framework and act as a baseline for future studies on the significance of archive

size and maintenance through pruning. All results are provided as surface plots of

classification performance (z-axis) as a function of the learner archive (x-axis) and

point archive (y-axis) sizes. Archive sizes assume values of S = {10, 20, 30, 40, 50} and

the surface is defined over parameterizations P = S × S. Each of the 16 surface tiles

are shaded according to their associated scales to indicate surface height on the z-axis,

with larger values (corresponding to lighter shades) being desirable in all statistics

aside from false positive rate.

Overall results in terms of accuracy and score will be provided for each of the three

benchmark data sets (BOST, CONT, THYD) in Figures 9.1, 9.2, 9.3, respectively in

Section 9.1. Within each figure, subplots (a) and (b) provide accuracy results while

(c) and (d) provide score results for train and test, respectively. Finally, Section 9.2

presents a class-wise sample of detection and false positive rate results on the three

class BOST problem in Figures 9.4 - 9.6. All remaining class-wise results are provided

in Appendix F.

9.1 Overall Results

Overall results in terms of accuracy and score illustrate that the combination of small

learner and point archives capacities (≤ 10) are typically much less effective than

any other parameterization, irrespective of the data set. Moreover, the small archive

configuration consistently demonstrates an approximately minimal performance on
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both training and test data, which indicates that such an economical choice of pa-

rameters is associated with a general failure to support learning. Moving along either

axis while fixing one parameter at 10 coincides with overall improvement, with this

being initially more substantial when associated with an increase in the maximum

point archive size. This is indicated by a lighter shading of the tiles adjacent to the

origin (10,10) in the surface plots for BOST (Figure 9.1) and CONT (Figure 9.2),

with a steeper slope when moving from (10,10) to (10, 20) as opposed to (20,10).

An apparent deviation from this trend exists in the overall results of THYD. While

improvement again appears associated with an increase in either parameter, it is un-

clear that the point archive size is more influential in this regard. This is particularly

clear in the surface of THYD test score in subplot (d), Figure 9.3 where additional

learner archive capacity appears to initially support better generalization.

The overall results appear to support a preference for the selection of a moderate

as opposed to either conservative or overly capacious point archive sizes, whereas the

maximum learner archive size (while generally associated with marginal improvement)

appears to have less impact on the overall classification performance, beyond a default

setting of 10. This is most clearly illustrated by the score surfaces in subplots (c) and

(d) of the BOST and CONT data sets of Figures 9.1 and 9.2, respectively, where a

ridge of strong results are returned at the point archive setting of 20. This moderate

point archive size also appears to be most strongly associated with improvements

based on increasing the learner archive size, whereas larger point archive sizes lead to

a plateau or outright deterioration in performance. This plateau effect is illustrated

in the BOST score test results of Figure 9.1, subplot (d), with deterioration in overall

performance observed with increased point archive sizes in subplots (a), (b) and (c).

Large choices for both learner and point archive capacities do not appear to be

strongly associated with peaks in the overall performance metrics in either the training

or test scenarios, with this being particularly evident in the score surfaces. Despite the

typically good performance and stability of the surface region around the maximum

parameterizations in terms of overall accuracy, these settings are rarely optimal as

will be illustrated by the class-wise BOST results the follow in Section 9.2. Moreover,

the stability in overall accuracy that may be achieved through näıve selection of
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Figure 9.1: Parameter analysis of CMGE 1 median Overall Accuracy (a) (b) and
Score (c) (d) on BOST.
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Figure 9.2: Parameter analysis of CMGE 1 median Overall Accuracy (a) (b) and
Score (c) (d) on CONT.
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Figure 9.3: Parameter analysis of CMGE 1 median Overall Accuracy (a) (b) and
Score (c) (d) on THYD.
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large archive size parameters will frequently be offset by an increase in performance

overhead. Clearly the optimal settings for overall performance are problem specific;

however, a straightforward recommendation is for modest point archive capacity (20-

40) with as much allocation to learner archive capacity as can be tolerated under

performance constraints (≥ 30).

9.2 Class-wise Results

Class-wise surface plots are provided for detection rates in subplots (a) and (b) and

false positive rates in subplots (c) and (d) for training and test, respectively. Classes

1 and 3 (Figures 9.4 and 9.6) of the BOST problem demonstrate similar and highly

stable detection rate results across the various parameterizations, as indicated by

subplots (a) and (b) in each figure. The training results of both classes exhibit

improvement in detection rates with increased archive sizes; moreover, point archive

size appears to effect this result to a greater extent than the learner archive size,

as readily demonstrated by subplot (a) of Figure 9.4. Detection rates on test for

both classes plateau when a parameterization other than (10, 10) is employed, with

some sporadic results being observed at the extreme point archive size selections (50).

Class 2 results for detection rate are given in Figure 9.5, subplots (a) and (b) (train

and test, respectively) and illustrate the optimal combinations of point and learner

archive sizes at the point archive settings of 20 and 30. Moreover the larger learner

archive sizes appear to support better training results, as indicated in subplot (a),

but it is not clear that this improvement carries over to the test results of subplot

(b).

Subplots (c) and (d) of Figures 9.4 and 9.6 demonstrate that false positive rates of

class 1 and 3 results are again largely similar, both in terms of training and test results,

while the same subplots in Figure 9.5 illustrate the classical trade-off of detection

rate at the expense of false positive rate with little appreciable variation in the false

positive rate (∼ 3%) in response to changes in the archive size parameters. In both

training cases of classes 1 and 3, indicated in subplot (c) of each Figures 9.4 and 9.6,

low false positive rates are returned under the large learner archive (∼ 40− 50) and

moderate point archive size (∼ 20 − 30) combinations. Moreover, large selections
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Figure 9.4: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on BOST, class 1.
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Figure 9.5: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on BOST, class 2.
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Figure 9.6: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on BOST, class 3.
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for both parameters resulted in the approximate worst case (highest false positive

rates) in training on both classes. Test results of subplot (d) in each figure provide

additional evidence to support the choice of moderate point archive sizes, with both

classes having increased false positive rates corresponding to increased point archive

sizes. Moreover, given that detection rates on both classes remain unchanged in non-

default parameterizations, a dominant result occurs when the minimum false positive

rates are reached in association with moderate point archive sizes. A clear preference

is therefore shown for moderate point archive sizes in this problem.

9.3 Summary

Beyond the selection of small archive limits for either learner or point archives, the

CMGE algorithm appears to function adequately with capacity for twenty to forty

exemplars / learners. No real benefit appears to be gained by allowing for larger

learner (point) archives relative to point (learner) archives.



Chapter 10

Conclusion

The final chapter begins with a synopsis of the key ideas put forth in the development

of this thesis. We then proceed with a reiteration of our original objectives, empha-

sizing how each has been demonstrated by our experiments and addressed by the

proposed classification framework, providing a high-level review of supporting results

where appropriate. This is followed by a discussion of our main contributions in terms

of the framework and its development (i.e., the novel aspects of the algorithmic de-

sign) and a short commentary on the implications for classification where we restate

the case for a scalable GP-based approach that enables problem decomposition. The

thesis concludes with a short set of recommendations for future work.

10.1 Synopsis

A novel framework for multi-class classification under the Genetic Programming con-

text has been introduced. Two variants of the framework (dubbed CMGE1 and

CMGE2) have been implemented and studied over a diverse, twelve problem bench-

mark of real-world data sets representing both binary and multi-class problems. The

proposed framework permits a GP approach to classification with large and unbal-

anced data sets where the traditional issues of scalability, problem decomposition and

solution transparency are addressed simultaneously within a coevolutionary multi-

objective training algorithm.

This thesis began by introducing Machine Learning and the classification task,

focusing on the essential ML design considerations, including: specification of repre-

sentation; cost function definition (and goal identification); and approach to credit

assignment. The case was made for flexibility in framework design in terms of the

specification of representational elements and definition of cost function. The mer-

its and tradeoffs associated with credit assignment as it relates to stochastic search
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are discussed with its exploration potential combined with mechanisms for avoidance

of local optima highlighted as desirable qualities in a learning framework. We next

introduce the Genetic Programming paradigm of Evolutionary Computation, with

emphasis on the flexible design characteristics inherent in the approach, including

user specification of representation and cost (fitness) function. Next, the classifica-

tion context of GP was introduced and the classical drawbacks were discussed in

detail. Finally our research objectives were defined; specifically, we set out to address

the issues that have traditionally precluded GP approaches to classification: scala-

bility, class imbalance, solution transparency, problem decomposition and multi-class

applications.

Chapter 2 endeavored to establish the relevant background material and work

related to the current research objectives. A review of the Grammatical Evolution

variant of GP was provided; however, we reiterate that the contributions of this thesis

are independent of the formulation of GP under consideration. The GE review was

carried out with special attention to the basic ML design elements, including a dis-

cussion of the highly flexible grammatical (CFG-based) approach to representation

and our design considerations for context sensitive crossover and terminal specific

mutation operators, citing research indicating their potential to aid in the credit

assignment process. We proceeded to survey material from the GP binary and multi-

class classification literature, making the case for a ‘novelty detection’ approach that

employs a coevolutionary multi-objective training algorithm. Our literature review

highlighted background material relevant to developing evolutionary multi-objective

optimization and we surveyed recent work relating EMO approaches to the GP con-

text. The literature considered relevant to the problem decomposition and scalability

objectives was finally presented and we made the case for a balanced competitive

coevolutionary approach to training.

Chapter 3 presented a detailed account of the algorithms employed by the pro-

posed framework and the associated computational complexities. We proceeded to

provide pseudo-code-level descriptions of all algorithms noting design decisions that

were considered critical to addressing our original objectives, including: use of a local
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(Gaussian) membership function to establish the ‘novelty detection’ model of opera-

tion; an EMO design allowing for strong (cooperative) problem decomposition along

with low error and solution transparency; multi-class competitive coevolution using a

balanced sampling heuristic to address scalability and class imbalance, respectively;

class-wise early stopping criteria; and finally, a post-training winner-take-all voting

policy.

Chapter 4 outlined our benchmarking methodology including eight comparative

algorithms (four GPs: Canonical GE, StdGE, RssGE, and PGEC; two Neural Net-

work architectures: LP and MLP, and three deterministic classification algorithms:

1R, NB and J48 (the C4.5 release 8 implementation)) that were to be compared in

terms of classification performance on twelve real-world classification problems. The

approach to evaluation was presented and a statistical evaluation framework for com-

paring stochastic algorithms (including classification performance, training time and

solution complexity1) was provided. Moreover, we proposed a framework for making

comparisons between the GP and deterministic models which addresses a key ques-

tion when comparing such algorithms, namely: how likely the stochastic model is

to perform equally or better as a result of the ability to make alternative decisions

during model building.

In Chapter 5, comparisons were made to the standard canonical GP approach

in terms of classification performance, training time and solution complexity indi-

cating that the CMGE models provided statistically significant improvements across

the board. Next the baseline models (StdGE and RssGE) were compared with the

proposed approach, demonstrating that RssGE returned the more competitive results

of the two; however, the results of the CMGE models were clearly demonstrated as

superior under our evaluation framework. Moreover, the gains in classification per-

formance were achieved with vastly lower computational overhead (as compared with

the canonical model) while solution size was shown to be adequately contained per

individual. Further comparative analyses were carried out in Chapter 6 with respect

to two feed-forward Neural Network architectures (Linear Perceptron and Multi Layer

Perceptron models) that were trained using a robust second order algorithm. The

1Clearly only the classification performance is directly comparable in the case of the Neural
Network comparisons
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CMGE models returned consistent and largely competitive results, providing statis-

tically significant improvements over the Neural Network approaches in certain cases;

however, on the whole, algorithm preferences in terms of classification performance

were shown to vary from data set to data set. Results and analyses of the deter-

ministic experiments were provided in Chapter 6, which revealed that the proposed

approach is capable of returning highly competitive classifiers (indeed many results

represent improvements in classification performance) with respect to the standard

ML classifiers considered. These comparative results were very encouraging, partic-

ularly considering the fact that no attempts were made at optimizing the CMGE

framework parameters and no special preprocessing of the data was required.

Chapter 8 demonstrated a distinctive style of problem decomposition achieved by

our ‘novelty detection’ approach in terms of voting behaviors as compared to those

due to a discrimination-type wrapper function employed in the ‘weak learning’, bi-

nary coevolutionary GP configuration (i.e., Lemczyk’s PGPC algorithm [70]). These

intra-class comparative results provided additional evidence to the differing voting be-

haviors first observed in the inter-class comparisons (in terms of classification results)

carried out in Chapter 5, where the PGEC algorithm was noted to provide mainly

degenerate solutions. These were frequently observed to be due to incompatibly of

teams between classes (initializations) under the default majority voting policy.

In Chapter 9 we confirmed that an appropriate selection of the archive size pa-

rameters may have the potential to effect further gains in classification performance,

while noting that larger choices (with the capacity to negatively influence computa-

tional overhead) do not necessarily lead to improved classification results under our

framework. Finally, we provided evidence for feature selection under the CMGE mod-

els. Such behavior has the potential to provoke further insight to solutions provided;

however, we noted that this result was not necessarily consistent over all data sets.

10.2 Objectives Realized

In the introduction of this thesis, five objectives for our research were outlined specif-

ically aimed at confronting the problems that frequently preclude a GP approach

to classification. These will be discussed in the following sections with emphasis on
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how each has been demonstrated and subsequently addressed by our framework, cit-

ing specific design decisions and results relevant to establishing our success on each

objective.

10.2.1 Scalability

Without recourse to hardware specific speedups, the canonical form of GP does not

explicitly address the prohibitive computational overhead associated with problems

involving large numbers of training exemplars (tens of thousands or millions; see

Equation 1.2). This performance issue is, in large part, tied to individual evaluations

over all training exemplars in the costly inner-loop of GP, defining an undesirable

performance characteristic that is well documented in the literature [108] [22] [6]. We

have discussed the grounds for the scalability issue at length in Chapters 1 and 2

and demonstrated this classical pathology in Chapter 5, where a modestly configured

canonical GP on modern hardware typically required 39 to 75 hours per initialization

on the CENS data set.

The scalability objective was realized in two ways. First, through a reformulation

of the Incremental Pareto Coevolution Archive (IPCA) algorithm [23] that allows the

GP learners to train based on a balanced (in versus out-of-class) sample of train-

ing data combined with the most ‘useful’ points for learning in each class. Second,

class-wise early stopping criteria allows for dynamic and efficient reallocation of GP

resources (population members) as each class converges. The scalability of the CMGE

framework is established by the computational complexity analysis outlined in Chap-

ter 3 which suggests that the proposed framework will provide a speedup over the

canonical approach assuming archive and population sizes S ≤ 3
√
|TD|. This analysis

is readily supported by empirical results (in terms of training time) provided in Chap-

ter 5 where we confirm that the training process under the proposed framework is

reduced to minutes or seconds per initialization while returning overall classification

results that represent improvements that are statistically significant as compared to

the baseline GP models over the vast majority of problems.
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10.2.2 Class Imbalance

We have demonstrated the tendency of poor representation of minority classes in the

training set to lead GP individuals to focus on the majority classes in an attempt

to maximize fitness with the canonical results provided for unbalanced problems in

Chapter 5. Moreover, a cursory review of the StdGE class-wise detection results

(provided in Appendix G) clearly demonstrates this pathology under the BUPA,

CENS, CONT, KD99, PIMA, SHUT and THYD problems where consistent detection

rates are provided for the majority classes only. Drawing on the research of Weiss

and Provost [116], the framework developed in this thesis employs a balanced view

of each class as well as balanced (in versus out-of-class) class-specific archives to

directly address this shortcoming. In addition to returning the best overall training

and test results on 10 of the 12 data sets in comparison to the baseline and PGEC GP

approaches (Chapter 5), the CMGE framework also provided consistently competitive

results with the three deterministic classifiers (Chapter 7) as well as the two Neural

Network architectures (Chapter 6). These results are clearly confirmed by the class-

wise detection and false positive rates supplied in Appendix G.

10.2.3 Solution Transparency

The solution transparency issue is well established in the literature and involves the

potential for code growth or ‘bloat’ with longer evolutionary runs of GP, directly

impacting the simplicity and understandability of solutions [6] [61]. In light of earlier

results due to [25] [93], we adopt a multi-objective evaluation scheme in the learn-

ing cycle that employs an explicit parsimony objective (described in Chapter 3) that

specifically addresses this growth characteristic by simultaneously encouraging low er-

ror, short expression lengths and strong coverage among individuals during evolution.

Empirical evidence of this classical pathology was demonstrated in the canonical GE

results (particularly for the THYD problem) provided in Chapter 5. Experimental

results under the proposed framework indicate that our design indeed discouraged

solution complexity and variation was typically well contained per individual (espe-

cially in CMGE2) in comparison to the canonical and baseline models. Moreover, no
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baseline model was able to provide significantly lower complexity despite being ex-

plicitly limited in evaluations. Further evidence for solution transparency is provided

by the feature selection results presented in Chapter 8, where the CMGE models were

confirmed to prefer certain features over others and fewer rather than more unique

features on many problems although we acknowledge that this behavior was notably

absent on some of the more difficult problems (e.g., PIMA, BUPA) and/or those

involving very few features (e.g., IRIS).

10.2.4 Problem Decomposition

As discussed at length in Chapter 2, problem decomposition in the GP context has

typically referred to evolution of explicitly reusable modules or ‘building blocks’ (e.g.,

ADFs) to enable efficient code use and exploitation of learned components. In this

thesis automatic problem decomposition is developed such that multiple individuals

interact (both between classes and within classes) to effectively solve separate sub

problems cooperatively, in contrast to the single ‘super individual’ approach of the

canonical model which assumes that a single individual is sufficient and/or appropri-

ate to solve a problem. This objective is addressed by two design properties of the

proposed framework. Firstly, the use of a local membership function (in the form of

a Gaussian) enables individuals to act as novelty detectors rather than discrimina-

tors. Introduced in in Chapter 3, the LMF is employed to enforce class-consistent

cluster mappings, where correct assignment of local points to the individual cluster

is rewarded without explicitly requiring that all points be handled by any given map-

ping. Under this design, multiple individuals are permitted to evolve and contribute

to the final solution, each having potentially differing significance in terms of the

decomposition of the overall problem. Secondly, when designing the EMO compo-

nent of the model (discussed in Chapter 3), care is taken to construct the objectives

such that collaborative behavior with respect to other members of the corresponding

(class-specific) Pareto archive is explicitly encouraged; that is to say, individuals are

rewarded for classifying points that are not already classified correctly by potential

team members (individuals belonging to the associated learner archive).

The multi-individual (team-based) solutions of the CMGE models evolved in this
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thesis were analyzed in terms of their inter and intra-class behaviors. We first noted

that the CMGE inter-class behavior differed substantially from that of the PGEC

models in the discussion at the end of Chapter 5 regarding the PGEC classification

results supplied in Appendix G. In compiling these results the PGEC teams were

observed to be extremely inconsistent between classes and initializations in terms of

performance and team sizes. This highlighted substantial differences with regards to

team compositions and voting policies. We noted that the CMGE learners (of all

classes) evolve together, seeing all of the relevant point archives at once while learn-

ing strong voting behaviors leading to a winner-take-all voting policy. In comparison,

PGEC learners can only use one point archive per class-specific initialization where

there are no guarantees on the relevance of out-of-class points. Moreover, its variable

sized teams of weak learners tended to negatively influence the majority voting pro-

cedure. The end result was very poor classification performance in comparison to our

CMGE models.

Intra-class voting behaviors were analyzed in Chapter 8 where evidence for ‘prob-

lem decomposition’ voting behaviors of CMGE were contrasted with the ‘weak learn-

ing’ of PGEC. A key difference with respect to intra-class behaviors is that CMGE

models are encouraged to learn strong, class consistent voting in accordance with its

winner-take-all voting policy, where no such requirement is enforced by PGEC. This

behavior is attributed to CMGE’s use of real-valued outcomes (based on LMF output)

as entry criteria to learner archives. Moreover, the cooperative (coverage) behavior of

CMGE is achieved through the explicit minimization of overlap objective employed in

the EMO component. This combination of good inter and intra-class voting behav-

ior allows our model to address the problem decomposition issue without sacrificing

classification performance.

10.2.5 Multi-class Applications

The conventional approach to multi-class problems under the canonical GP classifi-

cation context involves execution of multiple independent initializations so that each

class is handled as a separately evolved binary classifier, thus requiring N runs of GP

for an N -class problem [58]. Aside from the added computational overhead associated
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with N independent runs (indicated in Equation 1.2 of Chapter 1), such an approach

also assumes an appropriate combination (output) policy can be specified such that

a single response (class label) is provided for each input vector. This issue has been

demonstrated in the current thesis where we choose to adopt either a sigmoid wrap-

per approach combined with a winner-take-all voting policy (in the case of baseline

models introduced in Chapter 4) or a majority voting collection of separately evolved,

class-specific teams (in the case of the binary PGEC model). In either case, training

required the added steps of multiple initializations and re-labelling the training data

to generate solutions for each class, resulting in systems with unnecessary complexity

and computational overhead.

The multi-class objective was addressed by the multi-class archiving and a ‘nov-

elty detection’ approach taken by the current framework which permits allocation

of individuals to any class according to results of clustering the raw GP output, as

described in Chapter 3. In other words, evolution of multi-class individuals takes

place in parallel with multi-class learner archiving leading to a single training run

providing solutions for all classes. Moreover, class-specific stopping criteria are used

to ensure sufficient training in each class and efficient allocation of population re-

sources. Deployment of the resulting classifiers also takes place in parallel, employing

a winner-take-all policy where this requires stronger performance of the classifiers as

a whole than the hierarchical case, which can mask poor performance of classifiers ap-

pearing later in the hierarchy. A principal benefit of the parallel classification model

is that it provides us with the inherent ability to address the multi-label classification

domains in which exemplars might be a member of multiple classes.

Evidence of the appropriateness of our multi-class approach has been discussed

above, with strong training and test classification performance returned in the results

of Chapter 5 for both binary and multi-class problems as compared to the similarly

parameterized and constrained baseline and PGEC models. Moreover, the class-wise

detection and false positive rates provided in Appendix G readily support the strong

(overall) score and accuracy based performances.
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10.3 Contributions

The high-level contribution of this thesis is clearly the development of a classification

framework for GP that addresses our five research objectives outlined in Chapter

1. Within this framework, however, we additionally consider several algorithmic

design details to be significant in terms of providing novel contributions to the GP

community:

Novelty detection : We have established the suitability and generally appealing

properties of a local (Gaussian) membership function approach to wrapper func-

tion design for classification. In the current work the parameters defining the

LMF are driven by clustering the raw (one dimensional) GP outputs, how-

ever any similar approach for estimating the GP’s output distribution could be

equally applicable;

Explicit problem decomposition : A multi-objective approach that specifically

encourages cooperative problem decomposition through an explicit ‘overlap’

objective has been established. This objective might be redefined to make

better use of archive information in future work (Section 10.5);

Competitive multi-class training : The extension of Lemczyk’s binary PGPC

[70] to a parallel, multi-class Pareto coevolutionary approach that incorporates

real-valued outcomes driving class-specific archiving has been demonstrated to

provide strong voting behaviors while establishing the basis for sub sampling of

the data, lending to scalability. The current work employs a balanced sampling

heuristic but this could be improved in future work (Section 10.5);

Early stopping with reallocation of resources : Class-specific evaluation of early

stopping criteria (based on the Kumar and Rockett histogram technique [66]) al-

lows the dynamic redistribution of population members by way of re-initializations

during evolution. This design has obvious implications for efficiency and can

allow for focusing of resources on more difficult classes during training.
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10.4 Classification with GP

In light of the No Free Lunch theorems (Section 1.2.3), it is important to consider un-

der what circumstances GP might be an appropriate choice for the classification task.

In general we have made the case for the flexibility of GP in terms of its allowances

for user-defined representation and cost function. Moreover, the highly explorative

approach to the credit assignment associated with stochastic search along with its ca-

pacity for resilience to convergence on local optima and few requirements on training

data have been highlighted as potential strengths. With the current framework for

classification addressing the classical pathologies (specifically the algorithmic com-

plexity typically associated with stochastic search) we can now make a case for the

GP approach when these potentially advantageous features are desired in the training

algorithm.

We have seen in the results of this thesis that often a simple model (e.g., the

Linear Perceptron trained with a robust second order algorithm, or the C4.5 decision

tree classifier) can provide the best classification results while being extremely reli-

able and efficient in terms of computational overhead; however, the CMGE models

consistently returned among the best results without pre-processing of data, specifica-

tion of solution architecture, tuning of algorithm parameters or assumptions in terms

of data distributions. Moreover, with the computational overhead being reduced to

levels that are comparable to other ML classifiers, one of the primary considerations

perhaps becomes constraints and representational biases due to the solution form.

Here the current framework makes use of the GE formulation of GP, which provides

a convenient grammar-based (CFG) definition of the output language that is able to

elegantly addresses the syntactic closure requirement. In addition to this high degree

of representational flexibility, the CMGE framework provides automatic multi-class

problem decomposition behavior as opposed to monolithic (single model) solutions,

while placing no specific constraints on the feature usage. This special modular prob-

lem decomposition behavior may have particular advantages where sub problems exist

within the classification data or when post-training analysis or specific deployment

conditions can benefit from multiple expressions cooperating to solve the problem.

Given the algorithmic advantages introduced to the GP classification algorithm
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through the CMGE framework, an argument can be made that in a situation where

very little a priori knowledge exists to prefer any of the specific ML classifier over the

others, the GP framework presented in this thesis may at minimum provide a strong

starting point for model induction.

10.5 Recommendations for Future Work

Finally, it is intended that this framework provide continued motivation and directions

for further research into the classification context of Genetic Programming. Expand-

ing on the points outlined in Section 10.3, immediate recommendations for future

work might include investigation into algorithms for efficiently guiding the sampling

of the exemplars beyond the default ‘balanced’ sampling heuristic employed here. Of

specific interest might be the potential to efficiently maintain difficulty information

that is based on, for example, the misclassification rates of points as they are sam-

pled from the training data. The benefits of such a mechanism would be two-fold.

First, the difficulty information that could be gained during the early (largely undi-

rected) sampling of points could be used (e.g., stochastically) to guide the search

toward ‘useful’ exemplars later in evolution, potentially accelerating training when

the requirement for more difficult points would normally leave a more näıve sampling

heuristic searching blindly for points to maintain a training gradient. Secondly, the

difficulty information related to points, post training, could lend further insight into

the nature of the learning process and (perhaps more importantly) the classification

problem itself.

An additional straightforward recommendation might be that the ‘overlap’ ob-

jective be improved to incorporate the information of the real-valued outcomes from

the learner archive to arrive at equally efficient statistics that could be developed to

provide a more accurate picture of the archive coverage. This could have the potential

to effect the cooperative problem decomposition behavior in much the same way that

the use of real-valued outcomes as the basis for archive entry focused or strengthened

the voting behavior in the current work.

In terms of more specialized algorithm modifications, the clustering parameters

of the Potential Function (specifically α and β) might be implemented so as to allow
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for their automatic adjustment according to basic cluster validation metrics, for ex-

ample inter-cluster separation distance and/or intra-cluster variation. Moreover, the

clusterings returned by the Potential Function might be analyzed for their potential

to detect points from multiple classes, thus reducing the numbers of individuals par-

ticipating in team solutions while further reducing the computational overhead when

classifiers are deployed, post-training.

As always, the author hopes to inspire further investigation into this line of re-

search, including alternate configurations and novel applications of the current frame-

work, and endeavors to pursue the potential of Genetic Programming to support a

wide range of real-world tasks through flexible and efficient evolutionary modeling.
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Appendix A

GP Comparison Plots (E1 - E5)

A.1 Canonical GP Comparisons

A.1.1 Overall Accuracy
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Figure A.1: Direct (GE) comparison of CENS Overall Accuracy performance.
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Figure A.2: Direct (GE) comparison of THYD Overall Accuracy performance.
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A.1.2 Score
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Figure A.3: Direct (GE) comparison of CENS Score performance.
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Figure A.4: Direct (GE) comparison of THYD Score performance.
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A.1.3 Solution Complexity (String length)
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Figure A.5: Direct (GE) comparison of solution length on CENS.
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Figure A.6: Direct (GE) comparison of solution length on THYD.
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A.1.4 Training Time
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Figure A.7: Direct (GE) comparison of training time on CENS.
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A.2 Scalable GP Comparisons
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A.2.1 Overall Accuracy
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Figure A.9: Direct (GE) comparison of BOST Overall Accuracy performance.
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Figure A.10: Direct (GE) comparison of BUPA Overall Accuracy performance.
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Figure A.11: Direct (GE) comparison of CENS Overall Accuracy performance.
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Figure A.12: Direct (GE) comparison of CONT Overall Accuracy performance.
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Figure A.13: Direct (GE) comparison of IMAG Overall Accuracy performance.
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Figure A.14: Direct (GE) comparison of IRIS Overall Accuracy performance.
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Figure A.15: Direct (GE) comparison of KD99 Overall Accuracy performance.
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Figure A.16: Direct (GE) comparison of PIMA Overall Accuracy performance.
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Figure A.17: Direct (GE) comparison of SHUT Overall Accuracy performance.



293

RSS!GE STD!GE CM!GE1 CM!GE2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

ve
ra

ll a
cc

ur
ac

y

Thyroid ! Train

(a) Overall Accuracy (Train)

RSS!GE STD!GE CM!GE1 CM!GE2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

ra
ll a

cc
ur

ac
y

Thyroid ! Test

(b) Overall Accuracy (Test)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Means ! Thyroid ! Train

3 groups have means significantly different from RSS!GE

(c) Comparison of Means (Train)

0.55 0.6 0.65 0.% 0.%5 0.8 0.85 0.' 0.'5 1

CM!+,2

CM!+,1

STD!+,

RSS!+,

M2lti6le Co:6arison o? Means ! T@Aroid ! Test

3 Dro26s @aEe :eans siDni?icantlA di??erent ?ro: RSS!+,

(d) Comparison of Means (Test)

20 40 60 80 100 120 140 160

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Thyroid ! Train

3 groups have mean ranks significantly different from RSS!GE

(e) Comparison of Mean Ranks (Train)

0 50 100 150

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Thyroid ! Test

3 groups have mean ranks significantly different from RSS!GE

(f) Comparison of Mean Ranks (Test)

Figure A.18: Direct (GE) comparison of THYD Overall Accuracy performance.
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Figure A.19: Direct (GE) comparison of WINE Overall Accuracy performance.
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Figure A.20: Direct (GE) comparison of WISC Overall Accuracy performance.
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Figure A.21: Direct (GE) comparison of BOST Score performance.
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Figure A.22: Direct (GE) comparison of BUPA Score performance.
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Figure A.23: Direct (GE) comparison of CENS Score performance.
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Figure A.24: Direct (GE) comparison of CONT Score performance.
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Figure A.25: Direct (GE) comparison of IMAG Score performance.
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Figure A.26: Direct (GE) comparison of IRIS Score performance.
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Figure A.27: Direct (GE) comparison of KD99 Score performance.



304

RSS!GE STD!GE CM!GE1 CM!GE2

0.5

0.55

0.6

0.65

0.7

0.75

Sc
or

e

Pima ! Train

(a) Score (Train)

RSS!GE STD!GE CM!GE1 CM!GE2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Sc
or

e

Pima ! Test

(b) Score (Test)

0.#2 0.#4 0.#6 0.#8 0.6 0.62 0.64 0.66

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Means ! Pima ! Train

3 groups have means significantly different from CM!GE2

(c) Comparison of Means (Train)

0.52 0.54 0.56 0.58 0.6 0.62 0.64

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Means ! Pima ! Test

2 groups have means significantly different from CM!GE2

(d) Comparison of Means (Test)

200 400 600 800 1000 1200 1400 1600

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Pima ! Train

3 groups have mean ranks significantly different from CM!GE2

(e) Comparison of Mean Ranks (Train)

500 600 700 800 900 1000 1100 1200 1300

CM!GE2

CM!GE1

STD!GE

RSS!GE

Multiple Comparison of Mean Ranks ! Pima ! Test

2 groups have mean ranks significantly different from CM!GE2

(f) Comparison of Mean Ranks (Test)

Figure A.28: Direct (GE) comparison of PIMA Score performance.
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Figure A.29: Direct (GE) comparison of SHUT Score performance.
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Figure A.30: Direct (GE) comparison of THYD Score performance.
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Figure A.31: Direct (GE) comparison of WINE Score performance.
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Figure A.32: Direct (GE) comparison of WISC Score performance.
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A.2.3 Solution Complexity (String length)
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Figure A.33: Direct (GE) comparison of solution length on BOST.
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Figure A.34: Direct (GE) comparison of solution length on BUPA.
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Figure A.35: Direct (GE) comparison of solution length on CENS.
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Figure A.36: Direct (GE) comparison of solution length on CONT.
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Figure A.37: Direct (GE) comparison of solution length on IMAG.
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Figure A.38: Direct (GE) comparison of solution length on IRIS.
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Figure A.39: Direct (GE) comparison of solution length on KD99.
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Figure A.40: Direct (GE) comparison of solution length on PIMA.
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Figure A.41: Direct (GE) comparison of solution length on SHUT.
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Figure A.42: Direct (GE) comparison of solution length on THYD.
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Figure A.43: Direct (GE) comparison of solution length on WINE.
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Figure A.44: Direct (GE) comparison of solution length on WISC.
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A.2.4 Training Time
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Figure A.45: Direct (GE) comparison of training time on BOST.
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Figure A.46: Direct (GE) comparison of training time on BUPA.
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Figure A.47: Direct (GE) comparison of training time on CENS.
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Figure A.48: Direct (GE) comparison of training time on CONT.
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Figure A.49: Direct (GE) comparison of training time on IMAG.
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Figure A.50: Direct (GE) comparison of training time on IRIS.
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Figure A.51: Direct (GE) comparison of training time on KD99.
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Figure A.52: Direct (GE) comparison of training time on PIMA.
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Figure A.53: Direct (GE) comparison of training time on SHUT.
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Figure A.54: Direct (GE) comparison of training time on THYD.
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Figure A.55: Direct (GE) comparison of training time on WINE.
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Figure A.56: Direct (GE) comparison of training time on WISC.
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Artificial Neural Network Comparison Plots (E6 - E7)

B.1 Overall Accuracy

335



336

RSS−GE CM−GE1 CM−GE2 LP MLP
0.3

0.4

0.5

0.6

0.7

0.8

0.9
O

ve
ra

ll 
A

cc
ur

ac
y

BOST − Train

(a) Overall Accuracy (Train)

RSS−GE CM−GE1 CM−GE2 LP MLP
0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

ra
ll 

A
cc

ur
ac

y

BOST − Test

(b) Overall Accuracy (Test)

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Means − BOST − Train

4 groups have means significantly different from RSS−GE

(c) Comparison of Means (Train)

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Means − BOST − Test

4 groups have means significantly different from RSS−GE

(d) Comparison of Means (Test)

400 600 800 1000 1200 1400 1600 1800 2000

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Mean Ranks − BOST − Train

4 groups have mean ranks significantly different from RSS−GE

(e) Comparison of Mean Ranks (Train)

600 800 1000 1200 1400 1600 1800 2000

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Mean Ranks − BOST − Test

4 groups have mean ranks significantly different from RSS−GE

(f) Comparison of Mean Ranks (Test)

Figure B.1: ANN comparison of BOST Overall Accuracy performance.
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Figure B.2: ANN comparison of BUPA Overall Accuracy performance.
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Figure B.3: ANN comparison of CENS Overall Accuracy performance.
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Figure B.4: ANN comparison of CONT Overall Accuracy performance.
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Figure B.5: ANN comparison of IMAG Overall Accuracy performance.
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Figure B.6: ANN comparison of IRIS Overall Accuracy performance.
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Figure B.7: ANN comparison of KD99 Overall Accuracy performance.
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Figure B.8: ANN comparison of PIMA Overall Accuracy performance.
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Figure B.9: ANN comparison of SHUT Overall Accuracy performance.
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Figure B.10: ANN comparison of THYD Overall Accuracy performance.
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Figure B.11: ANN comparison of WINE Overall Accuracy performance.
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Figure B.12: ANN comparison of WISC Overall Accuracy performance.
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Figure B.13: ANN comparison of BOST Score performance.
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Figure B.14: ANN comparison of BUPA Score performance.
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Figure B.15: ANN comparison of CENS Score performance.
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Figure B.16: ANN comparison of CONT Score performance.
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Figure B.17: ANN comparison of IMAG Score performance.



354

RSS−GE CM−GE1 CM−GE2 LP MLP
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

co
re

IRIS − Train

(a) Score (Train)

RSS−GE CM−GE1 CM−GE2 LP MLP
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
co

re

IRIS − Test

(b) Score (Test)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Means − IRIS − Train

4 groups have means significantly different from RSS−GE

(c) Comparison of Means (Train)

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Means − IRIS − Test

4 groups have means significantly different from RSS−GE

(d) Comparison of Means (Test)

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Mean Ranks − IRIS − Train

3 groups have mean ranks significantly different from RSS−GE

(e) Comparison of Mean Ranks (Train)

800 900 1000 1100 1200 1300 1400 1500 1600

MLP

LP

CM−GE2

CM−GE1

RSS−GE

Multiple Comparison of Mean Ranks − IRIS − Test

4 groups have mean ranks significantly different from RSS−GE

(f) Comparison of Mean Ranks (Test)

Figure B.18: ANN comparison of IRIS Score performance.
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Figure B.19: ANN comparison of KD99 Score performance.
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Figure B.20: ANN comparison of PIMA Score performance.
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Figure B.21: ANN comparison of SHUT Score performance.
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Figure B.22: ANN comparison of THYD Score performance.
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Figure B.23: ANN comparison of WINE Score performance.
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Figure B.24: ANN comparison of WISC Score performance.
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Deterministic Comparisons (E8 - E10)
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Figure D.1: Coverage comparison of CMGE 1, 2 and PGEC on BUPA.
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Figure D.2: Coverage comparison of CMGE 1, 2 and PGEC on IMAG.
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Figure D.3: Coverage comparison of CMGE 1, 2 and PGEC on PIMA.
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Figure D.4: Coverage comparison of CMGE 1, 2 and PGEC on THYD.
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Figure D.5: Coverage comparison of CMGE 1, 2 and PGEC on WINE.
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Figure D.6: Coverage comparison of CMGE 1, 2 and PGEC on WISC.
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Figure E.1: Feature Analysis: CMGE 1, 2 on BOST.
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Figure E.2: Feature Analysis: CMGE 1, 2 on BUPA.
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Figure E.3: Feature Analysis: CMGE 1, 2 on CONT.
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Figure E.4: Feature Analysis: CMGE 1, 2 on IMAG.
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Figure E.5: Feature Analysis: CMGE 1, 2 on IRIS.
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Figure E.6: Feature Analysis: CMGE 1, 2 on KD99.
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Figure E.7: Feature Analysis: CMGE 1, 2 on SHUT.



384

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800
Histogram of Unique Features per Individual − CM−GE1 on THYD

# Unique Features

C
ou

nt

 

 
Class 1
Class 2
Class 3

(a) CMGE1 Features per Individual

0 5 10 15 20 25
0

100

200

300

400

500

600
Histogram of Unique Features per Individual − CM−GE2 on THYD

# Unique Features

C
ou

nt

 

 
Class 1
Class 2
Class 3

(b) CMGE2 Features per Individual

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500
Individual Occurrences vs. Feature − CM−GE1 on THYD

Feature #

In
di

vi
du

al
 O

cc
ur

an
ce

s

 

 
Class 1
Class 2
Class 3

(c) CMGE1 Indiv. Occurrences

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500
Individual Occurrences vs. Feature − CM−GE2 on THYD

Feature #

In
di

vi
du

al
 O

cc
ur

an
ce

s

 

 
Class 1
Class 2
Class 3

(d) CMGE2 Indiv. Occurrences

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Total Occurrences vs. Feature − CM−GE1 on THYD

Feature #

T
ot

al
 O

cc
ur

an
ce

s

 

 
Class 1
Class 2
Class 3

(e) CMGE1 Total Occurrences

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Total Occurrences vs. Feature − CM−GE2 on THYD

Feature #

T
ot

al
 O

cc
ur

an
ce

s

 

 
Class 1
Class 2
Class 3

(f) CMGE2 Total Occurrences

Figure E.8: Feature Analysis: CMGE 1, 2 on THYD.
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Figure E.9: Feature Analysis: CMGE 1, 2 on WINE.
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Figure E.10: Feature Analysis: CMGE 1, 2 on WISC.
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Results of (Class-wise) Surface Plots
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Figure F.1: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on CONT, class 1.
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Figure F.2: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on CONT, class 2.
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Figure F.3: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on CONT, class 3.
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Figure F.4: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on THYD, class 1.
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Figure F.5: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on THYD, class 2.
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Figure F.6: Parameter analysis of CMGE 1 Detection (a) (b) and False Positive Rate
(c) (d) on THYD, class 3.



Appendix G

Results: Quartile Summaries

The following tables present median (MED) along with first and third quartile (Q1,

Q3 respectively) results for all GE, Deterministic and ANN experiments carried out

in this work. Where applicable, results include overall accuracy, score, training time,

solution size, number of solution participants, class-wise detection rate, and class-wise

false positive rate. All quartiles are calculated over 50 independent initializations

of the stochastic systems (GE, ANN). Where a train / test partitioning was not

defined by the problem, ten-fold cross validation was performed for a total of 500

initializations. Deterministic experiments were not subject to multiple initializations;

however, where ten-fold cross validation was employed, quartiles are reported across

partitions.
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G.1 Canonical GP Classifier
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Table G.1: CAN-GE - CENS Quartile Summary
Overall Score (Train / Test)

C Q1 MED Q3
- 0.500 / 0.500 0.500 / 0.500 0.531 / 0.531

Overall Accuracy (Train / Test)

C Q1 MED Q3
- 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941

Training time (s)

C Q1 MED Q3
- 139020.1 172408.7 269413.7

Classwise Soln Size

C Q1 MED Q3
1 12.0 27.5 78.5
2 13.0 41.5 67.5

Classwise Accuracy (Train / Test)

C Q1 MED Q3
1 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941
2 0.937 / 0.937 0.937 / 0.937 0.940 / 0.941

Classwise Det Rate (Train / Test)

C Q1 MED Q3
1 0.998 / 0.998 1.000 / 1.000 1.000 / 1.000
2 0.000 / 0.000 0.000 / 0.000 0.063 / 0.063

Classwise FP Rate (Train / Test)

C Q1 MED Q3
1 0.937 / 0.937 1.000 / 1.000 1.000 / 1.000
2 0.000 / 0.000 0.000 / 0.000 0.002 / 0.002
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Table G.2: CAN-GE - THYD Quartile Summary
Overall Score (Train / Test)

C Q1 MED Q3
- 0.441 / 0.438 0.625 / 0.610 0.718 / 0.706

Overall Accuracy (Train / Test)

C Q1 MED Q3
- 0.933 / 0.933 0.944 / 0.942 0.957 / 0.953

Training time (s)

C Q1 MED Q3
- 5241.0 7148.2 8529.2

Classwise Soln Size

C Q1 MED Q3
1 25.0 54.5 112.0
2 29.0 72.0 111.0
3 36.0 67.0 116.0

Classwise Accuracy (Train / Test)

C Q1 MED Q3
1 0.980 / 0.983 0.989 / 0.989 0.991 / 0.990
2 0.949 / 0.948 0.950 / 0.949 0.960 / 0.958
3 0.939 / 0.940 0.951 / 0.947 0.969 / 0.960

Classwise Det Rate (Train / Test)

C Q1 MED Q3
1 0.183 / 0.247 0.715 / 0.678 0.806 / 0.795
2 0.000 / 0.000 0.102 / 0.082 0.524 / 0.469
3 0.996 / 0.992 0.999 / 0.996 0.999 / 0.997

Classwise FP Rate (Train / Test)

C Q1 MED Q3
1 0.000 / 0.001 0.002 / 0.003 0.004 / 0.006
2 0.000 / 0.000 0.002 / 0.004 0.009 / 0.011
3 0.349 / 0.408 0.623 / 0.674 0.785 / 0.788
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G.2 Baseline GP Classifiers
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Appendix H

KDD 99: Preprocessing of Attack Type Labels

Nominal label map with final group description and class number in brackets. Details

of attack definitions can be found at MIT Lincon Laboratory web site.1

[0] => normal. ( NORM => 0 )

[1] => snmpgetattack. ( R2L => 1 )

[2] => named. ( R2L => 1 )

[3] => xlock. ( R2L => 1 )

[4] => smurf. ( DOS => 2 )

[5] => ipsweep. ( PROBE => 3 )

[6] => multihop. ( R2L => 1 )

[7] => xsnoop. ( R2L => 1 )

[8] => sendmail. ( R2L => 1 )

[9] => guess_passwd. ( R2L => 1 )

[10] => saint. ( PROBE => 3 )

[11] => buffer_overflow. ( U2R => 4 )

[12] => portsweep. ( PROBE => 3 )

[13] => pod. ( DOS => 2 )

[14] => apache2. ( DOS => 2 )

[15] => phf. ( R2L => 1 )

[16] => udpstorm. ( DOS => 2 )

[17] => warezmaster. ( R2L => 1 )

[18] => perl. ( U2R => 4 )

[19] => satan. ( PROBE => 3 )

[20] => xterm. ( U2R => 4 )

[21] => mscan. ( PROBE => 3 )

1http://www.ll.mit.edu/IST/ideval/data/data index.html
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[22] => processtable. ( DOS => 2 )

[23] => ps. ( U2R => 4 )

[24] => nmap. ( PROBE => 3 )

[25] => rootkit. ( U2R => 4 )

[26] => neptune. ( DOS => 3 )

[27] => loadmodule. ( U2R => 4 )

[28] => imap. ( R2L => 1 )

[29] => back. ( DOS => 3 )

[30] => httptunnel. ( R2L => 1 )

[31] => worm. ( R2L => 1 )

[32] => mailbomb. ( DOS => 2 )

[33] => ftp_write. ( R2L => 1 )

[34] => teardrop. ( DOS => 3 )

[35] => land. ( DOS => 3 )

[36] => sqlattack. ( U2R => 4 )

[37] => snmpguess. ( R2L => 1 )

[38] => warezclient. ( R2L => 1 )

[39] => spy. ( R2L => 1 )
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