
ON THE UTILITY OF EVOLVING FOREX MARKET TRADING
AGENTS WITH CRITERIA BASED RETRAINING

by

Alexander Loginov

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2013

c© Copyright by Alexander Loginov, 2013

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty

of Graduate Studies for acceptance a thesis entitled “ON THE UTILITY OF

EVOLVING FOREX MARKET TRADING AGENTS WITH CRITERIA BASED

RETRAINING” by Alexander Loginov in partial fulfillment of the requirements for

the degree of Master of Computer Science.

Dated: March 25, 2013

Supervisor:
Dr. Malcolm I. Heywood

Readers:
Dr. Garnett Wilson

Dr. Vlado Keselj

ii

DALHOUSIE UNIVERSITY

DATE: March 25, 2013

AUTHOR: Alexander Loginov

TITLE: ON THE UTILITY OF EVOLVING FOREX MARKET TRADING
AGENTS WITH CRITERIA BASED RETRAINING

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: M.C.Sc. CONVOCATION: May YEAR: 2013

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available
to the public.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

List of Abbreviations and Symbols Used x

Chapter 1 Introduction . 1

1.1 Forex, Futures and Equities Markets 1

1.2 The Ways To Analyze Financial Markets 3

Chapter 2 Background . 5

2.1 Canonical Linear Genetic Programming 5

2.2 On the role of Dynamic or Non-stationary Processes 9

2.3 Evolving trading agents . 13

Chapter 3 Proposed Algorithm . 15

3.1 The FXGP Algorithm Overview . 15

3.2 Training . 19
3.2.1 Initialization . 19
3.2.2 Fitness and Selection . 21
3.2.3 Mutation . 22

3.3 Validation . 23

3.4 Trading and Retraining criteria . 23

Chapter 4 Evaluation . 25

4.1 Source Data . 26

4.2 Experimental setup . 27

4.3 Results . 29

Chapter 5 Conclusion and Future Work 38

iv

Appendix A TI types . 40

Appendix B Scores distributions . 41

Bibliography . 47

v

List of Tables

Table 3.1 FXGP parameters . 18

Table 3.2 TI properties . 19

Table 3.3 TI functions . 19

Table 4.1 FXGP parameterization. dmin, dmax, nnt and nrow are ignored
in Static, ContEv and StepEv cases 29

Table 4.2 Results sorted by median score (over 100 runs). Where: Nv

and psl as described in the Table 3.1, Prof. runs — percent of
profitable runs, min — minimum score, 1st — first quartile, 3rd
— third quartile, max — maximum score, USD — final account
balance in USD recalculated based on median score in pips. . . 30

Table 4.3 p-values for pairwise Student T-test of FXGP versus StepEv,
ContEv and Static (marked by † in Table 4.2). 32

vi

List of Figures

Figure 2.1 Crossover trades (genetic) material between parents to create
children. 7

Figure 3.1 The Train-Validate-Trade cycle. 17

Figure 3.2 DT–TI Interaction. 17

Figure 4.1 The Train-Validate-Trade cycle (trading period of a fixed length
δ). 26

Figure 4.2 FXGP versus StepEv 500 versus ContEv 1500 versus Static
(marked by † in Table 4.2). 32

Figure 4.3 FXGP retrain intervals (Nv 500, psl 0.2). 34

Figure 4.4 FXGP retrains over 100 runs (Nv 0, psl 0.2). 35

Figure 4.5 FXGP S/L orders in pips (Nv 500, psl 0.2). 35

Figure 4.6 FXGP trading profiles (pips) of the best, typical (median) and
the worse runs (Nv 500, psl 0.2). 36

Figure 4.7 FXGP trading profiles (USD) of the best, typical (median) and
the worse runs (Nv 500, psl 0.2). 36

Figure A.1 A trading terminal screenshot with TI of two types. The contin-
uous red line demonstrates the example of a type 1 TI (crosses
the price — grey candles), and the continuous blue line that
demonstrates an example of a type 0 TI (has positive and neg-
ative values - crosses 0) . 40

Figure B.1 StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 0, psl 0.2). 41

Figure B.2 StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 0, psl 0). 42

Figure B.3 Static versus FXGP (Nv 0, psl 0.2). 42

Figure B.4 Static versus FXGP (Nv 0, psl 0). 43

Figure B.5 StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 500, psl
0.2). 43

Figure B.6 StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 500, psl
0). 44

vii

Figure B.7 Static versus FXGP (Nv 500, psl 0.2). 44

Figure B.8 Static versus FXGP (Nv 500, psl 0). 45

Figure B.9 Static versus FXGP (Nv 500, psl n/a). 45

Figure B.10 ContEv 120 versus ContEv 500 versus ContEv 1500 (Nv 0, psl
0.2). 46

Figure B.11 FXGP versus StepEv 500 versus ContEv 1500 versus Static
without S/L orders (marked by ‡ in Table 4.2.) 46

viii

Abstract

This research investigates the ability of genetic programming to build profitable trad-

ing strategies for the Foreign Exchange Market (FX) of one major currency pair

(EURUSD) using one hour prices from July 1, 2009 to November 30, 2012. We rec-

ognize that such environments are likely to be non-stationary and we do not expect

that a single training partition, used to train a trading agent, represents all likely

future behaviours. The proposed adaptive retraining algorithm – hereafter FXGP –

detects poor trading behaviours and trains a new trading agent. This represents a

significant departure from current practice which assumes some form of continuous

evolution. Extensive benchmarking is performed against the widely used EURUSD

currency pair. The non-stationary nature of the task is shown to result in a prefer-

ence for exploration over exploitation. Moreover, adopting a behavioural approach

to detecting retraining events is more effective than assuming incremental adaptation

on a continuous basis. From the application perspective, we demonstrate that use of

a validation partition and Stop-Loss (S/L) orders significantly improves the perfor-

mance of a trading agent. In addition the task of co-evolving of technical indicators

(TI) and the decision trees (DT) for deploying trading agent is explicitly addressed.

The results of 27 experiments of 100 simulations each demonstrate that FXGP sig-

nificantly outperforms existing approaches and generates profitable solutions with a

high probability.

ix

List of Abbreviations and Symbols Used

Hereafter the following terminology will be as-
sumed [16]:

Ask or Offer Price at which broker/dealer is willing to sell

Balance The value of your account not including unrealized
gains or losses on open positions

Bear Market An extended period of general price decline in an
individual security, an asset, or a market

Bid Price at which broker/dealer is willing to buy

Bull Market A market which is on a consistent upward trend

Drawdown The magnitude of a decline in account value, either
in percentage or dollar terms, as measured from
peak to subsequent trough

Equities Ownership interest in a corporation in the form of
common stock or preferred stock

Fundamental Analysis Macro or strategic assessment of where a currency
should be trading on any criteria but the price ac-
tion itself. The criteria often include the economic
condition of the country that the currency repre-
sents, monetary policy, and other ‘fundamental’ el-
ements

Futures An obligation to exchange a good or instrument at
a set price on a future date

Leverage The use of various financial instruments or bor-
rowed capital, such as margin, to increase the po-
tential return of an investment

x

Limit Order An order placed with a brokerage to buy or sell a
set number of shares at a specified price or bet-
ter. Limit orders also allow an investor to limit the
length of time an order can be outstanding before
being canceled

Market Noise Price and volume fluctuations in the market that
can confuse one’s interpretation of market direc-
tion. Used in the context of equities, it is stock
market activity caused by program trading, divi-
dend payments or other phenomena that is not re-
flective of overall market sentiment. In general, the
shorter the time frame, the more difficult it is to
separate the meaningful market movements from
the noise

Money Management The process of budgeting, saving, investing, spend-
ing or otherwise in overseeing the cash usage of an
individual or group. The predominant use of the
phrase in financial markets is that of an investment
professional making investment decisions for large
pools of funds, such as mutual funds or pension
plans. Also referred to as ‘investment management’
and/or ‘portfolio management’

Pip The smallest change of the last decimal point the
currency pair is priced to. Often referred to as
‘ticks’ in the future markets. For example, in EU-
RUSD, a move of 0.0001 is one pip

Spot Buying and selling forex with the current date’s
price for valuation, but where settlement usually
takes place in two days

Spread The distance, usually in pips, between the Bid and
Ask prices

Stop Loss or S/L A limit order to close a position when a given limit
is reached. When long, the stop loss order is placed
below the current market price. When short, the
stop loss order is placed above the current market
price

xi

Technical Analysis Analysis applied to the price behaviour of the mar-
ket to develop trading decision, irrespective of fun-
damental factors

Trading Curb A temporary restriction on program trading in a
particular security or market, usually to reduce dra-
matic price movements. Also known as a collar or
circuit breaker

xii

Chapter 1

Introduction

The Foreign Exchange (FX) Market is the world biggest financial market which pro-

duces 1/3 of all financial transactions in the world [28]. The average daily turnover of

FX was almost $4 trillion in 2010 and it was 20% higher in April 2010 than in April

2007 [33]. An FX market consists of currency pairs which are weighted by economic

conditions for that specific denomination versus any or all others in the marketplace.

Thus, the price value of a currency is nothing more than a reflection of where that

denomination’s economy ranks as weak or strong relative to others. An FX market is

technically ‘purer’ than a stock market, i.e. a currency price behaviour reacts more

strongly to resistance and support levels than equity markets do [30] but this is not

the only difference.

1.1 Forex, Futures and Equities Markets

Historically, the Forex market1 was the exclusive playground of banks, hedge funds,

corporations and financial institutions [2] due to regulation, capital requirements,

and technology. One of the main reasons why the Forex market was traditionally

the market of choice for large players is because the risk that a trader takes is fully

customizable. A trader could use a hundred times leverage or do not use it at all2.

But this situation has changed. Many firms have opened the Forex market to retail

traders, providing leveraged trading, free instantaneous execution trading platforms

and real-time news. The popularity of Forex has started to grow and many equity

and futures traders started to trade currencies or even switched to Forex exclusively.

The traders have realized that Forex has attractive attributes compared to equities

or futures [21].

1The “forex market” is mostly referred to the Spot Forex Market [2].
2With a 1:100 leverage FX traders are allowed to execute trades of up to $100,000 with an initial

deposit of only $1000. But while a high degree of leverage allows traders to maximize their profit
potential, the potential for loss is equally large [2]

1

2

The short summary of the main attributes of the Forex comparing to Equities and

Future markets are listed below [21].

Forex market:

• Forex is the largest market in the world and has growing liquidity.

• Forex operates 24-hour a day and 5 days a week.

• Traders can profit in bull and bear markets (see Glossary for definition).

• There are no trading curbs3,4.

• Instant executable trading platform minimizes slippage and errors.

• Many traders consider Forex more profitable.

Equities market:

• Equity market liquidity mainly depends on the stock daily volume.

• The market is open for trading from 9:30 a.m. to 4:00 p.m. New York time with

limited after-hours trading.

• The existence of exchange fees results in higher costs and commissions.

• There is an uptick rule to short stocks, which many day traders find frustrating.

Trading curbs may be frustrating for day traders as well.

• The number of steps involved in completing a trade increases slippage and error.

Future markets:

• The liquidity is limited and depends on the month a contract is traded.

3Unlike the equities market, there is never a time in the FX market when trading curbs would
take effect and trading would be halted, only to gap when reopened. This eliminates missed profits
due to exchange regulations. In the FX market, traders would be able to place trades 24 hours a
day with virtually no disruptions [21].

4When the “curbs are in” at the NYSE, it means that certain types of trading are restricted to
prevent volatility. Depending on the situation, this can mean that either all trading is halted or that
certain sales can be executed only on an uptick. This kind of rule was implemented after the crash
of 1987 (Black Monday), as program trading was thought to be a primary cause of the drop [17]

3

• The exchange fees result in more costs and commissions.

• Market hours are much shorter and depend on the product traded.

• The leverage is higher than for equities but less than for Forex.

• There tend to be prolonged bear markets.

• Pit trading structure increases error and slippage.

1.2 The Ways To Analyze Financial Markets

There are two major ways to analyze financial markets [21]: fundamental analysis and

technical analysis. Fundamental analysis is based on the underlying economic con-

ditions and is not applicable to this research, while technical analysis uses historical

prices in an effort to predict future movements [21].

Technical analysis works well for the Forex market. Charts and TIs are used by all

professional FX traders and are available in most charting packages. In addition, the

most commonly used TIs – such as Fibonacci Retracements, Stochastic Oscillator,

Moving Average Convergence/Divergence (MACD), Moving Averages (MA), Relative

Strength Index (RSI), and support/resistance levels – have proven valid in many

instances [21].

In effect traders are using information from technical indicators in order to draw

out trends which enable them to make predictions regarding the future behaviour of

the market. Such predictions provide the basis for trading actions e.g., buy, sell or

hold. The combination of a TI with a decision rule provides the basis for a “trading

strategy”. This work is based on technical analysis and investigates the ability of

genetic programming to build profitable trading strategies for the Forex market. The

thesis is organized as follows:

• Chapter 2 overviews previous work that are related to our research.

• Chapter 3 gives the detailed description of the proposed algorithm; hereafter

FXGP.

• Chapter 4 describes the experimental setup and the result of 27 experiments.

4

• Chapter 5 summarizes the conclusions and discusses the topics for future work.

Chapter 2

Background

The introduction summarized the case for constructing automated trading agents

using machine learning in general. It was also established that such an automatic

trading agent needed to combine the activities of feature construction — or technical

indicators (TI) – with the design of an appropriate decision tree – or under what

conditions to apply one of a predefined set of market specific actions. The research of

this thesis adopts an approach to machine learning taken from genetic programming

in particular and concentrates on:

1. Establishing the mechanism for supporting the co-design of TI and DT, and;

2. Establishing how to interface the trading agent to the data stream representing

the market.

In the following summary of related research we begin by introducing the basic

architecture for the canonical forms of linear genetic programming, where this is the

representation assumed in this research (Section 2.1). Section 2.2 will review some

of the properties associated with markets and trading and their potential impact on

assuming a genetic programming framework. Finally, Section 2.3 summarizes recent

approaches to applying genetic programming to the task of automated trading agents.

2.1 Canonical Linear Genetic Programming

In this work we will use some biological terms as denoted in Genetic Algorithms (GA)

and Genetic Programming (GP) books by Mitchell [27] and Koza [19].

All cells in a living organism contain the same set of chromosomes – strings of

DNA – a ‘blueprint’ of the organism. A chromosome can be divided into functional

blocks – genes, each gene encodes a trait of the organism (e.g.eye colour) and possible

‘settings’ for a trait (e.g. blue) and are called alleles. All the chromosomes of the

5

6

organism collectively constitute the genome and the set of the particular genes in

a genome is called genotype. The phenotype is a set of the traits and behaviour

characteristics which reflect the influence of the environment. A living organism

behaviour can be diploid (paired chromosomes) or haploid (unpaired chromosomes).

Most sexually reproducing organisms are diploid. During sexual reproduction two

main genetic operations occur: recombination or crossover – genes exchange, and

mutation – when some nucleodites (elementary parts of DNA) are changed (often as

a result of errors introduced during reproduction). The fitness typically reflects the

probability that the organism will survive to reproduce or as a function of the number

of the offsprings of the organism [27].

A GA is a radical abstraction of its biological model [1] and in short can be

summarized [19, 31] as follows (Algorithm 1):

Algorithm 1 A short summary of a GA as a radical abstraction of its biological

model
1: Initialize a population, size P, with multiple candidate solutions

2: while !stop criteria do

3: Evaluate fitness of all individuals in population P

4: for j < |P |/2 do

5: parent(a,b) = Selection(P)

6: crossover(a,b,pc)

7: mutation(a,pm)

8: mutation(b,pm)

9: P1 ← insert(a,b)

10: end for

11: P ← Replacement(P,P1)

12: end while

Step 1 initializes a population with multiple candidate solutions following the

definition of an appropriate representation. Step 2 merely indicates that execution

continues until either a task specific or computational stop criterion is encountered.

Step 3 implies that each candidate solution should be evaluated on the task, and a

measure of performance given to each individual in the population. This is usually

task specific. Step 4 creates a population of children, P1. To do so, pairs of parents are

7

selected relative to the content of the current population, P. Two variation operators

are then used to introduce diversity. Crossover trades (genetic) material between

parents to create children (e.g., see Figure 2.1), hence is limited to material which

currently exists in the population. Mutation is a gene-wise operator and ‘flips’ a gene

between any of its alleles. Finally, replacement (Step 11) merges the parent and child

populations to create a new parent population of size |P| i.e., there is a competition

for ‘survival’.

Crossover segment 1

Parent 1

Child 1

Parent 2

Crossover segment 2

Child 2

Figure 2.1: Crossover trades (genetic) material between parents to create children.

Naturally, variation operators are representation specific i.e., limited to operating

on the genotype. Conversely, selection and replacement are free to make use of

performance information, thus operate on the ‘search space’. We will later assume a

‘breeder’ approach, thus children always replace the worst pair of individuals currently

in the population. This also implies that the process is elitist with the best individuals

never being lost.

The canonical GA of Algorithm 1 is generic to both genetic algorithms (GA)

and genetic programming (GP). The principal difference between the two is how a

genotype is ‘decoded’ into its corresponding phenotype. From the perspective of a

GA the decoding results in a phenotype representing a scalar or vector of real-valued

or integer numbers. In the case of GP – and linear GP in particular – the decoding

between genotype and phenotype is synonymous with the “fetch–decode–execution”

cycle of a register machine. Thus, genotypes represent (binary) instructions which

are associated with fields of a simple register machine. For example, consider a binary

8

instruction consisting of the tuple 〈m, t, o, s1, s2〉 or a total of five instruction fields.

Let m denote the instruction type (or mode) where instruction types might take

the form of register–register, load–store, or register–constant; hence a total of 2 bits.

Target and source registers (operands) are identified by t and si respectively. Thus, if

a total of four registers exist then another 2 bits are necessary (per field). Instruction

‘opcode’ is denoted by o; thus another 2 bits would be required if the opcodes take

the form of the four arithmetic operators. In this particular case, encoding a single

instruction takes the form of a sequence of 10 bits or an integer selected over the

range [0, . . . , 1023]. A linear GP individual would therefore consist of a ‘string’ of

integers with execution beginning at the first instruction and continuing until the

last. The output from the program is generally assumed to be the content of register

zero following execution of the program. Depending on the application domain the

user determines an appropriate set of opcodes and instruction types or a register level

transfer language. The necessary decoding can then be designed to ensure that all

genotypes result in a valid instruction. Section 3 discusses in detail the representation

and instruction opcodes assumed for FXGP.

The genetic programs can be classified by three basic forms of representation [1]:

tree, graph and linear representation. This research adopts the tree representation [19]

to construct the trading rules (DT) and linear genetic programming to build technical

indicators (TIs). This decision was made based on the distinguishing characteristics

and main differences of the two approaches that were summarized in the monograph

of Brameier and Banzhaf [1] as follows.

The tree programs used in [19] correspond to expressions (syntax trees) from a

functional programming language. This approach is also referred to as tree-based GP

(TGP). Functions – or rather operations with more than zero arguments – are defined

by the inner nodes, while leaves of the tree hold input values or constants, i.e., argu-

ment zero operations. In contrast, linear genetic programming (LGP) is a GP variant

that evolves sequences of instructions from an imperative or a machine programming

language. The set of instructions are restricted to operations including conditional

operations, that accept a minimum number of constants or memory variables, called

registers, and assign the result to another register (e.g. r0 := r1 + 1).

The term linear refers to the structure of the (imperative) program representation,

9

as opposed to standing for functional genetic programs that are restricted to a linear

list of nodes only. Moreover, it does not mean that the method itself can solve linearly

separable problems only. Rather, genetic programs often represent highly non-linear

solutions due to their inherent power of expression [1].

The GP does not produce parsimonious code and the genetic program contains

lots of useless code structures (introns) [19]. From the perspective of LGP, Introns

are either structural or semantic. Structural introns fall outside the path of code

associated with the output register. Conversely, semantic introns represent code that

has no functional value – say r1 := r1+0 – but are in the path of execution associated

with the output register. Tree structured GP assumes the root node as the source of

output, thus there is no concept of structural introns. Structural introns are easier

to detect and can therefore be efficiently skipped during execution. Conversely, the

variation in the form of semantic introns make them more difficult to detect (the

degree of difficulty depending on the instructions supported). Introns in themselves

are a function of several factors but one of the most prominent factors is the stochastic

nature of the variation operators [1]. Specifically, crossover and mutation operators

are applied stochastically – see Figure 2.1 – hence intron code may actually evolve to

‘protect’ the functional code such that the children are as fit as the parents. Introns

have a complex relationship with other factors such as gene epistasis that potentially

make credit assignment more difficult to resolve. However, without such epistasis it

is also the case that the task is linearly separable, thus would not be an appropriate

task to solve using evolutionary methods [39]. The way to treat the introns assumed

in this research (Section 3.2.1), tries to to keep balance between the effectiveness of

the code and the advantages that can be obtained as a result of introns presence in

the program.

2.2 On the role of Dynamic or Non-stationary Processes

Trading agents are required to operate in an environment that is described in terms

of a ‘data stream’ which is fundamentally non-stationary or dynamic [3]. Relative to

the classical approach as established for, say, the context of supervised learning, then

constructing models (e.g., as in classification or function approximation) from an a

priori identified training partition with post training evaluation on an independent

10

test partition is not feasible [8]. At the very least, the model identified relative to a

single training partition will only have a lifetime appropriate to a finite future dura-

tion after which changes to the underlying process creating the stream will render the

model unusable. This means that an ‘online’ approach needs adopting to construct-

ing a model. Adopting an online approach is relatively easy when a representation

takes the form of real-valued free parameters1. Thus, for example, in the case of

neural networks, the goal of the credit assignment process is to identify the values for

‘weights’ associated with a given architecture. In this case, offline learning algorithms

can be readily modified to the online context of streaming data. For example, the

least mean square algorithm associated with the gradient descent family of credit

assignment algorithms for MLP style neural networks either averages the error term

over all data (offline) or performs updates on an exemplar wise basis (online) [32].

Given that the data takes the form of a non-stationary stream the question then

arises regarding how much data should a model receive before it makes a decision.

In general offline approaches are stateless. Thus, decisions are made relative to each

exemplar and moreover, the decisions are independent of exemplar sequence e.g.,

the independent and identically distributed assumption (i.i.d.). Conversely, decisions

made at any point in a data stream are generally sensitive to the ordering of the

stream. This represents a requirement to have a stageful model. Again, several

generic schemes could be adopted. The simplest methodology to adopt is to assume

that the temporal properties of the stream can be captured by an appropriate form of

feature constructor. Examples might include Fourier or Wavelet basis functions [24],

finite impulse response (FIR) or Kalman filters [11]. From the machine learning per-

spective such approaches have the benefit of letting us continue to use the a stateless

model (to make the decision) and limiting the search to that of parameterizing the

assumed feature constructor. Conversely, instead of separating feature construction

from decision making the model could be responsible for both. Thus, adopting a neu-

ral network representation that included recurrent connectivity or assuming a linear

genetic program in which register values were not reset after each exemplar would

both result in a stateful model. The penalty for this is a much more deceptive process

of credit assignment. As established in the introduction, in the research reported by

1Free parameters are the components of a model that the machine learning algorithm adapts
through credit assignment.

11

this thesis we will adopt a stateless representation for the decision tree (DT) describ-

ing trading actions and coevolve the DT with a population of technical indicators

(feature constructors).

In the case of genetic programming, the monograph of Dempsey et al., [3] rec-

ognize five properties for the successful application of evolutionary computation to

dynamic environments: memory, diversity, multi-populations, problem decomposi-

tion, and plasticity. The relative role of each is summarized as follows, with addi-

tional comments being made as to the degree of significance provided to them by the

approach adopted by this thesis:

Memory: is associated with the desirability to provide some mechanism by which

previously useful solutions are archived. The underlying assumption in this is that

the process generating the stream is periodic in some way. In the research conducted

in this thesis we take the view that support for periodic properties is not particularly

important in the currency trading domain. Dempsey et al. [3] appear to also down

play the overall significance for supporting memory mechanisms.

Diversity: is associated with the exploration–exploitation tradeoff. Canonical

GP as summarized in Section 2.1 will converge as the number of generations increases.

Thus, at initialization maximum diversity exists, thereafter the fitter individuals will

receive a greater opportunity to reproduce, resulting in a gradual dominance of ex-

ploitation over exploration. This is to be expected in canonical GP as the data set

– defining the environment – is assumed to conform to that of offline learning. How-

ever, when streaming data is involved and the underlying process is non-stationary,

then the maintenance of diversity (exploration) becomes more important. At the

very least, what was previously considered ‘fit’ will only be dominant for some period

of time, after which it might be necessary to modify or depart from the previously

dominant individuals. Mechanisms adopted for diversity maintenance include:

1. A greater frequency of mutation – not particularly effective on account of the

number of non-functional children produced;

2. Fitness sharing (or speciation) – discounting fitness relative to how many other

individuals also perform well on the same task; and;

3. Age heuristics – an additional bias towards the promotion of solutions of a

12

particular age [9].

In the approach adopted by this thesis we will assume that population content

is completely reset with entirely new genotypic material when a retraining event is

encountered.

Multi-population: represents a more explicit form of speciation or diversity

maintenance. In keeping entirely independent populations there is direct support for

peripatric speciation e.g., Chapter 9, [26]. From a purely biological perspective this

results in the development of founder populations that follow an independent and

distinct path of evolution from an original source population, potentially resulting in

a new species. However, from the perspective of explicitly utilizing such a concept

for evolutionary computation it is difficult to make specific recommendations, even

with respect to the context of offline data sets.

Problem decomposition: potentially impacts the rate at which solutions can

be discovered and useful ‘building blocks’ promoted between different candidate so-

lutions. Herbert Simon expressed the case for problem decomposition and therefore

‘reuse’ through several parables of which that of the two watchmaker’s is the most

pertinent to online learning [34]. Specifically, Simon describes two watchmakers, one

who constructs watches using a modular approach of independent subassemblies and

one who constructs each watch independently. Naturally, the modular approach pro-

motes assembly even under very ‘noisy’ conditions whereas any interruption of the

second watchmaker results in the entire watchmaking process having to be reinitiated.

Under dynamic environments constructing models from modules may then result in

faster evolution overall. The approach adopted in the research of this thesis is to

assume a symbiotic approach to the coevolution of TI and DT. Thus, TI that are

useful in one DT are easily promoted between multiple DT with minimal epistasis

(deceptive gene-wise interaction). Previous research in symbiotic bid-based genetic

programming has illustrated the potential for symbiosis relative to the evolution of

monolithic code structures [20].

Plasticity: or ‘evolvability’ is associated with how changes to the underlying

representation (care of variation operators) are able to promote ‘useful’ variation

in the phenotype. Naturally, given the many-to-one relationship between genotype

and fitness (many individuals may have the same fitness) significant ambiguity can

13

exist. Thus, evolutionary computation is often associated with various properties

that potentially make credit assignment less than transparent e.g., neutral genetic

content and introns [1]. In this research the emphasis on modularity care of symbiosis

represents the principal approach for supporting the plasticity of the evolutionary

process. That said, we will also augment this with ideas from machine learning. In

particular we attempt to be as objective as possible about the conditions under which

training events are re-triggered and introduce validation data in a manner consistent

with the online streaming context.

2.3 Evolving trading agents

Genetic Algorithms in the automated trading systems are typically used to select a

subset of TIs which then are used to discover hidden regularities in the historical

rates [14], to optimize the parameters [6] of the selected TIs and to build a trading

rule (a decision tree) [29] that employs these TIs.

As described in the previous work [22], some previous research has been reported

with respect to the evolution of technical indicators (TI) alone e.g., [7]. One of the

goals of evolving TI independently is to provide parameterizations for basic statis-

tics such as moving averages, that are particularly appropriate for the data in ques-

tion [38]. More recently separate TI were evolved for buying and selling [12]. Several

authors have evolved trading rules or decision trees (DT) relative to a set of a priori

selected TI e.g., [4, 13]. One of the most well known instances of GP in this context

is ‘EDDIE’ [36]; the resulting IF–THEN rules are sampled by a human trader to

determine which to use. Most recently, systems have been proposed to first evolve

parameters for a fixed set of TI with the identification of DT e.g., [15]. To do so, a

representation is assumed in which all of the information for the TI and DT appear

in the same genome. We consider this problematic as both components need to be

correct for an individual to be successful. Instead we assume a recent framework

in which TI and DT are explicitly co-evolved in two independent populations [23].

Moreover, with respect to the facts that:

• TIs were designed to help a human trader to understand the markets behaviour

and not necessarily are optimal for the automated trading systems.

14

• Some very popular TIs are just a combination of the two or more other TIs (e.g

MACD is a combination of two EMAs and SMA)2.

We adopt the linear GP [1], [40] to build unique TIs rather than just optimize the

parameters of the existing TIs.

In general, authors have placed a lot of effort on designing fitness functions to

penalize losses as well as reward profit [3, 15]. This also has implications for the

potential robustness of the resulting trading agent as a whole. An alternative /

complementary approach is to make use of verification data to curtail a training cycle,

or early stopping [37]. Also of widespread utility is the use of some form of continuous

training, where this is in recognition of the non-stationary nature of the task. For

example, a ‘rolling window’ approach might be adopted [15] in which a sequence of

data (or window) is used for training (Nt) and the champion individual deployed as

the trading agent for the next δ data points. On reaching the end of the trading

period the training window of Nt is realigned with the end of trading and training

recommences. Questions potentially arise regarding the number of generations to

perform [3]. This is related to the degree of non-stationary (or appropriateness of

any model bias) associated with the transition between training and trading periods.

In this work we compare training re-triggered based on trading criteria versus the

typically assumed approach of continuous evolution.

Finally, we investigate the effectiveness of Stop Loss orders (hereafter S/L) which

are widely used by traders [2] but is not a norma in known researches, in the auto-

mated trading systems.

2http://ta.mql4.com/indicators/oscillators/macd

Chapter 3

Proposed Algorithm

3.1 The FXGP Algorithm Overview

As established in the first chapters FXGP produces a DT–TI combination, hereafter

trading agent, that is used for trading (Algorithm 2). A cycle of evolution is initially

completed against the first Nt records (lines 5. . . 7) and validated against the next Nv

records (lines 8. . . 19). The purpose of validation is to identify a single ‘champion’

TI–DT individual (with respect to current FXGP content) for performing trading.

Trading (lines 21. . . 24) then lasts until some failure criteria is satisfied (section 3.4)

at which point the Nt + Nv records leading up to the failure are used to evolve a

new trading rule, and the process repeats (Figure 3.1). The trading rule takes the

form of a decision tree (DT population) and corresponding set of co-evolved technical

indicators (TI population). Explicitly evolving the TI provides the opportunity to

capture properties pertinent to specific nodes of a decision tree defining the overall

trading rule, where the characterization of such temporal properties is known to be

significant for a wide range of time series tasks [38]. Four prices – Open, High, Low

and Close – are used as inputs to the TI population. Members of the DT population

define the trading rule, and it is only with respect to the DT individuals that fitness

is evaluated i.e., the TI are simultaneously co-evolved with the DT with fitness only

ever being defined or a symbiotic relationship [5]. FXGP parameters used in the

description are summarized by Table 3.1.

15

16

Algorithm 2 The core FXGP algorithm (Table 3.1 for parameters description).

Retrain refers to one of the retrain criterion (Section 3.4)

Input: The historical rates of EURUSD pair (1 hour resolution).

Output: Trading rule (DT with linked TIs).

1: t = StartFrom {define start date/time of trading}
2: repeat

3: best = NULL (no DT–TI agent)

4: while best == NULL do

5: initialize TI population

6: initialize DT population

7: evolve DT and TI populations over (Nt)

8: n = 0 {DT–TI agents count}
9: for i = 0 to tsize do

10: if (validate DTi over Nv) == TRUE then

11: n+ +

12: end if

13: end for

14: if n >= (tsize − tgap) then

15: for i = 0 to n do

16: find (DT–TI)i agent with the highest score

17: end for

18: best = i {best DT–TI agent for deployment}
19: end if

20: end while

21: while Retrain == False do

22: trade

23: t−−
24: end while

25: until t > 0

17

Retrain signal is detected

Trade

Train (Nt) Validate (Nv) Trade

Train (Nt) Validate (Nv)

Figure 3.1: The Train-Validate-Trade cycle.

DT Population TI Population

DT-TI Interaction
Symbiotic Coevolution

Figure 3.2: DT–TI Interaction.

18

Parameter Description

tsize Maximum number of nodes in the DT
psize Maximum size of the TI program
nregs Number of registers in the TI program
nma Number of records back in a price history to calculate MA or WMA
nshift Number of records back in a price history to select a price
slmin Minimum SL size in pips
slmax Maximum SL size in pips
s Spread size in pips

Parameters specific for Training procedure only (Section 3.2)

Nt The number of records in the training subset
ngnr Maximum number of generation to train
nflt Plateau size
tpsize DT population size
tpgap Number of DT to replace in each generation
r Trading signals ratio
pti Probability of the TI mutation
psl Probability of the SL mutation

Parameters specific for Validation procedure only (Section 3.3)

Nv The number of records in the validation subset
l DT score limit

Retrain criteria (Section 3.4)

dmin Minimum drawdown size in pips
dmax Maximum drawdown size in pips
nnt Maximum number of consecutive records in a price history without

of trading activity
nrow Maximum number of consecutive losses

Table 3.1: FXGP parameters

19

3.2 Training

3.2.1 Initialization

As per line 5, Algorithm 2, the TI population is randomly initialized. The size of the

TI population population is not fixed but the initial size is defined as (3.1).

tpsize × tsize
4

(3.1)

where tpsize and tsize as described in the Table 3.1.

Each TI has a header that defines the basic TI properties: reference counter, type,

scale, period, shift and TI program’s length (Table 3.2). Each of these properties will

be described further. All TI individuals assume a linear GP representation (e.g., [1])

with instruction set summarized by Table 3.3.

Header field Description
Reference counter Shows how many DT are using the TI
TI type 0 - Moving Average (MA), 1 - Weighted Moving Average

(WMA), 2 - Value
TI scale 0 - TI that crosses 0, 1 - TI that crosses price (Appendix A)
Period n Number n of hours in a price history to calculate MA or WMA
Shift m Price m hours back in a history
Length The length of the TI program

Table 3.2: TI properties

Function Definition
Addition R[x]← R[x] +R[y]
Subtraction R[x]← R[x]−R[y]
Multiplication R[x]← R[x]×R[y]

Square root R[x]←
√
R[y]

Division R[x]← R[x]÷R[y]
Division R[x]← 1÷R[x]
Division R[x]← R[x]÷ 2

Table 3.3: TI functions

TI programs assume a register level transfer language (Section 2.1) with nregs

registers (Table 3.3) where R[x] denotes the content of register x and R[y] denotes

either: register y content, a price or a price nshift hours back in (relative) time.

20

Register R[0] contains a TI value after executing a TI program. The program counter

corresponding to where R[0] appears as a target register for the last time is stored in

the header as the Length of the TI program. The program steps between the Length

and psize are considered introns and ignored1. The MA type of TI is calculated as

(3.2) and the WMA type of TI is calculated as (3.3), where Vi is a TI value.

MAi =

∑n
j=1 Vj

n
(3.2)

WMAi =

∑n
j=1

Vj

j+1∑n
k=1

1
k+1

(3.3)

The Reference counter is initialized with 0, the TI type, Period and Shift are

initialized with randomly selected non-negative values within a range specified by the

user. Thus, TI type is initialized with 0, 1 or 2. Period and Shift are initialized with

non-negative values less then nma or nshift respectively. The TI scale serves to detect

useless TI and is checked after the initialization. The TI initialization is repeated

until the TI scale is valid (Appendix A).

When the TI population is ready, the DT population is initialized. The DT popu-

lation size tprize is fixed and defined by the user. A DT header includes the following

information: DT score in pips, number of trades and a size of a S/L order (see Glos-

sary for S/L definition) in pips. The score and number of trades are used to determine

the fitness of a DT–TI agent and initialized with 0 whereas the S/L can be initialized

in two ways: if the probability of the S/L mutation psl is greater than 0, the S/L is

initialized with a randomly selected value between the minimum slmin and maximum

slmax (defined by user) S/L sizes (hereafter Floating S/L) or, if the probability of the

S/L mutation psl is 0, S/L is initialized with a slmax (hereafter Fixed S/L). A DT

consists of a variable number of nodes (> 1 and <= tsize). Each node consists of a

conditional statement with either single or dual antecedent tests of the form:

• if(Xi > Yi) then else

• if((Xi > Yi) and (Xi+m < Yi+m)) then else

1This is not meant to in any way reflect the true number of introns, which has empirically
been shown to account for 70% to 80% of instructions (e.g., [1]). It does however provide a simple
mechanism for ignoring irrelevant code.

21

where Xi and Yi can be 0, price or a TI. If Xi and/or Yi represent a TI, the Reference

counter of the linked TI(s) is incremented. The then and else statements reference

either: the next node or one of the trading actions: buy, sell or stay. Thus, a DT

population is randomly generated with respect to Xi and Yi scales2 and under the

following constraints:

• if Xi is 0, then Yi can be any TI which crosses 0 and can not be a price or a TI

which crosses the price, or;

• if Xi is price, then Yi can be also a price or a TI which crosses the price, and

can not be 0 or a TI which crosses 0.

In the case of a dual antecedent clause, Xi+m and Yi+m represent the value of Xi

or Yi respectively, albeit nshift samples back in (relative) time. FXGP can generate

additional TI during DT population initialization if the TI population does not have

a TI capable of satisfying the DT initialization constraints.

3.2.2 Fitness and Selection

The financial reward of a Forex trader is measured in pips which are then converted

into dollars based on the a user’s preferred scheme of money management [25]. Thus,

we define the DT fitness as a DT score in pips over the training records as a ‘pure’ mea-

sure that is not dependent upon the scheme assumed for pips-to-dollars conversion.

When TI and DT populations are initialized, FXGP simulates the trading activity

for each DT over the training records and stores the score and the number of trades

in the DT header. Moreover, FXGP calculates the number of actions of each type

(stay, buy or sell) and if a DT does not generate actions of all three types, its score

is discarded and the DT targeted for replacement. To prevent a DT from generating

too frequent buy or sell actions the trading signals ratio r is used (Table 3.1). If r is

less than (stay÷ (buy+ sell)), the DT score is multiplied by coefficient k, where k is

calculates as (3.4).

k =
stay

(buy + sell)× r
(3.4)

2Distinguishes between a TI associated with a zero crossing versus price (Table 3.2)

22

The subset of DT individuals with lowest scores is targeted for replacement and

the Reference counter of the linked TIs are decremented. Thus, a tpgap individuals of

the DT population is replaced per generation. All variation is asexual, thus following

parent selection, cloning and variation takes place where either the DT or linked TI

component of a clone can be varied. Following DT selection, any TI individual that,

is not linked to any DT (TI’s reference counter value is 0) is considered ineffective

and deleted (resulting in a variable size TI population).

3.2.3 Mutation

FXGP uses mutation to produce offspring. Only the S/L parameterization and one

DT node or one linked TI can be mutated in each cloned DT. FXGP randomly selects

a parent DT, clones it and then mutates the size of Floating S/L of the offspring with

probability psl. After that the target for mutation (TI or node) is selected based on

the probability of mutation pti (Table 3.1). A DT Mutation is performed by applying

one of the following operators:

• Generate a new conditional function;

• Generate a new shift parameter m;

• Generate new Xi and Yi;

• Interchange Xi and Yi within the same individual;

• Switch content of then and else clauses;

• Insert new then clause content.

• Insert new else clause content.

Likewise a mutated TI is first cloned to avoid interfering with other DT employing

the same TI. The following parameters and functions of a TI can be mutated:

• TI type;

• Period (n);

• Shift (m);

23

• Generate a new function;

• Delete a function;

• Insert a function.

where function insertion or deletion is performed with respect to the TI program size

limits psize.

Training stops when the specified number of generations ngnr was reached or

when the best score in the DT population plateaus for a nflt number of generations

(Table 3.1). Thereafter a validation cycle is initiated.

3.3 Validation

The validation process (Algorithm 2, lines 8. . . 19) is used to check the quality of the

DT–TI population and to select the best DT–TI agent for trading. To do so, FXGP

checks the score of every tree in a DT population and if the DT score is greater than

l×best score it tests the DT and if DT is active the tested DT–TI agents counter is

incremented (Algorithm 2, line 11). When all DT are evaluated, FXGP checks the

number of the tested DT and if it is greater than tprize − tgap then the DT with best

score on validation (and referenced TIs) are selected for trading, otherwise the TI

and DT populations are reinitialized and the entire training procedure is restarted

i.e., rather than invest more generations in a population which fails under validation

we choose to reinitialize and restart the training cycle.

3.4 Trading and Retraining criteria

During FX trading, the following three trading quality criteria are monitored and

used to identify when the current DT–TI agent should be replaced (Algorithm 2,

lines 21. . . 24):

• Drawdown (dmin and dmax). The drawdown value is different for each trainig

cycle and depends on the result of the previous cycle. If the result of the previous

cycle was positive (profit), then the dmax value is used, and dmin otherwise. The

first training-validation-trading cycle uses the dmax value.

24

• The number of consecutive losses (nrow).

• The number of consecutive hours without trading activity (nnt).

This approach makes FXGP more flexible and forces it to retrain the DT popula-

tion only when the market situation is deemed to differ from that of the last training

period. Specific values for the quality criteria are established by the user. When the

quality criteria are exceeded, FXGP stops trading, re-initializes the TI and DT pop-

ulations and restarts the training-and-validation cycle. Content of the training and

validation partitions is taken relative to the point ‘t ’ (Algorithm 2, line 23) at which

point the trading quality criteria interrupted trading. Once a new DT–TIs agent is

identified trading resumes at the point trading was interrupted.

Chapter 4

Evaluation

In this empirical study we assume the FXGP framework as described in Chapter 3

and we investigate the relative effectiveness of:

• Criteria based retraining (FXGP) versus the typically assumed continuous evo-

lution of trading agents [3] [15].

• Selection of the DT–TI trading agent for deployment based on the results of the

validation procedure (Section 3.3). This implies that the most recent data are

used for validation but not for the training, versus deploying the best DT–TI

trading agent (the agent with the highest score) just after the training (Sec-

tion 3.2).

• The use of S/L orders in automated trading and the relative effectiveness of the

Fixed versus Floating S/L orders (Section 3.2).

Continuous evolution is normally used in the area of GA–GP applicable to Forex

and stock markets [3] [15]. Thus, we assume the framework for continuos evolu-

tion (‘moving window’ approach as described in [3], or likewise ‘rolling window’ ap-

proach [15]). The DT–TI agents are evolved and the best DT–TI agent is selected for

deployment in the same way as for FXGP, but the trading period has a fixed length

δ as shown in Figure 4.1.

After the δ hours the trading is stopped1 and the Train-Validate cycle is restarted

and the DT and TI populations are either [22]:

• Utilized as if evolution progressed from the last generation. Any new content

assumes the bias established by the previous cycle of evolution. This scheme

reflects the intent of recent practice (e.g., [3], [15]) and hereafter will be referred

1In the case of an open trading order by the end of trading period, the trading continues until the
open order is closed. This potentially can lead to a some variation in the length of trading periods.

25

26

Train (Nt) Validate (Nv) Trade

Train (Nt) Validate (Nv) Trade

€

δ

€

δ

Figure 4.1: The Train-Validate-Trade cycle (trading period of a fixed length δ).

to as continuous evolution or ContEv. Such a scheme naturally reflects a bias to-

wards exploiting previously evolved policies. We also note that current practice

is not to employ a separate validation partition to choose a champion trading

agent for deployment. Indeed, under continuous evolution, benchmarking re-

vealed that it was not possible to employ the validation criteria from Section 3.3

to deploy a validation partition. Part of this might be due to a lack of diversity

in the population of trading agents, however, this remains a topic for future

research;

• Completely reinitialized before a new training–validation cycle begins. This

means that any previously evolved individuals are replaced with an entirely

new population as per the initial cycle of evolution. This represents a natural

alternate case that emphasizes exploration. Hereafter this will be referred to as

stepwise evolution or StepEv. Unlike continuous evolution, benchmarking did

not reveal any problems with the inclusion of a validation partition for stepwise

evolution.

4.1 Source Data

The previous work [23] shows that FXGP demonstrates profitable trades at least for

the three major currency pairs (EURUSD, USDCHF and EURCHF) over a 3 year

trading period. In this work we limit ourselves to the major currency pair of EURUSD

(27 experiments of 100 runs each). The principle motivation is to investigate the

significance of the mechanism used to interface FXGP to the market. As established

in the introduction, this issue is generally overlooked by current research in trading

27

agents. The historical rates of EURUSD pair (1 hour resolution) were downloaded

from the FXHISTORICALDATA.COM Forex Historical Data repository2. The one

hour intervals is selected to reduce the impact of “market noise” (see Glossary for

definition) [18]. The dataset includes 2009-2012 historical rates (20974 records) and

consists of following fields: Pair, Date, Time, bid price Open (Open), bid price Low

(Low), bid price High (High) and bid price Close (Close). The trading simulations

begin on January 2, 2010, 12am and stop on November 30, 2012, 11pm.

4.2 Experimental setup

Performance was evaluated for the following cases:

1. DT–TI trading agents as evolved from a single initial cycle of evolution, here-

after Static. This establishes the baseline against which the degree to which

the underlying process is considered to be non-stationary. Thus, if a trading

agent was profitable for three years following an initial training period of three

months, then the underlying process must be stationary. Under such a case any

form of retraining would be unnecessary.

2. Continuous retraining [3, 15] of DT–TI agents with fixed retrain intervals (120,

500 and 1500 hours), hereafter ContEv 120, ContEv 500, ContEv 1500 respec-

tively. The use of three different retrain intervals enables us to vary the degree

of overlap with the (fixed) training period Nt. As noted in [3], depending on the

amount of non-stationary behaviour in the data, more or less frequent updates

to the trading agents might be necessary.

3. Retraining of DT–TI agents with fixed retrain intervals (120, 500 and 1500

hours) and DT–TI populations re-initialization in the beginning of each train

cycle, hereafter StepEv 120, StepEv 500, StepEv 1500 respectively. Relative to

case 2 this means that rather than carry over the current population content

between retraining intervals, the entire population is first reinitialized. Such a

scheme is emphasizing exploration over exploitation.

2http://www.fxhistoricaldata.com/EURUSD/

28

4. FXGP (retraining DT-TI trading agents interactively as established by the trad-

ing quality criterion). As emphasized in Section 3, FXGP uses retraining criteria

to trigger retraining events as opposed to conducting retraining at a fixed rate

regardless of the quality of trades. Moreover, when retraining is triggered, the

TI–DT populations are entirely reinitialized, as per case 3.

100 runs were performed in each case. Each run simulates trading activity for the

selected currency pair over the trading period from January 2, 2010 to November 30,

2012. The currency pair is popular during all trading sessions i.e., a trading day typ-

ically consists of 24 samples. The trading conditions were assumed as following [10]:

• Minimum price fluctuation: 0.00001.

• Leverage: 1:100.

• Average spread: 0.2.

The parameterization is described in the Table 4.1. The values of the parameters

were determined3 via experiments performed in previous works [23] and [22]. All

runs were repeated for psl 0 (fixed S/L 100 pips) and 0.2 (S/L is evolved during the

training) and for Nv 0 (no validation) and 500 (with validation) (Table 4.2) with the

exception of ContEv case which can be run with Nv 0. This limitation arises from

the proposed validation algorithm (Section 3.3) that can result in no DT–TI agent

being selected for deployment, thus, requiring the re-initialization of the DT and TI

populations.

After that, four winning solutions (one from each case) were evaluated without S/L

orders Figure B.11 (marked with ‡ in Table 4.2). And finally, the median scores were

converted into final account balance in USD assuming an initial balance of 100,000

USD, leverage 1:100 and that only 2000 USD (two percent of the initial balance)

may be reinvested at the next round of trading. Thus, the pip value is defined as4

2000 × 100 × 0.0001 and is equal to 20 USD. The investment of 100000 USD in

RBC Canadian Equity Income (RBF762) mutual funds over the same period of time

would result in 116732 USD (5.45% rate of return) of ending portfolio value5. The

3No claims regarding optimality of the parameters are made.
4http://fxtrade.oanda.ca/learn/intro-to-currency-trading/conventions/pips
5https://services.rbcgam.com/portfolio-tools/public/investment-performance/

29

Parameter Value Parameter Value

tsize 6 psize 6
nregs 2 nma 98
nshift 8 slmin 5
slmax 100 s 0.2

Training procedure (Section 3.2)

Nt 1000 pti 0.5
ngnr 1000 nflt 200
tprize 100 tpgap 25
r 10 psl 0 or 0.2

Validation procedure (Section 3.3)

Nv 0 or 500 l 0.95

Retrain criteria (Section 3.4)

nrow 3 nnt 72
dmax 400 dmin 200

Table 4.1: FXGP parameterization. dmin, dmax, nnt and nrow are ignored in Static,
ContEv and StepEv cases

mutual fund was randomly selected from “2012 Mutual Fund Recommended List” [35]

and initial deposit of $100000 was evenly distributed among five fund names: RBC

Canadian Short-Term Income Fund (Series ADV), RBC Bond Fund (Series ADV),

RBC Advisor Canadian Bond Fund (Series ADV), RBC Global Bond Fund (Series

ADV) and RBC Corporate Bond Fund (Series ADV).

4.3 Results

The results of all experiments are summarized in the Table 4.2. The results are sorted

by median scores in pips over 100 runs in each case.

The following observations can be made based on the obtained results:

• There is a good correlation between the number of profitable runs and median

score.

• FXGP, which dynamically changes retrain intervals, demonstrates the highest

efficiency among the all tested cases with the biggest number of profitable runs

(82%) and the highest median score (1523 pips)6. Assuming a typical (median)

6Nv 500, psl 0.2

30

Score, pips
Algorithm Nv psl

Prof.
runs,
%

min 1st median 3rd max USD

FXGP† 500 0.2 82 -3088 383 1523 2640 5299 130450
FXGP 500 0 79 -2924 296 1447 2581 5086 128940

StepEv 500† 500 0 73 -3879 -235 1118 1947 5232 122366
StepEv 500 500 0.2 73 -3201 -34 923 2168 4902 119917
StepEv 120 500 0.2 73 -2723 -89 870 1863 4403 118455

FXGP‡ 500 n/a 66 -4333 -670 779 2040 5141 115572
FXGP 0 0.2 60 -4378 -746 671 1792 4683 113428

StepEv 120 0 0.2 63 -3659 -718 580 1663 3960 111607
StepEv‡ 500 500 n/a 60 -4233 -881 567 1632 5153 111343
StepEv 120 500 0 66 -3438 -433 550 1630 5796 111009

ContEv 1500† 0 0.2 61 -3921 -1021 535 1852 4116 110691
StepEv 1500 0 0.2 58 -3167 -853 366 1460 3624 107311
StepEv 1500 0 0 55 -4018 -1373 303 1482 3716 106053
StepEv 500 0 0 53 -4558 -1151 169 1275 4454 103380
ContEv 500 0 0.2 53 -3206 -740 122 1137 3554 102449

FXGP 0 0 53 -3842 -1030 67 1123 4764 101333
StepEv 500 0 0.2 52 -3856 -939 59 1417 4695 101184
StepEv 1500 500 0 50 -4206 -1206 55 1019 4050 101107
ContEv 120 0 0.2 52 -4136 -1100 15 1373 3908 100306
StepEv 120 0 0 49 -3052 -1195 -48 1014 4043 99036
StepEv 1500 500 0.2 45 -4491 -1202 -69 1130 4087 98621

Static† 0 0.2 38 -4961 -1358 -421 468 2602 91575
ContEv‡ 1500 0 n/a 40 -5990 -1625 -501 983 4211 89985

Static 0 0 37 -3776 -1532 -668 781 3631 86634
Static 500 0.2 23 -5734 -2031 -805 -144 3167 83909
Static 500 0 23 -5911 -2347 -1162 -110 3844 76766
Static‡ 500 n/a 16 -6586 -2876 -1680 -257 2673 66379

Table 4.2: Results sorted by median score (over 100 runs). Where: Nv and psl as
described in the Table 3.1, Prof. runs — percent of profitable runs, min — minimum
score, 1st — first quartile, 3rd — third quartile, max — maximum score, USD —
final account balance in USD recalculated based on median score in pips.

31

score, FXGP would outperform the investment in the mutual fund by 82%.

• The use of the validation partition significantly improves the results of the two

best cases: FXGP (number of profitable runs is better by 37% and median score

is better by 127%) and StepEv 500 (number of profitable runs is better by 40%

and median score is better by 895%). At the same time the use of validation

partition decreases the results in the Static case: the number of profitable runs

by 39% and the median score by 91%.

• The use of S/L orders improves the performance in all four cases. The Fixed S/L

orders (100 pips) increase the number of profitable trades of FXGP by 20% and

the median score by 86%. The use of Floating S/L orders additionally improves

the FXGP results: the number of profitable runs by 4% and the median score

by 5%.

• All twenty seven configurations can be profitable and all twenty seven have a

chance to outperform the investment in a mutual fund (see ‘max’ column of

Table 4.2) but only five configurations would outperform the investment in a

mutual fund in a typical case (see ‘median’ column of Table 4.2).

• FXGP with validation (Nv 500) is the only algorithm with non-negative 1st,

median and 3rd quartiles.

• The chance of loss that exists in all cases (the probability of loss is vary from

0.18 to 0.84 for different configurations) and the fact that it is not a priori

possible to determine which run will be a priori profitable, shows that it is very

important to use multiple runs to evaluate performance.

• The worst performance in the Static case (trains DT–TI populations only once

and uses it over the long trading period) among all the tested cases and dis-

tribution of retrain intervals of the winning FXGP configuration (Figure 4.3)

illustrates the non-stationary nature of trading and confirms that use of a single

DT–TI combination is very likely to result in loss over the long trading period.

Figure 4.2 shows the pips scores distribution (over 100 runs) for the four best

configurations (marked by † in Table 4.2) representing each case. Specifically, the

32

100 runs associated with each of the best performing parameterizations for FXGP,

StepEv, ContEv and Static are expressed as a combined violin–box plot. The violin

establishes the nature of the distribution whereas the box plot establishes the 1st,

2nd (median) and 3rd quartile (whiskers denote the last data point within a multiple

of the nearest quartile). It is apparent that all distributions are essentially unimodal

conforming to a Gaussian distribution, with the ContEv case returning a much wider

variance.

●

●

●

FXGP StepEv 500 ContEv 1500 Static

−6000

−4000

−2000

0

2000

4000

Pips

Figure 4.2: FXGP versus StepEv 500 versus ContEv 1500 versus Static (marked by
† in Table 4.2).

A Student’s T-test (Table 4.3) confirms the independence of the distributions.

FXGP vs. StepEv FXGP vs. ContEv FXGP vs. Static
0.0332 6.112× 10−5 4.448× 10−13

Table 4.3: p-values for pairwise Student T-test of FXGP versus StepEv, ContEv and
Static (marked by † in Table 4.2).

33

Figures 4.3, 4.4 and 4.5 show the distribution of retrain intervals, number of

retrains and S/L orders size (respectively) of FXGP with validation and floating S/L

orders size, hereafter “the winning solution”. The box plots show the spread of the

1st, 2nd (median) and the 3rd quartiles that demonstrates adaptation of FXGP to

the market changes.

Relative to the distribution of retraining intervals (Figure 4.3), it is apparent that

on the one hand the re-triggering is very consistent (subplot (a)), but also that a

variation of between 300 to 100 hours appears (subplot (b)). This is equivalent to a

spread of between 4 days to 12.5 days. Thus, there is significant degree of application

context evident in the re-triggering event.

Figure 4.4 provides another perspective on the impact of the capacity of FXGP to

initiate re-triggering by plotting the total number of retraining events for each of the

100 runs. Again the quartile distribution is associated with a very consistent. Given

that the deployment covers a 3 year period then it follows that there are typically

25 retraining events per year. Moreover, given that retraining is completed in 30

seconds on an iMac desktop7, then from the perspective of the 1 hour ‘reporting

rate’ associated with the data stream, it may also be claimed that FXGP operates in

real-time.

Figure 4.5 summarizes to what degree the S/L orders are customized. Optimiza-

tion is clearly apparent, with a spread of approximately 50 to 85 pips in the 1st to

3rd quartiles, however, the distribution itself is also clearly unimodal.

Finally, Figure 4.6 and Figure 4.7 show the account balance (pips and USD re-

spectively) in case of the best, typical (median) and worse runs of the FXGP pa-

rameterization from Figure 4.2. Note that the 1st to 3rd quartile distributions for

this parameterization of FXGP were all profitable (figures illustrate best, median and

worst).

7Intel Core i7, 2.8 GHz, 16 GB RAM 1333MHz DDR3, OS X 10.7.5

34

●

●
●
●

●

●

●

●

●●●
●

●

●

●

●
●●
●

●

●●

●

●●

●
●●●

●

●●
●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●●
●
●●
●
●●●

●

●
●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●●

●

●●

●●●

●

●●●

●

●

●

●

●●●

●
●
●

●
●

●●
●

●

●

●

●

●●

●

●

●●●
●

●

●

●
●

●●●

●

●

●
●

●
●

●

●

●

●
●●
●●●
●

●●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●
●

●
●

●●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●●

●●●

●

●●
●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●●●
●
●
●

●

●

●
●

●
●

●

●

●

●

●●
●●

●
●

●●●
●
●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●
●●
●
●

●

●

●●

●

●

●

●

●
●●
●●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●●
●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●●●
●●
●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●
●
●
●

●●

0

500

1000

1500

2000

Hours

(a) 0. . . 3000 hours

0

100

200

300

Hours

(b) 0. . . 500 hours

Figure 4.3: FXGP retrain intervals (Nv 500, psl 0.2).

35

●

50

60

70

80

90

Retrains

Figure 4.4: FXGP retrains over 100 runs (Nv 0, psl 0.2).

0

20

40

60

80

Pips

Figure 4.5: FXGP S/L orders in pips (Nv 500, psl 0.2).

36

−4000

−2000

0

2000

4000

Pips

Jan. 2, 2010 Jan. 2, 2011 Jan. 2, 2012 Nov. 30, 2012

Best
Typical
Worse

Figure 4.6: FXGP trading profiles (pips) of the best, typical (median) and the worse
runs (Nv 500, psl 0.2).

0

100000

200000

USD

Jan. 2, 2010 Jan. 2, 2011 Jan. 2, 2012 Nov. 30, 2012

Best
Typical
Worse

Figure 4.7: FXGP trading profiles (USD) of the best, typical (median) and the worse
runs (Nv 500, psl 0.2).

37

The results distributions of all tested configurations over 100 runs are shown in

Appendix B.

Chapter 5

Conclusion and Future Work

This research was performed to develop an effective algorithm for automated contin-

uous FX trading and to assess the value of the following factors:

• Testing the quality of the DT–TI population and selecting the best trading

agent using independent validation data partition.

• Reinitialization and retraining of the DT–TI population to generate a new trad-

ing agent.

• Use of a set of criteria to evaluate the trading performance of the trading agent

and define the moment to re-trigger the evolution of a new trading agent during

trading.

• Support the use of S/L orders as a part of trading rule and compare the Fixed

and Floating S/L orders.

The use of criteria specifically designed to detect the onset of poor trading be-

haviour, and therefore trigger the identification of a new trading agent, was demon-

strated to be significantly more effective than the use of retraining intervals (with

or without continuous evolution) and appears to be the most important factor to

increase the results. In addition, the worst performance of the Static case confirms

the non-stationary nature of the task.

Reinitialization of the DT–TI population before retraining improves the perfor-

mance compared to continuous evolution [3, 15]. This illustrates the importance of

maintaining the diversity of the DT–TI population. This result runs against current

practice in which continuous evolution of a population initialized once is the norm.

We are careful to note that changing the type of trading, say to that of a stock mar-

ket, might result in a different conclusion. However, current practice does not appear

to question the need to consider alternatives to continuous evolution.

38

39

The use of the validation partition to test the DT–TI population quality and

to select the best trading agent (if the population has passed the test) is the second

important way to get better results i.e., exploration appears to play a more significant

role than exploitation.

The S/L orders also significantly improve the results by reducing the size of losses.

The use of Floating S/L is not so important, however it improves the final scores too.

Earlier research has already established that FXGP is capable of discovering prof-

itable strategies with different currency pairs [21]. Future research could revisit the

degree of preference for continuous evolution versus criteria based retraining under

markets with potentially very different properties, e.g., stock markets or currency

markets with different time scales. The use of ‘teams’ to group independently trained

trading agents, the use of separate DT-TI populations to open and close trades and

extension of the ability of FXGP to build more types of TI (e.g. TIs similar to EMA

or Parabolic SAR) might be considered too.

Appendix A

TI types

Figure A.1: A trading terminal screenshot with TI of two types. The continuous red
line demonstrates the example of a type 1 TI (crosses the price — grey candles), and
the continuous blue line that demonstrates an example of a type 0 TI (has positive
and negative values - crosses 0)

40

Appendix B

Scores distributions

Fixed 120 Fixed 500 Fixed 1500

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.1: StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 0, psl 0.2).

41

42

Fixed 120 Fixed 500 Fixed 1500

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.2: StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 0, psl 0).

●

Static FXGP

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.3: Static versus FXGP (Nv 0, psl 0.2).

43

●

Static FXGP

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.4: Static versus FXGP (Nv 0, psl 0).

Fixed 120 Fixed 500 Fixed 1500

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.5: StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 500, psl 0.2).

44

●

●

Fixed 120 Fixed 500 Fixed 1500

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.6: StepEv 120 versus StepEv 500 versus StepEv 1500 (Nv 500, psl 0).

●

●

●

●

●

Static FXGP

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.7: Static versus FXGP (Nv 500, psl 0.2).

45

●
●

●

Static FXGP

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.8: Static versus FXGP (Nv 500, psl 0).

Static FXGP

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.9: Static versus FXGP (Nv 500, psl n/a).

46

Fixed 120 Fixed 500 Fixed 1500

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.10: ContEv 120 versus ContEv 500 versus ContEv 1500 (Nv 0, psl 0.2).

●

FXGP StepEv 500 ContEv 1500 Static

−6000

−4000

−2000

0

2000

4000

Pips

Figure B.11: FXGP versus StepEv 500 versus ContEv 1500 versus Static without S/L
orders (marked by ‡ in Table 4.2.)

Bibliography

[1] M. Brameier and W. Banzhaf. Linear Genetic Programming. Springer, 2007.

[2] G. Cheng. 7 Winning Strategies for Trading Forex: Real and Actionable Tech-
niques for Profiting from the Currency Markets. Harriman House Ltd, 2007.

[3] I. Dempsey, M. O’Neill, and Brabazon A. Foundations in Grammatical Evolution
for Dynamic Environments, volume 194 of Studies in Computational Intelligence.
Springer, 2009.

[4] M.H. Dempster, T.W. Payne, Y. Romahi, and G.P. Thompson. Computational
learning techniques for intraday FX trading using popular technical indicators.
IEEE transactions on neural networks / a publication of the IEEE Neural Net-
works Council, 12(4):744–54, January 2001.

[5] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbi-
otic coevolutionary genetic programming. Genetic Programming and Evolvable
Machines, 13(1):71–101, 2012.

[6] C. Dunis, A. Harris, S. Leong, and P. Nacaskul. Optimizing intraday trading
models with genetic algorithms. Neural Network World, (1992):1–22, 1999.

[7] P Fernández-Blanco. Technical market indicators optimization using evolution-
ary algorithms. Genetic and Evolutionary Computation Conference - GECCO,
pages 1851–1857, 2008.

[8] J Gama, R Sebastião, and PP Rodrigues. On evaluating stream learning algo-
rithms. Machine Learning, 2012.

[9] A Ghosh, S Tsutsui, and H Tanaka. Function optimization in nonstationary
environment using steady state genetic algorithms with aging of individuals.
International Conference on Evolutionary Computation, 1998.

[10] FxPro Group, accessed Sept, 2012. http://www.fxpro.com/trading/cfd/ecn/
fx.

[11] S Haykin. Adaptive filter theory (ise). 2003.

[12] A. Hirabayashi, C. Aranha, and H. Iba. Optimization of the trading rule in for-
eign exchange using genetic algorithm. Proceedings of the 11th Annual conference
on Genetic and evolutionary computation - GECCO ’09, page 1529, 2009.

[13] A. Hryshko and T. Downs. An implementation of genetic algorithms as a basis
for a trading system on the foreign exchange market. In IEEE Congress on
Evolutionary Computation, pages 1695–1701, 2003.

47

48

[14] A. Hryshko and T. Downs. System for foreign exchange trading using genetic
algorithms and reinforcement learning. International Journal of Systems Science,
35(13-14):763–774, October 2004.

[15] H. Iba and C. C. Aranha. Practical applications of evolutionary computation
to financial engineering, volume 11 of Adaptation, Learning, and Optimization.
Springer, 2012.

[16] ICM Trade Capital Markets Ltd. Guide to online forex trading. 19 pages.

[17] Investopedia, accessed Sept, 2012. http://www.investopedia.com/terms/t/

two-percent-rule.asp#axzz2710QU8jR.

[18] Investopedia, accessed Sept, 2012. http://www.investopedia.com/terms/n/

noise.asp#axzz27d0d2rid.

[19] John R Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection v. 1 (Complex Adaptive Systems). MIT Press, 1993.

[20] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity
under GP. ACM Genetic and Evolutionary Computation Conference, 2010.

[21] K. Lien. Day trading and swing trading the currency market : technical and
fundamental strategies to profit from market moves. John Wiley and Sons, Inc.,
2008.

[22] A. Loginov and M. I. Heywood. On the impact of streaming interface heuris-
tics on GP trading agents: An FX benchmarking study. In ACM Genetic and
Evolutionary Computation Conference, under review, 2013.

[23] A. Loginov and M. I. Heywood. On the utility of trading criteria based retraining
in forex markets. In Evo Applications, 2013.

[24] S Mallat. A wavelet tour of signal processing. Academic Press, 1999.

[25] Jared F. Martinez. The 10 Essentials of Forex Trading: The Rules for Turning
Patterns into profit.

[26] E Mayr. What evolution is. Basic Books, 2002.

[27] Melanie Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive
Systems). MIT Press, 1998.

[28] I. V. Morozov and R. R. Fatkhullin. Forex: from simple to complex, 2004.
Teletrade Ltd.

[29] P.B. Myszkowski and A. Bicz. Evolutionary algorithm in Forex trade strategy
generation. International Multiconference on Computer Science and Information
Technology - IMCSIT, pages 81–88, 2010.

49

[30] A. Passamonte. Six facts that give forex traders an edge. Forex Jour-
nal, 2011. http://www.forexjournal.com/fx-education/forex-trading/

12125-six-facts-that-give-forex-traders-an-edge.html.

[31] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide
to Genetic Programming. Lulu, 2008.

[32] D Saad. On-line learning in neural networks. Cambridge University Press, 2009.

[33] Bank For International Settlement. Triennial central bank survey of foreign
exchange and OTC derivatives market activity - preliminary global results, April
2010. http://www.bis.org/press/p100901.htm.

[34] HA Simon. The sciences of the artificial. The MIT Press, 2 edition, 1989.

[35] The Spiess McGlade Team. 2012 mutual fund recommended list, 2012. http:

//www.managedmoneyreporter.com.

[36] E.P.K. Tsang and J. Li. Eddie for financial forecasting. In: Chen, S.H. (ed.)
Genetic Algorithms and Genetic Programming in Computational Finance, pp.
161174. Kluwer Academic Publishers, pages 161–174, 2002.

[37] C. Tuite, A. Agapitos, M. O’Neill, and A. Brabazon. A preliminary investigation
of overfitting in evolutionary driven model induction. In EvoApplications, volume
6625 of LNCS, pages 120–130, 2011.

[38] N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series fore-
casting for dynamic environments: The dyfor genetic program model. IEEE
Transactions on Evolutionary Computation, 11(4):433–452, 2007.

[39] L. D. Whitley. Fundamental Principles of Deception in Genetic Search. Foun-
dations of genetic algorithms, 1(1980):221–241, 1991.

[40] Garnett Wilson and Wolfgang Banzhaf. Interday foreign exchange trading using
linear genetic programming. GECCO 10 Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages 1139–1146, 2010.

