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Abstra
tGeneti
 programming o�ers freedom in the de�nition of the 
ost fun
tion that isunparalleled in the realm of supervised learning algorithms. However, this freedomgoes largely unexploited in previous work. Here, we revisit the design of �tnessfun
tions for geneti
 programming by expli
itly 
onsidering the 
ontribution of thewrapper and 
ost fun
tion.Within the 
ontext of supervised learning, as applied to 
lassi�
ation problems,a 
lustering methodology is introdu
ed using 
ost fun
tions whi
h en
ourage max-imisation of separation between in and out of 
lass exemplars. Through a series ofempiri
al investigations of the nature of these fun
tions, we demonstrate that 
lassi-�er performan
e is mu
h more dependable than previously the 
ase under the geneti
programming paradigm. In addition, we also observe solutions with lower 
omplexitythan typi
ally returned by the 
lassi
ally employed hits (or even sum square error)based 
ost fun
tions.

xi



Chapter 1Introdu
tionOne of the purported advantages of Geneti
 Programming (GP) relative to othersupervised learning algorithms is that there is mu
h more freedom in how the �tness(
ost) fun
tion is expressed.A 
ost fun
tion, as in neural networks, typi
ally measures the distan
e betweenthe a
tual output of a solution and the desired output of a solution, indi
ating thesuitability of that solution for solving a parti
ular problem [7℄. In GP, the 
ostfun
tion is paired with a wrapper fun
tion whi
h 
onstrains the value of the 
ostfun
tion within a desired interval. Be
ause the wrapper a
ts as an interfa
e to the
ost fun
tion, mediating between the ranking subsystem in GP and the feedba
k ofthe 
ost fun
tion, GP permits additional freedom in the de�nition of the 
ost fun
tion.For example, neural networks are typi
ally required to have a 
ost fun
tion thatis smooth and therefore di�erentiable [7℄ whereas no su
h requirement exists for GP[10℄. To date, however, GP �tness fun
tions do not ne
essarily build on this freedomin a manner designed to en
ourage the identi�
ation of robust solutions [12℄. In thiswork the design of �tness fun
tions for 
lassi�
ation problems is revisited by expli
-itly 
onsidering the 
ontributions made by wrapper and 
ost fun
tion. Spe
i�
ally,the GP wrapper is used to transform the 'raw' GP output, a value limited only bythe numeri
al range of the 
omputing platform, to an interval appropriate for distin-guishing 
lass. Here binary 
lassi�
ation problems are 
onsidered, thus typi
al rangeswould be [0, 1] or [−1, 1]. Common pra
ti
e has been to utilize a wrapper based on abinary swit
hing fun
tion, as in Figure 1.1 (a).1
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1 x > 0
(1.1)The ensuing �tness (
ost) fun
tion then merely 
ounts the number of mis
lassi�edtraining exemplars. The hypothesis of this work is that su
h an approa
h to design-ing a wrapper-
ost fun
tion 
ombination results in sub-optimal 
lassi�ers with poorrobustness properties. Spe
i�
ally, the swit
hing type wrapper hides useful informa-tion: it does not expli
itly en
ourage the raw GP output values to be distributed awayfrom the swit
hing point of the wrapper as in Figure 1.1 (a). In parti
ular, as long asthe GP output points for ea
h 
lass fall on the 
orre
t side of the swit
hing fun
tiontransition, there will be zero error, irrespe
tive of their distan
e from the wrapper
lass transition. Conversely, a wrapper with a �nite transition region between the two
lass labels would provide the basis for a more informative 
ost fun
tion, thereforequantifying the degree of any error or the degree of separation 
urrently a
hievedbetween two 
lasses, as in Figure 1.1 (b). In this 
ase, points on the GP output axisat the transition region of the wrapper fun
tion will result in a nonzero error. Er-ror minimisation now 
orresponds to both mapping points to the 
orre
t side of thewrapper transition point and maximising the distan
e from the transition point. We
onsider su
h a solution as more robust as the greater separation between two 
lasseson the GP output axis is less likely to result in previously unseen exemplars beingmapped to the wrong side of the wrapper transition1 (a mis
lassi�
ation). Moreover,the new wrapper also provides the basis for establishing 
ertainty in the 
lassi�
ation,as opposed to merely presenting the result as a binary in 
lass or out of 
lass answer.In this work, we propose taking this 
on
ept further by 
on
entrating on expli
itlymaximising the separation between in and out of 
lass exemplars by expressing the1Training data is impli
itly assumed to be representative of the wider (unseen) test data, as perany ma
hine learning 
lassi�er.
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(a) Wrapper with swit
hingfun
tion (b) Wrapper fun
tion with�nite transition regionFigure 1.1: a) a swit
hing type wrapper whi
h obs
ures error information; b) an errorfun
tion with a smooth transition between 
lass labelsproblem in terms of the original GP output values, that is, the horizontal axis inFigure 1.1. We identify the 
luster means for ea
h 
lass and measure the error by�nding the separation between 
luster means. We then use a nearest neighbourstrategy to determine the 
lass membership of previously unseen data. We intendthis to en
ourage the development of a robust separation between 
lasses, based onthe training data. We also employ a lo
al wrapper for predi
ting in or out of 
lassmembership, pla
ing in
reased emphasis not only on the 
lass separation but alsoon predi
table 
lass membership behaviour, as de�ned in terms of varian
e from themean. In both 
ases, an in
reased emphasis on a 
lear separation between 
lustersmay o�er an improvement in post-training GP performan
e.This thesis is organised into several 
hapters. Chapter 2 summarises previous workin geneti
 programming related to our hypothesis. Chapter 3 des
ribes our methodol-ogy and details of our linear geneti
 programming framework and evaluation methods.Chapter 4 summarises our experimental design and explains our observations. Chap-ter 5 o�ers our 
on
lusions and suggests future avenues of exploration in this area ofresear
h.



Chapter 2Previous WorkFor 
lassi�
ation and regression problems, previous studies in evolutionary 
ompu-tation have introdu
ed a variety of te
hniques for expressing error in the geneti
programming evaluation phase. Here we des
ribe the relevant methodologies whi
hled to and informed our exploration of 
lustering methodologies for geneti
 program-ming 
lassi�ers. In the following, raw GP output denotes the value returned by theGP model before appli
ation of the wrapper fun
tion, that is, a value found on thehorizontal axis as opposed to the verti
al axis of Figure 1.1.
2.1 Evolutionary ComputationEvolutionary 
omputation is a family of 
omputational sear
h methods inspired bythe in
remental and adaptive a
tion of the pro
ess of biologi
al evolution [5℄. Bio-logi
al evolution, as it is 
ommonly understood, is an emergent pro
ess o

urring inpopulations 
omposed of individuals engaging in mutual 
ompetition for resour
es,whose physi
al 
hara
teristi
s are determined by an inherited s
heme passed on duringreprodu
tion. Observing the �multitude of forms�1 produ
ed by the systemati
 e�e
tof biologi
al evolutionary operators, there 
an be derived a nominal motivation forthe evolution of 
omputational methods, using biologi
al evolution for metaphori
alinspiration [3, 10℄.1�On separate 
ontinents, and on di�erent parts of the same 
ontinent when divided by barriersof any kind, and on outlying islands, what a multitude of forms exist [...℄�, Charles Darwin in [3℄.4



52.1.1 Te
hniques in Evolutionary ComputationWithin the �eld of evolutionary 
omputation, geneti
 algorithms and geneti
 pro-gramming embody the notions of using evolutionary methods to produ
e both nu-meri
al solutions to problems (optimisation) and produ
e programmati
 solutions toproblems (modelling), respe
tively.Geneti
 algorithms and geneti
 programming address fundamental ma
hine learn-ing design problems by taking advantage of the in
remental improvement o�ered byan evolutionary approa
h.In the 
onstru
tion of a ma
hine learning algorithm, we are fa
ed with a varietyof design 
hoi
es a�e
ting the algorithm's appli
ability and performan
e in assortedoperational environments. A learner must be able to determine how suitable a 
hosenstrategy is for rea
hing its goal. This implies that a target fun
tion must be judi
iously
hosen based on prior knowledge of the problem environment to provide the learnerwith adequate feedba
k about its progress. A learning ma
hine must also use anappropriate representation for the problem and the environment in whi
h solutionswill be lo
ated. Finally, a learner whi
h uses a number of steps in su

ession to solvea problem must be able to dis
ern whi
h steps proved valuable in solving the problemso that positive or negative 
redit may be assigned to those steps [17℄.Evolutionary 
omputation addresses the 
redit assignment problem through thea
tion of evolutionary modi�
ation operators. When mutation or 
rossover o

ur fora given individual or pair of individuals, any 
hange in �tness 
an be as
ribed tothe 
hange 
aused by the last mutation or 
rossover in the individual's 
omposition.Thus, every 
hange in an individual that is the dire
t result of evolutionary operationis evaluated and 
onsequently s
ored in the next generation or the next evaluation.Credit is assigned automati
ally.Representation and goal measurement are typi
ally handled through a priori or



6expert knowledge. Even in these 
ases, some adjustments may be left to the evolu-tionary pro
ess where possible, resulting in a self-tuning me
hanism.2.1.1.1 Geneti
 AlgorithmsIn the 
ase of geneti
 algorithms, evolutionary operators operate on linear sequen
esof genes, or strings. The representation for su
h a string takes one of three forms:bit, integer or real-valued, sele
ted on their relative appropriateness to the problemdomain. There is typi
ally a representative mapping between the genes of this stringand potential solutions to the problem in question. In [5℄, two examples of optimi-sation problems whi
h may be solved through the appli
ation of geneti
 algorithmsin
lude
• the Eight Queens Problem (where the solution spa
e is represented by eightnumbers indi
ating the row on whi
h ea
h queen ought to be pla
ed, notingthat any two queens may not share a 
olumn, diagonal or row. The �tness fora solution is quanti�ed by 
ounting the number of illegal queen pla
ements. )
• the 0-1 Knapsa
k Problem (where the solution spa
e is represented by a binarystring of length n, where ea
h gene represents the in
lusion or ex
lusion of anitem i with 
ost ci and value vi. The �tness for a solution is quanti�ed by themagnitude of the sum of the produ
ts of the 
osts and values of the in
ludeditems.)In ea
h of the above example appli
ations of geneti
 algorithms, a string is modi�edby repeated appli
ation of evolutionary sele
tion and sear
h operators. The stringof numbers itself dire
tly represents a solution to the problem. This pro
ess may behalted at any time or when a 
hosen stop 
riterion is rea
hed. The best solution is
olle
ted from the population of evolved solutions.



72.1.1.2 Geneti
 ProgrammingWhere geneti
 algorithms te
hniques fo
us on the evolution of solutions to problemsfrom dis
rete and 
ontinuous optimisation, geneti
 programming evolves programswhi
h solve modelling problems. Here, the �tness of a 
andidate solution is deter-mined by exe
uting and 
omparing its output with the 
orre
t output for a problem,that is, a supervised or reinfor
ement learning 
ontext. The representation for geneti
programming has histori
ally taken the form of tree-based fun
tional expressions butit 
an take other forms, in
luding linear programs, to whi
h we shall return in se
tion2.2.Among other appli
ations, geneti
 programming 
an be used in the 
ase of 
lassi-�
ation problems and regression problems, as in [10℄, where geneti
 programming isused to
• produ
e de
ision trees for the intertwined spirals problem;
• model an unknown fun
tion through symboli
 regression.Geneti
 programming typi
ally follows an algorithm similar to that of geneti
 algo-rithms, with the main di�eren
e being that the evaluation step involves exe
ution ofprogram instru
tions [5, 8℄. Algorithm 1 on the following page outlines the form ofthe generi
 evolutionary 
omputation paradigm.Returning to the ma
hine learning design 
hoi
es dis
ussed in Se
tion 2.1.1, we�nd that the 
redit assignment problem is partially addressed in the e�e
ts of steps2 to 4. In step 2, ea
h 
andidate solution (individual) is evaluated a

ording to the�tness fun
tion. Steps 3 and 4 sele
t individuals for mutation and reprodu
tion baseddire
tly on these �tness values. Be
ause the population is initially systemati
allydiversi�ed, �tness is also initially very diverse. Ea
h mutation and 
rossover resultsin 
hanges to individuals - those 
hanges are evaluated in the next iteration of the



8Algorithm 1 The typi
al geneti
 programming algorithm. [5℄1. Initialise a population of N individuals. Choose the probability of mutation,
p(m), and probability of 
rossover, p(c).2. Evaluate ea
h individual, i, a

ording to the �tness fun
tion, re
ording themaximum �tness, fm as well as ea
h individual's �tness, fi.3. Assign to every individual a probability of reprodu
tion p(r) = fi

fm
.4. Test p(r) for ea
h individual to determine in
lusion as a parent in a matingpool, P .5. For ea
h parent in the mating pool, apply the mutation operator with proba-bility p(m) and apply 
rossover (with a randomly sele
ted partner) with prob-ability p(c), produ
ing one or two 
hildren.6. Repla
e ea
h parent with its 
hild.7. If the population has not yet 
onverged and not yet rea
hed a maximum numberof generations, go to step 2.algorithm. Thus, every in
remental 
hange toward or away from a parti
ular strategyis evaluated, ensuring that 
redit is assigned for all 
hanges.The geneti
 programming environment has 
ertain 
hara
teristi
s sele
ted in 
om-mon with other methods for evolutionary 
omputation. These in
lude many optionsof whi
h a few are listed here in parentheses.

• representation (tree-stru
tured, linear instru
tions, graph based)
• initialisation (random or partially 
onstrained)
• evaluation (�tness fun
tions)
• sele
tion operators (�tness-proportional, tournament based, degree of elitism)
• sear
h operators (
rossover, mutation)In our work, we have used the modi�ed geneti
 programming algorithm des
ribed



9Instru
tion Type Generi
 Formreg-reg Rx ⇐ Rx opcode Ryreg-input Rx ⇐ Rx opcode Iy
onstant Rx ⇐ 'n' bit integer 
onstantTable 2.1: Instru
tion types for our linear geneti
 programming modelhere as Algorithm 2. The main di�eren
es in our approa
h in
lude (steady state) tour-nament sele
tion rather than a generational approa
h and a linear representation forindividuals rather than tree-based as in Koza's 
anoni
al geneti
 programming model[10, 11℄. These are des
ribed more fully in the following se
tion. The 
ontribution ofthis thesis, however, is independent of the parti
ular form of GP employed.2.2 Page-based Linear Geneti
 ProgrammingWe employ a �xed length, linear GP representation in whi
h individuals take the formof instru
tion sequen
es, grouped into pages of a 
ommon instru
tion 
ount, as in [8℄.To de�ne maximum program length, we a priori state maximum page 
ount. Thenatural impli
ation of this is that the initial population is initialised over the totalrange of permitted program lengths; whereas a variable length representation beginswith individuals initialised over a limited range (of short programs) and lets them growup to some a priori spe
i�ed size limit. The �xed length representation is enfor
ed bylimiting 
rossover to the ex
hange of a single equal length page of instru
tions betweentwo parents. Ea
h 2-address instru
tion is represented by an integer and therefore apage of instru
tions is a sequen
e of integers whi
h are de
oded at run-time.2.2.1 RepresentationThe linear programs operate upon a (virtual) register-based ma
hine. The instru
-tion format supports three instru
tion types: register-register, register-input and 
on-stants, see Table 2.1. Op
odes 
onsidered within this work are limited to the four



10Algorithm 2 Algorithm for the L-GP ar
hite
ture des
ribed in Se
tion 2.2.1. Generate the population randomly. Let T be the number of 
ompleted tourna-ments (initially zero).2. Randomly sele
t 4 tournament parti
ipants from the population.3. Evaluate ea
h individual in the tournament and rank them.4. Copy the best two individuals over the worst two individuals.5. Perform 
rossover and mutation a

ording to their respe
tive probabilities ofo

urren
e.6. In
rement T ; if T is less than the tournament limit (50000) and the populationhas not yet 
onverged, go to 2.7. Re
ord the best individual, other desired statisti
s.arithmeti
 instru
tions alone (addition, subtra
tion, multipli
ation, prote
ted divi-sion), and operate on either two registers or a register and input from the data set.The range of register referen
es Rx and Ry is de�ned a priori by the number of (gen-eral purpose) registers allo
ated to the (virtual) register ma
hine. Naturally the rangeof referen
es to inputs, Iy, is de�ned by the number of features in the data set. Pre-vious work has established empiri
ally that the arithmeti
 operators are su�
ient forsolving a wide range of problems, in
luding 
lassi�
ation [13℄ and intrusion dete
tion[18℄.2.2.2 InitialisationIndividuals are initialised by �rst sele
ting the maximum page 
ount, with uniformprobability over the interval [1, ...MaxPages]. Ea
h instru
tion is then initialised by�rst sele
ting an instru
tion type where instru
tions de�ning 
onstants are half aslikely as either register-register instru
tions or register-input instru
tions. That is tosay, without su
h a bias, half of the instru
tions 
omprising an individual would takethe form of register-register and register-input instru
tions, and the other half would



11des
ribe 
onstants [8℄.2.2.3 EvaluationIn the geneti
 programming evaluation phase, individuals are assigned �tness valuesbased on a problem-dependent �tness metri
. Fitness for an individual is typi
allyde�ned in terms of the individual's ability to 
orre
tly solve the problem. For example,in 
lassi�
ation, the �tness of an individual may 
orrespond to the number of 
orre
tly
lassi�ed exemplars. For a regression problem, the �tness of an individual might beinterpreted as a fun
tion of the distan
e between the 
orre
t points and the 
andidatepoints produ
ed by the GP individual.The �tness fun
tion s
ores or ranks individuals, enabling though biasing the rank-ing and sele
tion phase. The sele
tion of appropriate �tness fun
tions for 
lassi�
ationproblems forms the 
ontribution of this thesis and is presented in detail in Se
tion 3.2.2.4 Sele
tionWe used steady-state tournament sele
tion with a tournament size of four. The fourindividuals are sele
ted with uniform probability from the population and rankeda

ording to the evaluation fun
tion. The best two individuals in the tournament aresele
ted for reprodu
tion. They are 
opied over the worst two tournament individualsand 
rossover and mutation applied.The '
opy' operator repla
es the losers of the tournament in the original populationand is inherently elitist (best of the population is guaranteed to survive). Moreover,su
h a s
heme is known to result in a higher takeover rate2 than generational sele
tion[6℄.2Poor performing individuals die out more qui
kly than with the 
ase of proportional sele
tion.



122.2.5 Sear
h (Crossover and Mutation)The 
rossover operator 
onsists of swapping randomly sele
ted single pages of equalinstru
tions between two parent individuals. This guarantees that the length of ea
hindividual remains �xed. An annealing s
hedule is used to in
rementally modify thenumber of instru
tions 
onstituting a page during training [8℄.In addition to the 
rossover operator, L-GP typi
ally employs two types of mu-tation. The �rst 
onsists of randomly 
hoosing an instru
tion within an individualand performing the XOR operation between that instru
tion and a random integer.Mutation therefore provides an avenue for introdu
ing instru
tions not 
urrently inthe population. The se
ond mutation strategy is to swap two randomly 
hosen in-stru
tions, again within the same individual. This establishes a path for investigatingalternative instru
tion orders within the same individual. Both have asso
iated prob-abilities de�ning the frequen
y of appli
ation.2.3 Problem RepresentationsHits A 
lassi
 measure of �tness for 
lassi�
ation problems is the hits-based metri
,as in Koza's geneti
 programming experiments [10℄. A hits-based metri
 measures the�tness of a parti
ular problem solving method in terms of the number of subinstan
esof the problem whi
h that method 
orre
tly solves. In terms of geneti
 programming,the hits-based �tness of an individual would 
orrespond to the number of exemplars ina training data set whi
h are 
orre
tly 
lassi�ed by the individual into their respe
tive
lasses.Typi
ally, the hits-based metri
 is enabled by the use of a wrapper fun
tion whi
hmaps the raw output of a GP individual to a dis
rete 
lassi�
ation interval, as inEquation (1.1) on page 2, where the dis
rete value indi
ates the GP 
lassi�
ation. Thedrawba
k of the swit
hing-type wrapper is that we are limited to binary 
lassi�
ation



13problems, although this may be over
ome to some degree through a 
ombination ofexperts, as in ensemble programming, boosting or bagging [9℄ or through problemde
omposition [15℄.MSE / SSE The mean squared error and sum squared error metri
s are des
ribedby Banzhaf et al in [1℄.The sum squared error metri
 
hara
terises error as the sum, over all exemplars,of the squares of the magnitudes of the di�eren
es between the a
tual outputs3, aand the desired outputs, d. In [1℄, Banzhaf et al use the following,
n
∑

i=1

(ai − di)
2The mean squared error metri
 is the sum of the squared error, divided by thenumber of outputs, n, as in [1℄,

1

n

n
∑

i=1

(ai − di)
2A useful feature of the squared error metri
 is that error is not distributed uni-formly. The error rate in
reases quadrati
ally as the magnitude of the absolute errorin
reases. Additionally, dividing by n to obtain the mean squared error will temperlarge error values. Additionally, the error rate now is a 
ontinuous value, permittinggreater sensitivity to 
hanges in the GP performan
e.Weighted Hits Eggermont et al, in [4℄, des
ribe a method involving the 
ombina-tion of an error metri
 with weights whi
h are adjusted by a predetermined quantumat ea
h generation. Eggermont et al des
ribe the overall error f(x) for an individual3[1℄ makes no referen
e to the wrapper employed. Thus it is not 
lear whether the 'a
tual output'implies a linear wrapper (that is, the raw GP output is used dire
tly) or the raw GP output ismapped to an interval appropriate for interpretation in terms of a (binary) 
lassi�
ation.
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x,

f(x) =
∑

r∈D

wr · error(x, r)where error(x, r) may be a swit
hing-type fun
tion, for example,
error(x, r) =

{

1 if x classifies data record r incorrectly
0 otherwiseor error(x, r) 
ould be a 
ontinuous fun
tion, as in mean squared error, des
ribedpreviously. The weights magnify errors whi
h o

ur more frequently over time,thereby penalising individuals whi
h persist in mis
lassifying a parti
ular re
ord.This te
hnique showed improvement over standard GP on some datasets and pro-du
ed 
omparable or inferior performan
e on others.Stati
 and Dynami
 Range Sele
tion Tree stru
tured GP is limited to a sin-gle output. Thus, when used with the swit
hing-type wrapper, Equation (1.1), it isformulated as a fun
tion with only two distin
t output values. This be
omes a prob-lem in the 
ase of a 
lassi�
ation problem involving multiple 
lasses, unless 
ompositete
hniques are used to 
ombine multiple, separately evolved, binary 
lassi�ers to solvea single problem.One method for performing multiple 
lassi�
ations without evolving separate 
las-si�ers is des
ribed as range sele
tion, by Loveard et al in [15℄. It is an extension ofthe 
on
ept of a binary swit
hing fun
tion. The binary swit
hing fun
tion Equation(1.1) asso
iates two ranges of output values, (−∞, 0] and (0,∞), with the 
lass labels

0 and 1, respe
tively. The range sele
tion strategy divides the one dimensional spa
easso
iated with the raw GP output into further intervals, with as many labels as thereare 
lass intervals.Loveard et al propose two strategies. The �rst is stati
 range sele
tion, where the



15intervals are �xed. However, they had more su

ess with dynami
 range sele
tion,where, for ea
h individual, its range intervals are determined at ea
h generation bysetting aside a portion of the training data. Thus, ea
h interval's limits are determinedusing a nearest neighbour algorithm on the outputs for these exemplars. Fitness takesthe form of 
ounting the number of times that exemplars from the remainder of thetraining set produ
e a raw GP output value lying in a region assigned the same 
lasslabel.2.4 Robustness and GeneralisationAn important 
riterion of quality in any ma
hine learning algorithm is the ability toprodu
e robust and, more importantly, general solutions. In [12℄, Kush
hu de�nesrobustness as �the desired su

essful performan
e of the solution when it is applied toan environment similar to the one it was evolved for,� whereas he de�nes generalisationto refer to the �performan
e of the [solution℄ during the testing pro
ess�.We 
ontend that swit
hing-type wrappers 
ontribute to poor generalisation in thatthey obs
ure �ne di�eren
es in the raw GP output to su
h an extent that the GPalgorithm is rewarded for behaviour not 
ondu
ive to identifying robust solutions.For example, a drawba
k of range sele
tion in terms of robustness is that, as withthe swit
hing-type wrapper fun
tion, it obs
ures distin
tions between output valueswithin the sele
ted intervals. No reward is provided for mapping exemplars to rawGP output values that both 
orrespond to the relevant region and are distant fromthe region boundaries.This 
onsideration is important in our work as our 
lustering methodology, byvirtue of its 
lose asso
iation with the raw output of the geneti
 programming system,may expli
itly reward a mapping that maximises the separation between 
lasses, in
omparison with methods based on swit
hing fun
tions.



Chapter 3Methodology3.1 Error Fun
tionsSin
e Koza popularized the Geneti
 Programming approa
h, the wrapper for 
lassi-�
ation problems has taken the form of a swit
hing fun
tion, Figure 1.1 (a) [10, 11℄.As indi
ated in the introdu
tion, we note that su
h a wrapper e�e
tively throws awaya lot of useful information that 
ould adversely a�e
t the generalisation performan
eof the resulting GP 
lassi�er. There is, however, a long history of wrapper fun
tiondevelopment within the 
ontext of neural networks1. Moreover, the sele
tion of awrapper also has dire
t impli
ations for the nature of the 
orresponding �tness (
ost)fun
tion. A wrapper based on the swit
hing fun
tion limits the �tness fun
tion toa mere 
ount of the number of 
orre
tly 
lassi�ed exemplars. That is to say, the
orresponding distan
e metri
 is binary. Conversely, neural networks are typi
allyrequired to have an a
tivation fun
tion that is smooth (i.e. di�erentiable). If we
onsider the parti
ular 
ase of global a
tivation fun
tions2, this results in a require-ment for a monotoni
ally in
reasing fun
tion, where the most popular operator fora
hieving this is the sigmoid fun
tion [7℄, Figure 1.1 (b).As established in the introdu
tion, this now provides the basis for exemplar errorsthat in
rease as the transition point of the a
tivation fun
tion is approa
hed, Figure1.1 (b), as well as when exemplars are expli
itly mis
lassi�ed (wrong side of the1The neural network literature refers to wrapper fun
tions as a
tivation fun
tions [7℄.2Lo
al a
tivation (wrapper) fun
tions have also been widely utilised in the neural network liter-ature, parti
ularly within the 
ontext of hidden layer neurons (e.g. Radial basis fun
tion networksand Support Ve
tor Ma
hines). 16



17Error Name Wrapper Used Error (a=a
tual, t=target)absolute 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|Bernoulli (1.0 + exp(−gpout))
−1 − log(a + t − 1.0)Hits-Based (gpout > 0)? a = 1 else a = 0 1 − equal?(a, t)Minkowski 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|rsquared 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|2Table 3.1: Fun
tions used in Experiment 2. (The equal?(a, t) fun
tion for hits-basederror returns 1 if a and t are equal, and 0 otherwise.)wrapper transition point). Moreover, as ea
h error distan
e is now real valued, weare also free to build a �tness (
ost) fun
tion that penalizes or weights errors indi�erent ways.In this work we will 
onsider �tness fun
tions based on one of �ve forms of errordistan
e - absolute, Bernoulli, Minkowski, and squared - in
luding the swit
hing typewrapper. The sele
tion of these fun
tions was informed by previous neural networkliterature [7, 19℄, where 
ost fun
tions have been extensively evaluated, in 
omparisonwith the GP literature. Table 3.1 summarizes the asso
iation between wrapper anderror metri
. Spe
i�
ally, the Bernoulli �tness fun
tion assumes a probabilisti
 modelfor the 
lassi�
ation problem (labels are binary) [20℄, thus the a
tivation fun
tionmaps the 'GPout' axis to the unit interval, using a sigmoid type global mapping, e.g.Figure 1.1 (b), limited to the interval [0, 1]. The asso
iated Bernoulli error metri
applies an ex
eptionally high penalty to any exemplar mis
lassi�
ation. We also notethat su
h a formulation is equivalent to the entropy penalty fun
tion. The absoluteerror assumes an equal penalty for any error, and makes use of the wider interval ofthe hyperboli
 tangent wrapper fun
tion, Figure 1.1 (b). Minkowski and square errorapply an in
reasing (de
reasing) penalty to larger (smaller) exemplar errors relativeto an error distan
e of unity, thus the wider range of the sigmoid wrapper fun
tion isagain appropriate. In all 
ases the �tness fun
tion is merely the sum of error takena
ross all training exemplars for a given wrapper / error distan
e metri
 
ombination.



183.2 Clustering and Lo
al Wrappers for GP Evaluation Metri
sIn the previous se
tion, we introdu
ed a rationale for utilising non-swit
hing wrapperfun
tions and their 
orresponding error metri
 to en
ourage a wider 
lass separationover training exemplars. In this se
tion, we take a di�erent approa
h to en
ouragingsu
h a separation. To do so we re
ognise that the overall obje
tive is to maximisethe distan
e between points on the 'raw' GP output axis representing the same 
lass.Viewed from this perspe
tive, the obje
tive is to map the 
lass data into separate
lusters (on the 'raw' GP output axis) whose intra
luster varian
e is minimised, butinter
luster distan
e is maximised, as in Figure 3.1. Su
h a rationale does not expli
-itly use a wrapper fun
tion for �tness evaluation.3Se
tion 3.2.2 proposes a lo
al wrapper fun
tion approa
h. In this 
ase, error isdes
ribed in terms of two Gaussian distributions, one for in 
lass and one for out
lass. Error is minimized with respe
t to boh 
lass and (lo
al) wrapper membership.Class separation is now less dire
tly represented, but takes the form of an indire
tproperty of minimising membership of the wrong distribution.3.2.1 Class Separation Distan
e MaximisationLet us 
onsider the s
enario of evaluating a single individual on all the exemplars of atraining or test data set for a binary 
lassi�
ation problem. The data set, R, 
ontainstraining exemplars. Ea
h exemplar pi is itself a pair, 
onsisting of an ordered tupleof input features and an a priori 
lassi�
ation label li. Exe
uting a GP individual(program) on ea
h exemplar pi generates a set S of pairs of the form (gpout(i), li),where gpout(i) is the raw GP output on exemplar i.Now that we have GP outputs and a label for ea
h GP output assigning it toa parti
ular 
lass, we 
an now 
hara
terise the respe
tive 
lass distributions in the3The wrapper fun
tion may be 
onsidered linear or an identity fun
tion.
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class Bclass A GPoutput

GPoutputclass Bclass AFigure 3.1: Distribution of GP output with and without su

essful 
lustering on theGP output number line.GP output spa
e. For this we draw on metri
s from pattern re
ognition and featuresele
tion, parti
ularly the mean, varian
e and 
lass separation distan
e, des
ribed in[2, pp. 516-517℄. We reprodu
e these here for referen
e.Let us de�ne Sk to be a set 
ontaining every gpout(i) in S for whi
h li = k. Thatis, Sk 
ontains all the GP output values in S that were generated for a re
ord i withlabel k ∈ {0, 1}. Then the approximate 
lass mean4 is 
al
ulated as in Equation(3.1). (Here gpout(j) refers to elements of Sk.) Similarly, the varian
e is expressed inEquation (3.2) using the approximate 
lass mean.
µ̂k =

1

|Sk|

|Sk|
∑

j=1

gpout(j) (3.1)
σ̂2

k =
1

|Sk|

|Sk|
∑

j=1

(gpout(j) − µ̂k)
2 (3.2)Finally, Equation (3.3) 
hara
terises the distan
e between the approximate 
lassmeans, normalised by the approximate 
lass varian
e.

D̂k1k2
=

|µ̂k1
− µ̂k2

|
√

σ̂2
k1

+ σ̂2
k2

(3.3)In our experiments, we use the value D̂k1k2
to rank individuals during the sele
tionphase. Thus, individuals are rewarded for generating a more distin
t separationbetween the two 
lasses, that is, maximising Equation (3.3). In summary, GP is4From [2℄: �The 
aret ... remind[s℄ us that these are estimates of the 
lass means based upon thetraining set[.℄�
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class 1 meanclass 0 mean
GPoutFigure 3.2: Identi�
ation of in-
lass (+) and out-
lass (×) raw GP values using aGaussian model.expli
itly rewarded for providing a mapping from a high dimensional input spa
e to aone-dimensional output spa
e su
h that the 
lass separation distan
e of the raw GPoutput spa
e is maximised. Post-training, the model is applied to unseen data usinga nearest neighbour algorithm to determine 
lass membership.3.2.2 Lo
alised Wrapper-based GP ClassifersThe 
lassi�
ation metri
 des
ribed in the previous se
tion provides the opportunity tobase the 
lassi�er output on a wrapper des
ribed by a lo
al membership fun
tion. (e.g.a Gaussian). In this 
ase, when unseen data is mapped to regions of the GP outputaxis that do not 
orrespond to the (
luster) mapping identi�ed during training, theyshould be regarded as distin
t from the distribution used to develop the GP model,Figure 3.2.The wrapper for su
h a lo
al membership fun
tion is built by estimating the meanand varian
e of ea
h 
lass over the 
orresponding raw GP output values (gpout). Erroris then expressed relative to ea
h of the individual 
lasses insofar as their members
onform to a normal distribution. The obje
tive is to en
ourage as many of the in-
lass exemplars to appear as 
lose to the mean of the 
lass' Gaussian membershipfun
tion as possible, and to distan
e themselves as far as possible from the mean of



21the opposite 
lass, or (where x is the in-
lass and y is the out-
lass),
inclasserror =

Nx
∑

i=1

(

1 − exp

(

−
1

2σ2
x

‖gpout(i) − µx‖
2

)) (3.4)
outclasserror =

Nx
∑

i=1

(

exp

(

−
1

2σ2
y

‖gpout(i) − µy‖
2

)) (3.5)where Nx is the size of the in-
lass x and where the �tness of the individual is thesum of of the 
lass errors for both 
lasses and the minimum value denotes the �ttestindividual. Note that we evaluate these equations twi
e, on
e for ea
h set of pointsrepresenting 
lasses 0 and 1, to obtain the total error (that is, on
e with x = 0, y = 1to obtain the total error for 
lass 0 and again with x = 1, y = 0 to obtain the totalerror for 
lass 1). Note also that the normalisation ( 1√
2πσ

) typi
ally asso
iated with aGaussian distribution (enfor
ing a unit integral area) is not utilised. This ensures thatthe minimal distan
e 
ondition, gpout(i) = µ1, returns a maximum membership (of 1).Without this 
onstraint, the error metri
 of (3.4) and (3.5) will not be appropriatelys
aled.Relative to the 
luster separation approa
h of se
tion 3.5, the lo
alised wrapperapproa
h has the impli
it advantage that, as both in-
lass and out-
lass error are a
-
umulated, sele
tion pressure en
ouraging separation between 
lusters is maintained.The drawba
k of the lo
al wrapper approa
h relative to the 
luster separation metri
is 
omputational; three passes through the training data are ne
essary before �tnessof an individual may be expressed. A pass through the training data is required toestimate the mean and a se
ond pass estimates the varian
e of the in-
lass data. Athird pass through the entire training dataset is required to estimate 
lass member-ship, Equation (3.4) and (3.5). However, the program expressed by the individual isonly run on
e through the entire pro
ess (to produ
e the raw GP output values).Post-training, we 
lassify test data by using the Gaussian fun
tion expli
itly as a



22membership fun
tion, Equation 3.6, where x 
orresponds to an exemplar from the testdata set; gpout(x) is the raw GP output produ
ed by the individual when evaluatedon exemplar x; and i is the 
lass for whi
h we are testing membership.
membership(x, i) = exp

(

−
1

2σ2
i

‖gpout(x) − µi‖
2

) (3.6)Then, the 
lass i to whi
h a GP individual assigns an exemplar x from the testdata is de
ided by 
hoosing i ∈ {0, 1} su
h that the value of membership(x, i) ismaximised.



Chapter 4ResultsThis se
tion reports on two sets of experiments. In the �rst 
ase, the signi�
an
eof population size and program 
omplexity (instru
tion 
ount limit) are investigatedusing the hits �tness fun
tion. These are typi
ally 
onsidered the prin
ipal designparameters asso
iated with GP models [10℄. In doing so, we demonstrate that nei-ther parameter has a signi�
ant impa
t on solution quality. Population size doeshowever appear to be 
orrelated with additional solution 
omplexity. The se
ondstudy 
onsiders the 
ontribution of lo
al and global wrapper operators as dis
ussedin Chapter 3. The lo
al wrapper operators are shown to be signi�
antly more robustthan their global 
ounterparts. Thus, from a pragmati
 perspe
tive, more 
onsidera-tion should be given to establishing an appropriate representation and �tness fun
tionthan testing the impa
t of size and 
omplexity 
onstraints.4.1 Initial Parameters for Geneti
 ProgrammingWe hypothesised that the maximum page 
ount and initial population size, beyondne
essary minimum values, would have no signi�
ant e�e
t on the median �tness andmedian program length of best-of-run solutions (programs). We used six data sets,of whi
h two are regression problems and four are 
lassi�
ation problems. These aresummarised in Table 4.1.The datasets we have 
hosen bear 
ertain 
hara
teristi
s. The 'breast' and '
-heart' datasets are medi
al diagnosis 
lassi�
ation sets whi
h are known to supporta

ura
ies in the 80% to 90% range [14℄. The 'liver' 
lassi�
ation problem dataset23



24Name # of exemplars Problem type Fun
tionbreast 699 
lassi�
ation -
-heart 303 
lassi�
ation -liver 345 
lassi�
ation -ts 192 
lassi�
ation -sexti
 50 regression f(x) = x6 − 2x4 + x2twobox 10 regression f(x) = x0y0z0 − x1y1z1Table 4.1: Data sets used and their attributesis also based on medi
al diagnoses. The 'liver' set typi
ally supports a 
lassi�
a-tion a

ura
y of about 60% to 70% [14℄. The 'ts' dataset is an arti�
ial ben
hmark
lassi�
ation problem frequently used in neural network and geneti
 programmingresear
h [8℄. The dataset 
ontains points drawn from two intertwined spirals on a twodimensional Cartesian spa
e. The two regression problems, 'sexti
' and 'twobox', areboth arti�
ial datasets whi
h represent well known GP ben
hmarks [11℄. We empha-sise that our obje
tive is to provide for the 
omparative evaluation of the error-
ostfun
tion, as opposed to establishing new levels of performan
e on these datasets.Ea
h dataset was split into training and test partitions. The training partition
ontained 75% of the exemplars in the original dataset while the test partition 
on-tained 25% of the exemplars in the original dataset. These partitions were generatedby randomly sele
ting exemplars with the 
onstraint that the ratio of 
lass member-ship among exemplars in the original dataset must be preserved in the training andtest sets.The experimental design is enumerated in Table 4.2. For ea
h dataset, we per-formed 50 independent runs where we varied two parameters, maximum page 
ount(for values of 24, 48 and 72) and initial population size (for values of 125, 500, 1000and 5000). For these runs, we pregenerated 50 random seeds and used this set ofseeds for ea
h 
ombination of maximum page 
ount and initial population size. Wetherefore blo
ked for the e�e
t of random initialisation in our experiments.



25Obje
tive (Corre
tly 
lassify exemplars) OR (�t a 
urve)Terminal Set x1, x2, x3, x4Fun
tional Set +,-,*,%, load 
onstantFitness Cases # of exemplars in datasetFitness Sum Squared ErrorSele
tion Tournament (λ = 4) Sele
tionHits (Classi�
ation) # of 
orre
t 
lassi�
ationsHits (Regression) # of 
ases with abs. error < 0.01Maximum Page Size 8Maximum Page Count (24, 48, 72)Init. Population Size (125, 500, 1000, 5000)Termination 50000 tournaments or 100% hitsExperiments 50 independent runsTable 4.2: Parameters for the 
lassi�
ation and regression problems des
ribed in Table4.14.2 Dis
ussionUsing the experimental framework des
ribed in Se
tion 4.1, we examined the perfor-man
e of linear geneti
 programming while varying the stati
 parameters of initiali-sation.We measured two aspe
ts of performan
e for individuals in our experiments. Were
orded the �tness, in terms of the quartile hits s
ored by that individual on thetraining and test data, and the quartile program length, in terms of the individual'sinstru
tion 
ount after training. Intron removal was typi
ally employed when evalu-ating solution instru
tion 
ounts, where this might result in a 70% to 80% redu
tionin instru
tion 
ount [1℄.For 
lassi�
ation problems, hits are dire
tly measured by 
omparing the a
tualoutput of the swit
hing-type wrapper with the desired output from the data set's
lass labels. We formulated the regression problems as data sets generated from thedesired fun
tion, 
omplete with inputs and outputs. A hit for a GP individual on aregression problem was de�ned as a mat
h between the output of the individual andthe desired output from the data set, within a toleran
e of ±0.01.
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Figure 4.1: Median hits (for training and test) by initial population size and maximumpage 
ount for the BREAST 
lassi�
ation problem
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Figure 4.2: Median hits (for training and test) by initial population size and maximumpage 
ount for the C-HEART 
lassi�
ation problemAdditionally, we re
orded the minimum, average and maximum �tness s
ored inea
h tournament. Using this statisti
, we monitored the 
onvergen
e in �tness of theGP sear
h pro
ess.The results we observe support the hypothesis that the population size, as wellas the maximum page 
ount, largely fail to a�e
t the out
ome of the linear geneti
programming framework, en
ouraging exploration of more dynami
 means for mod-ifying performan
e. Observations supporting this 
on
lusion are detailed in Se
tions4.2.1 to 4.2.3.4.2.1 Fitness (Hits)Figures 4.1 through 4.6 show the quartile hits for ea
h 
ombination of initial popu-lation size (125, 500, 1000, 5000) and maximum page 
ount. (24, 48, 72). As the
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Figure 4.3: Median hits (for training and test) by initial population size and maximumpage 
ount for the LIVER 
lassi�
ation problem
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Figure 4.4: Median hits (for training and test) by initial population size and maximumpage 
ount for the TS 
lassi�
ation problem
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Figure 4.5: Median hits (for training and test) by initial population size and maximumpage 
ount for the SEXTIC regression problem
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Figure 4.6: Median hits (for training and test) by initial population size and maximumpage 
ount for the TWOBOX regression probleminitial population size and maximum page 
ount are varied, we 
an observe no signif-i
ant 
hange in the median number of hits. Note that for the sexti
 problem, Figure4.5, the quartiles and median are all the same value. This implies that over 75% ofindividuals solve the problem 
orre
tly.4.2.2 Program LengthFigures 4.7 through 4.12 show the quartile program lengths for ea
h 
ombination ofinitial population size and maximum page 
ount. The page 
ount limits of 24, 48 and72 have 
orresponding instru
tion limits of 192, 384 and 576. (That is, a maximumof 8 instru
tions per page.) There appears to be a 
orrelation between an in
reasingmaximum page 
ount and the quartile program lengths. A maximum page 
ount of72 produ
es a mu
h wider spread than a maximum page 
ount of 24. Moreover, aslarger populations are employed, the solution length tends to in
rease, relative to thesmallest population (125 individuals).4.2.3 Tournament FitnessIn the interest of verifying the 
onvergen
e of �tness, we re
orded the median mini-mum, median average and median best �tness for ea
h tournament. We manipulatedthe initial population size and maximum page 
ount as before. Figures A.1 through
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Figure 4.7: Median program length by initial population size and maximum page
ount for the BREAST 
lassi�
ation problem
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Figure 4.8: Median program length by initial population size and maximum page
ount for the C-HEART 
lassi�
ation problem
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Figure 4.9: Median program length by initial population size and maximum page
ount for the LIVER 
lassi�
ation problem
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Figure 4.10: Median program length by initial population size and maximum page
ount for the TS 
lassi�
ation problem
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Figure 4.11: Median program length by initial population size and maximum page
ount for the SEXTIC regression problem
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Figure 4.12: Median program length by the initial population size and maximum page
ount for the TWOBOX regression problem



31A.6, on pages 48 through 53 (in Appendix A), display the results we re
orded, withbezier 
urve approximation. Observing these diagrams, we 
an see that, for all prob-lem datasets, the minimum �tness tends toward zero over 50000 tournaments. In the
ase of the SEXTIC problem, in
reasing the maximum page 
ount leads to an in
reasein the number of tournaments required for 
onvergen
e. In addition, the smaller pop-ulation models appear to express more variation in the minimum-average-maximum�tness. Fa
tors in�uen
ing this would in
lude the higher likelihood of (poorly per-forming) 
hildren repla
ing �tter individuals in the population (or repla
ement error)under a small population model than under a large population model.4.2.4 SummaryThe results in the pre
eding se
tions support the following observations:
• experimentally varying the population size and maximum page 
ount produ
esa negligible di�eren
e in quartile performan
e (in terms of hits); and
• an in
rease in population size and maximum page 
ount appears to 
orrelatewith an in
rease in program length.Having observed stable results under the modi�
ation of these parameters, we turnedour attention to experimentally varying other aspe
ts of the geneti
 programmingmodel, in parti
ular, our obje
t of interest, the error fun
tion.4.3 Error Fun
tionsGiven that our initial parameters for linear geneti
 programming failed to in�uen
eoverall �tness and program length, we pro
eeded to examine the e�e
t of modifyingthe error fun
tion, running 50 trials for ea
h error fun
tion on ea
h data set. In ourinitial analysis we 
on
entrate on the 
ase of global wrapper fun
tions, as introdu
ed



32Obje
tive (Corre
tly 
lassify exemplars) OR (�t a 
urve)Terminal Set x1, x2, x3, x4Fun
tional Set +,-,*,%, load 
onstantFitness Cases # of exemplars in datasetFitness (Ea
h fun
tion from Table 3.1)Sele
tion Tournament (λ = 4) Sele
tionHits (Classi�
ation) # of 
orre
t 
lassi�
ationsHits (Regression) # of 
ases with abs. error < 0.01Maximum Page Size 8Maximum Page Count 24Init. Population Size 125Termination 50000 tournaments or 100% hitsExperiments 50 independent runsTable 4.3: Parameters for the error fun
tion experimentsin Se
tion 3.1, Table 3.1. The 
omparison between lo
al and global wrappers followsin Se
tion 4.4. Ea
h of these fun
tions was tested with the parameters des
ribed inTable 4.3.For this experiment, we used the results of the previous experiment as a guideline.To minimise exe
ution time, we �xed the initial population size and the maximumpage 
ount at values of 125 and 24, respe
tively. The varied quantity was the �tnessfun
tion used during evaluation of programs. From the re
orded observations, weextra
ted the median hits, median program length, median distan
es between 
lassmeans and raw GP output.The error fun
tion is the only dire
t feedba
k available to geneti
 programmingregarding the solution spa
e whi
h it explores. Varying the des
riptiveness of infor-mation supporting this fun
tion should a�e
t the quality and quantity of feedba
ka�orded to the GP sear
h pro
ess.Be
ause ea
h fun
tion quanti�es error di�erently, it is impossible to dire
tly 
om-pare their error values. Thus, we in
luded the hits-based metri
 as a baseline for errorand, post-training, applied a swit
hing-type wrapper to the remaining fun
tions toobtain a 
omparable 
ount of the hits.
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Figure 4.13: Median training and test per
entage hits for the BREAST 
lassi�
ationproblem with a maximum page 
ount of 24 and initial population size of 125.4.3.1 Median HitsThe median training and test hits were re
orded for ea
h of the six datasets and areshown in Figures 4.13 to 4.18. As su
h, better solutions are asso
iated with a largerhits 
ount.For 
lassi�
ation problems, the distin
tion most apparent is that between all errorfun
tions and the Bernoulli error formulation. This error metri
 is outperformed bythe majority of other fun
tions on the BREAST dataset - the easiest of the problems.We omitted this fun
tion in further experiments. We next noti
e that the hits typemetri
 a
tually performed respe
tably a
ross all 
lassi�
ation problems 
onsidered,with the absolute error metri
 also returning 
onsistently good results. All otherwrapper-metri
 
ombinations did not perform as well. On spe
i�
 data sets, theother metri
s were able to return results with less varian
e, however, there is little
onsisten
y to this property a
ross di�erent data sets.For the regression problems, we 
an also ignore the Bernoulli fun
tion as its de�ni-tion only holds in the 
ase of 
lassi�
ation problems. For both the regression datasets(SEXTIC and TWOBOX), the most reliable results are seen in the spe
trum ofMinkowski error fun
tions between the absolute error fun
tion and the squared fun
-tion. For the SEXTIC problem, we see that the absolute error fun
tion (and thesimilar low end of the Minkowski spe
trum of fun
tions) produ
es poor performan
e.
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Figure 4.14: Median training and test hits for the C-HEART 
lassi�
ation problemwith a maximum page 
ount of 24 and initial population size of 125.
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Figure 4.15: Median training and test hits for the LIVER 
lassi�
ation problem witha maximum page 
ount of 24 and initial population size of 125.
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Figure 4.16: Median training and test hits for the TS 
lassi�
ation problem with amaximum page 
ount of 24 and initial population size of 125.
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Figure 4.17: Median training and test hits for the SEXTIC regression problem witha maximum page 
ount of 24 and initial population size of 125.
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Figure 4.18: Median training and test hits for the TWOBOX regression problem witha maximum page 
ount of 24 and initial population size of 125.



36
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

squaredmin1.8min1.6min1.4min1.2hitsbasedbernoulliabs

P
ru

ne
d 

Q
ua

rt
ile

 S
ol

ut
io

n 
Le

ng
th

 (
In

st
ru

ct
io

n 
C

ou
nt

)

Error Functions

Pruned Quartile Solution Length vs. Error Function (BREAST_pruned data set, pop. size 125, max. page count 24)

Figure 4.19: Quartile pruned program length for the best individuals on the BREAST
lassi�
ation problem with a maximum page 
ount of 24 and initial population sizeof 125.4.3.2 Median Program LengthWe 
olle
ted the quartile pruned program lengths for the best-of-run programs, Fig-ures 4.19 to 4.24. For the regression problems we 
onsidered (SEXTIC and TWOBOX),the hits-based and squared error metri
s produ
ed programs with signi�
antly greaterlengths (as measured at the 95% 
on�den
e interval using a standardised student T-test). For 
lassi�
ation problems, the hits and square error metri
s again resulted inmore 
omplex individuals, but was no longer ne
essarily signi�
ant at the 95% 
on�-den
e interval. (e.g. BREAST returned similar 
omplexity a
ross all metri
s whereasTS again established hits and square error as the most 
omplex solutions.) However,we do note that as problem di�
ulty in
reases, the hits and square error metri
s tendto result in more 
omplex solutions relative to the other metri
s 
onsidered.4.3.3 SummaryThe results in the pre
eding se
tions support the following observations:
• global error fun
tions are mostly indistinguishable in terms of hits-based per-forman
e;
• most global error fun
tions support generalisation to the test set, but show poorrobustness in that they do so unreliably; and
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Figure 4.20: Quartile pruned program length for the best individuals for the C-HEART 
lassi�
ation problem with a maximum page 
ount of 24 and initial popula-tion size of 125.
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Figure 4.21: Quartile pruned program length for the LIVER 
lassi�
ation problemwith a maximum page 
ount of 24 and initial population size of 125.
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Figure 4.22: Quartile pruned program length for the TS 
lassi�
ation problem witha maximum page 
ount of 24 and initial population size of 125.
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Figure 4.23: Quartile pruned program length for the SEXTIC regression problemwith a maximum page 
ount of 24 and initial population size of 125.

 0

 50

 100

 150

 200

 250

 300

 350

squaredmin1.8min1.6min1.4min1.2hitsbasedbernoulliabs

P
ru

ne
d 

Q
ua

rt
ile

 S
ol

ut
io

n 
Le

ng
th

 (
In

st
ru

ct
io

n 
C

ou
nt

)

Error Functions

Pruned Quartile Solution Length vs. Error Function (TWOBOX_pruned data set, pop. size 125, max. page count 24)

Figure 4.24: Quartile pruned program length for the TWOBOX regression problemwith a maximum page 
ount of 24 and initial population size of 125.
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• in terms of program length, the hits-based and sum squared error metri
s pro-du
e the most 
omplex individuals.In this result, we observe that, while global error fun
tions demonstrate potential forhigh performan
e a
ross many initialisations, high performan
e repeats only inter-mittently in the sample. In the next experiment, we examined lo
alised methods inan e�ort to promote more reliable dis
overy of solutions.4.4 Clustering and Lo
al Wrapper for GP Evaluation Metri
sIn this se
tion, we introdu
e the proposed 
lass separation distan
e metri
 and a lo
alwrapper error metri
. We used the hits-based and square error metri
s as a baseline.To produ
e 
omparable hits totals for the latter three methods, we had to expressea
h metri
's output in terms of hits (post training) through unique methods. Forthe squared error metri
, we used the swit
hing-type wrapper post-training, as inprevious examples.For the 
lass separation distan
e metri
, during the test phase, we determined 
lassmembership using a nearest neighbour strategy. For ea
h exemplar, we determinedraw GP output, then found the nearest neighbouring 
lass mean (on the GP outputaxis) and assigned this exemplar to the 
lass 
orresponding to that mean. The 
lassmeans are obtained during the training phase.For the lo
al wrapper 
ase, we establish the mean and varian
e for both 
lassesduring training and use these during testing to sele
t 
lass membership a

ording toa maximum membership strategy. That is, unseen exemplars are 
lassi�ed a

ordingto the Gaussian fun
tion whi
h maximises their membership, where the Gaussianin question is generated from the mean and varian
e asso
iated with ea
h respe
tive
lass during the training phase. This is the assignment rule des
ribed in Se
tion 3.2.2.
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(b) testFigure 4.25: Quartile training and test hits for the BREAST dataset with global andlo
al wrapper fun
tions4.4.1 Raw Hits for the Lo
al Wrapper Method on Raw GP OutputIn examining the quartile hits on the 
lassi�
ation datasets, shown in Figures 4.25through 4.28, we observe that the varian
e in the 
ase of 
lassi�ers trained using ahits metri
 and squared error metri
 is signi�
antly higher than that for the 
lusterseparation error fun
tion. We also see that the 
onsisten
y of performan
e a
rossall four 
lassi�
ation datasets for the 
lass separation distan
e metri
 is parti
ularlygood, whereas the lo
al wrapper metri
 appears to overspe
ialise on training data onspe
i�
 datasets. That is to say, the varian
e on training data is very low whereasthat on test data is signi�
antly higher. With respe
t to the squared error metri
,a lower varian
e in 
lassi�er performan
e was established relative to the hits basedmetri
, indi
ating that the additional feedba
k provided by this metri
 was useful,although not ne
essarily su�
ient to provide better median performan
e. The hitsbased wrapper tends to return the most variation in 
lassi�er behaviour, a 
hara
-teristi
 that frequently provides the best single 
lassi�er over a set of initialisations(en
ourages a lot of exploration during training) but at the expense of repeatabilityin the sear
h pro
ess. Conversely, the 
luster separation wrapper appears to providethe most 
onsistent 
lassi�er behaviour, as indi
ated by the high median and tighterror bars, irrespe
tive of dataset.
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(b) testFigure 4.26: Quartile training and test hits for the C-HEART dataset with globaland lo
al error wrapper fun
tions
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(b) testFigure 4.27: Quartile training and test hits for the LIVER dataset with global andlo
al error wrapper fun
tions
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(b) testFigure 4.28: Quartile training and test hits for the TS dataset with global and lo
alerror wrapper fun
tions
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Figure 4.29: Quartile pruned program lengths for the BREAST dataset with four
lassi�
ation metri
s based on raw GP output
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Figure 4.30: Quartile pruned program lengths for the C-HEART dataset with four
lassi�
ation metri
s based on raw GP output4.4.2 Pruned Program Lengths for Raw GP MethodsFigures 4.29 through 4.32 summarise quartile pruned program length, following theremoval of useless (ie intron) instru
tions. On the simpler problems of BREAST andC-HEART, similar solution 
omplexities are returned. In the 
ase of the more 
hal-lenging problems (Liver and Two Spirals), the 
luster separation and lo
al wrappermetri
s returned signi�
antly shorter programs, where Figure 4.27 indi
ates that nopenalty has 
ome to the 
lassi�
ation performan
e.4.4.3 Consequen
esThe results in the pre
eding se
tions support the following observations:
• the hits-based wrapper generalises to the test set but 
annot be 
alled a robust
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Figure 4.31: Quartile pruned program lengths for the LIVER dataset with four 
las-si�
ation metri
s based on raw GP output
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(a) trainingFigure 4.32: Quartile pruned program lengths for the TS dataset with four 
lassi�
a-tion metri
s based on raw GP output



44solution, in that it appears to su�er from poor repeatability (that is, it is de-pendent on the initialisation and su�ers wide varian
e in quartile performan
e);
• the lo
al wrapper method repeatably produ
es good individuals on the trainingset but only partially generalises to the test set (nevertheless, the upper quartileand median nearly overlap);
• the 
lass separation distan
e metri
 
ombines both good generalisation androbust (repeatable) performan
e.Although the lo
al wrapper method failed to produ
e 
learly robust solutions for theproblems we 
onsidered, the 
lass separation distan
e metri
 provided both generaland robust behaviour 
onsistently a
ross all data sets.



Chapter 5Con
lusionWithin a (linear) geneti
 programming framework, we examined the in�uen
e of initialpopulation parameters on the out
ome of geneti
 programming models on sele
teddatasets representing 
lassi�
ation and regression problems.Our results indi
ate that initial parameters do not signi�
antly in�uen
e the �tnessof resulting solutions within the 
ontext of a �xed length representation. Populationsize does appear to be 
orrelated with solution 
omplexity. This result en
ouragesinvestigation of the e�e
ts of fun
tional parameters, motivating our study of errorfun
tions in geneti
 programming. That is to say, a better method for in�uen
ingsolution quality is through the de�nition of the �tness fun
tion than sele
tion ofpopulation parameters.We examined the role of wrapper-based error fun
tions in GP �tness. In this 
ase,we observed that the hits-based metri
 performed most 
onsistently a
ross 
lassi�-
ation problems, followed by the absolute error metri
. For regression problems, wefound that the Minkowski series of error fun
tions provided 
onsistent performan
e in
omparison with other fun
tions. We question whether the swit
hing-type wrapperfun
tion obs
ured information 
ontent for more 
omplex fun
tions in
luding absoluteerror and squared error.Our next trials investigated the properties of error metri
s expli
itly designedto en
ourage a robust mapping on the raw GP output axis, spe
i�
ally a 
lusterseparation metri
 and a lo
al wrapper fun
tion was introdu
ed. Our 
lass separationmetri
 was intended to emphasise the di�eren
e between two 
lusters in the raw GP45



46output. We found that this metri
 returned the most 
onsistent results a
ross the setof 
lassi�
ation problems evaluated.In terms of future work, we believe that the reformulation of the 
lassi�
ationproblem as a 
lustering problem will provide the basis for one 
lass 
lassi�ers andthe use of multi-obje
tive optimisation te
hniques for problem de
omposition. Inessen
e, by fo
using on the behaviour of the raw GP output values, the 
lassi�
ationproblem takes the form of a 
lustering problem. When this is the 
ase, methods frommultiobje
tive optimisation are appli
able, thus providing for problem de
ompositionand multi-model solutions [16℄.Moreover, one 
lass 
lassi�
ation may now be appropriate as the task is now de-�ned in terms of establishing a mapping from input to output spa
es (over exemplarsfrom one 
lass) in whi
h the obje
tive is expressed in terms of establishing raw GPoutput values with a spe
i�
 lo
al distribution. (e.g. a Gaussian distribution).Finally, we note that the lo
al wrapper approa
h may lead to a Bayes modelformulation of the 
lassi�
ation problem. Su
h a s
heme is not appli
able to the
urrent lo
al wrapper model (e.g. as implemented using a post-pro
essing te
hnique)as the underlying assumptions for the two models are inherently di�erent.
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.1: Median bezier smoothed minimum, median average and median maxi-mum �tness at ea
h tournament for the BREAST 
lassi�
ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.2: Median minimum, median average and median maximum �tness at ea
htournament for the C-HEART 
lassi�
ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.3: Median minimum, median average and median maximum �tness at ea
htournament for the LIVER 
lassi�
ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.4: Median minimum, median average and median maximum �tness at ea
htournament for the TS 
lassi�
ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.5: Median minimum, median average and median maximum �tness at ea
htournament for the SEXTIC regression problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
(
) Maximum Page Count 72Figure A.6: Median minimum, median average and median maximum �tness at ea
htournament for the TWOBOX regression problem
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