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AbstratGeneti programming o�ers freedom in the de�nition of the ost funtion that isunparalleled in the realm of supervised learning algorithms. However, this freedomgoes largely unexploited in previous work. Here, we revisit the design of �tnessfuntions for geneti programming by expliitly onsidering the ontribution of thewrapper and ost funtion.Within the ontext of supervised learning, as applied to lassi�ation problems,a lustering methodology is introdued using ost funtions whih enourage max-imisation of separation between in and out of lass exemplars. Through a series ofempirial investigations of the nature of these funtions, we demonstrate that lassi-�er performane is muh more dependable than previously the ase under the genetiprogramming paradigm. In addition, we also observe solutions with lower omplexitythan typially returned by the lassially employed hits (or even sum square error)based ost funtions.

xi



Chapter 1IntrodutionOne of the purported advantages of Geneti Programming (GP) relative to othersupervised learning algorithms is that there is muh more freedom in how the �tness(ost) funtion is expressed.A ost funtion, as in neural networks, typially measures the distane betweenthe atual output of a solution and the desired output of a solution, indiating thesuitability of that solution for solving a partiular problem [7℄. In GP, the ostfuntion is paired with a wrapper funtion whih onstrains the value of the ostfuntion within a desired interval. Beause the wrapper ats as an interfae to theost funtion, mediating between the ranking subsystem in GP and the feedbak ofthe ost funtion, GP permits additional freedom in the de�nition of the ost funtion.For example, neural networks are typially required to have a ost funtion thatis smooth and therefore di�erentiable [7℄ whereas no suh requirement exists for GP[10℄. To date, however, GP �tness funtions do not neessarily build on this freedomin a manner designed to enourage the identi�ation of robust solutions [12℄. In thiswork the design of �tness funtions for lassi�ation problems is revisited by expli-itly onsidering the ontributions made by wrapper and ost funtion. Spei�ally,the GP wrapper is used to transform the 'raw' GP output, a value limited only bythe numerial range of the omputing platform, to an interval appropriate for distin-guishing lass. Here binary lassi�ation problems are onsidered, thus typial rangeswould be [0, 1] or [−1, 1]. Common pratie has been to utilize a wrapper based on abinary swithing funtion, as in Figure 1.1 (a).1
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1 x > 0
(1.1)The ensuing �tness (ost) funtion then merely ounts the number of mislassi�edtraining exemplars. The hypothesis of this work is that suh an approah to design-ing a wrapper-ost funtion ombination results in sub-optimal lassi�ers with poorrobustness properties. Spei�ally, the swithing type wrapper hides useful informa-tion: it does not expliitly enourage the raw GP output values to be distributed awayfrom the swithing point of the wrapper as in Figure 1.1 (a). In partiular, as long asthe GP output points for eah lass fall on the orret side of the swithing funtiontransition, there will be zero error, irrespetive of their distane from the wrapperlass transition. Conversely, a wrapper with a �nite transition region between the twolass labels would provide the basis for a more informative ost funtion, thereforequantifying the degree of any error or the degree of separation urrently ahievedbetween two lasses, as in Figure 1.1 (b). In this ase, points on the GP output axisat the transition region of the wrapper funtion will result in a nonzero error. Er-ror minimisation now orresponds to both mapping points to the orret side of thewrapper transition point and maximising the distane from the transition point. Weonsider suh a solution as more robust as the greater separation between two lasseson the GP output axis is less likely to result in previously unseen exemplars beingmapped to the wrong side of the wrapper transition1 (a mislassi�ation). Moreover,the new wrapper also provides the basis for establishing ertainty in the lassi�ation,as opposed to merely presenting the result as a binary in lass or out of lass answer.In this work, we propose taking this onept further by onentrating on expliitlymaximising the separation between in and out of lass exemplars by expressing the1Training data is impliitly assumed to be representative of the wider (unseen) test data, as perany mahine learning lassi�er.



3
(a) Wrapper with swithingfuntion (b) Wrapper funtion with�nite transition regionFigure 1.1: a) a swithing type wrapper whih obsures error information; b) an errorfuntion with a smooth transition between lass labelsproblem in terms of the original GP output values, that is, the horizontal axis inFigure 1.1. We identify the luster means for eah lass and measure the error by�nding the separation between luster means. We then use a nearest neighbourstrategy to determine the lass membership of previously unseen data. We intendthis to enourage the development of a robust separation between lasses, based onthe training data. We also employ a loal wrapper for prediting in or out of lassmembership, plaing inreased emphasis not only on the lass separation but alsoon preditable lass membership behaviour, as de�ned in terms of variane from themean. In both ases, an inreased emphasis on a lear separation between lustersmay o�er an improvement in post-training GP performane.This thesis is organised into several hapters. Chapter 2 summarises previous workin geneti programming related to our hypothesis. Chapter 3 desribes our methodol-ogy and details of our linear geneti programming framework and evaluation methods.Chapter 4 summarises our experimental design and explains our observations. Chap-ter 5 o�ers our onlusions and suggests future avenues of exploration in this area ofresearh.



Chapter 2Previous WorkFor lassi�ation and regression problems, previous studies in evolutionary ompu-tation have introdued a variety of tehniques for expressing error in the genetiprogramming evaluation phase. Here we desribe the relevant methodologies whihled to and informed our exploration of lustering methodologies for geneti program-ming lassi�ers. In the following, raw GP output denotes the value returned by theGP model before appliation of the wrapper funtion, that is, a value found on thehorizontal axis as opposed to the vertial axis of Figure 1.1.
2.1 Evolutionary ComputationEvolutionary omputation is a family of omputational searh methods inspired bythe inremental and adaptive ation of the proess of biologial evolution [5℄. Bio-logial evolution, as it is ommonly understood, is an emergent proess ourring inpopulations omposed of individuals engaging in mutual ompetition for resoures,whose physial harateristis are determined by an inherited sheme passed on duringreprodution. Observing the �multitude of forms�1 produed by the systemati e�etof biologial evolutionary operators, there an be derived a nominal motivation forthe evolution of omputational methods, using biologial evolution for metaphorialinspiration [3, 10℄.1�On separate ontinents, and on di�erent parts of the same ontinent when divided by barriersof any kind, and on outlying islands, what a multitude of forms exist [...℄�, Charles Darwin in [3℄.4



52.1.1 Tehniques in Evolutionary ComputationWithin the �eld of evolutionary omputation, geneti algorithms and geneti pro-gramming embody the notions of using evolutionary methods to produe both nu-merial solutions to problems (optimisation) and produe programmati solutions toproblems (modelling), respetively.Geneti algorithms and geneti programming address fundamental mahine learn-ing design problems by taking advantage of the inremental improvement o�ered byan evolutionary approah.In the onstrution of a mahine learning algorithm, we are faed with a varietyof design hoies a�eting the algorithm's appliability and performane in assortedoperational environments. A learner must be able to determine how suitable a hosenstrategy is for reahing its goal. This implies that a target funtion must be judiiouslyhosen based on prior knowledge of the problem environment to provide the learnerwith adequate feedbak about its progress. A learning mahine must also use anappropriate representation for the problem and the environment in whih solutionswill be loated. Finally, a learner whih uses a number of steps in suession to solvea problem must be able to disern whih steps proved valuable in solving the problemso that positive or negative redit may be assigned to those steps [17℄.Evolutionary omputation addresses the redit assignment problem through theation of evolutionary modi�ation operators. When mutation or rossover our fora given individual or pair of individuals, any hange in �tness an be asribed tothe hange aused by the last mutation or rossover in the individual's omposition.Thus, every hange in an individual that is the diret result of evolutionary operationis evaluated and onsequently sored in the next generation or the next evaluation.Credit is assigned automatially.Representation and goal measurement are typially handled through a priori or



6expert knowledge. Even in these ases, some adjustments may be left to the evolu-tionary proess where possible, resulting in a self-tuning mehanism.2.1.1.1 Geneti AlgorithmsIn the ase of geneti algorithms, evolutionary operators operate on linear sequenesof genes, or strings. The representation for suh a string takes one of three forms:bit, integer or real-valued, seleted on their relative appropriateness to the problemdomain. There is typially a representative mapping between the genes of this stringand potential solutions to the problem in question. In [5℄, two examples of optimi-sation problems whih may be solved through the appliation of geneti algorithmsinlude
• the Eight Queens Problem (where the solution spae is represented by eightnumbers indiating the row on whih eah queen ought to be plaed, notingthat any two queens may not share a olumn, diagonal or row. The �tness fora solution is quanti�ed by ounting the number of illegal queen plaements. )
• the 0-1 Knapsak Problem (where the solution spae is represented by a binarystring of length n, where eah gene represents the inlusion or exlusion of anitem i with ost ci and value vi. The �tness for a solution is quanti�ed by themagnitude of the sum of the produts of the osts and values of the inludeditems.)In eah of the above example appliations of geneti algorithms, a string is modi�edby repeated appliation of evolutionary seletion and searh operators. The stringof numbers itself diretly represents a solution to the problem. This proess may behalted at any time or when a hosen stop riterion is reahed. The best solution isolleted from the population of evolved solutions.



72.1.1.2 Geneti ProgrammingWhere geneti algorithms tehniques fous on the evolution of solutions to problemsfrom disrete and ontinuous optimisation, geneti programming evolves programswhih solve modelling problems. Here, the �tness of a andidate solution is deter-mined by exeuting and omparing its output with the orret output for a problem,that is, a supervised or reinforement learning ontext. The representation for genetiprogramming has historially taken the form of tree-based funtional expressions butit an take other forms, inluding linear programs, to whih we shall return in setion2.2.Among other appliations, geneti programming an be used in the ase of lassi-�ation problems and regression problems, as in [10℄, where geneti programming isused to
• produe deision trees for the intertwined spirals problem;
• model an unknown funtion through symboli regression.Geneti programming typially follows an algorithm similar to that of geneti algo-rithms, with the main di�erene being that the evaluation step involves exeution ofprogram instrutions [5, 8℄. Algorithm 1 on the following page outlines the form ofthe generi evolutionary omputation paradigm.Returning to the mahine learning design hoies disussed in Setion 2.1.1, we�nd that the redit assignment problem is partially addressed in the e�ets of steps2 to 4. In step 2, eah andidate solution (individual) is evaluated aording to the�tness funtion. Steps 3 and 4 selet individuals for mutation and reprodution baseddiretly on these �tness values. Beause the population is initially systematiallydiversi�ed, �tness is also initially very diverse. Eah mutation and rossover resultsin hanges to individuals - those hanges are evaluated in the next iteration of the



8Algorithm 1 The typial geneti programming algorithm. [5℄1. Initialise a population of N individuals. Choose the probability of mutation,
p(m), and probability of rossover, p(c).2. Evaluate eah individual, i, aording to the �tness funtion, reording themaximum �tness, fm as well as eah individual's �tness, fi.3. Assign to every individual a probability of reprodution p(r) = fi

fm
.4. Test p(r) for eah individual to determine inlusion as a parent in a matingpool, P .5. For eah parent in the mating pool, apply the mutation operator with proba-bility p(m) and apply rossover (with a randomly seleted partner) with prob-ability p(c), produing one or two hildren.6. Replae eah parent with its hild.7. If the population has not yet onverged and not yet reahed a maximum numberof generations, go to step 2.algorithm. Thus, every inremental hange toward or away from a partiular strategyis evaluated, ensuring that redit is assigned for all hanges.The geneti programming environment has ertain harateristis seleted in om-mon with other methods for evolutionary omputation. These inlude many optionsof whih a few are listed here in parentheses.

• representation (tree-strutured, linear instrutions, graph based)
• initialisation (random or partially onstrained)
• evaluation (�tness funtions)
• seletion operators (�tness-proportional, tournament based, degree of elitism)
• searh operators (rossover, mutation)In our work, we have used the modi�ed geneti programming algorithm desribed



9Instrution Type Generi Formreg-reg Rx ⇐ Rx opcode Ryreg-input Rx ⇐ Rx opcode Iyonstant Rx ⇐ 'n' bit integer onstantTable 2.1: Instrution types for our linear geneti programming modelhere as Algorithm 2. The main di�erenes in our approah inlude (steady state) tour-nament seletion rather than a generational approah and a linear representation forindividuals rather than tree-based as in Koza's anonial geneti programming model[10, 11℄. These are desribed more fully in the following setion. The ontribution ofthis thesis, however, is independent of the partiular form of GP employed.2.2 Page-based Linear Geneti ProgrammingWe employ a �xed length, linear GP representation in whih individuals take the formof instrution sequenes, grouped into pages of a ommon instrution ount, as in [8℄.To de�ne maximum program length, we a priori state maximum page ount. Thenatural impliation of this is that the initial population is initialised over the totalrange of permitted program lengths; whereas a variable length representation beginswith individuals initialised over a limited range (of short programs) and lets them growup to some a priori spei�ed size limit. The �xed length representation is enfored bylimiting rossover to the exhange of a single equal length page of instrutions betweentwo parents. Eah 2-address instrution is represented by an integer and therefore apage of instrutions is a sequene of integers whih are deoded at run-time.2.2.1 RepresentationThe linear programs operate upon a (virtual) register-based mahine. The instru-tion format supports three instrution types: register-register, register-input and on-stants, see Table 2.1. Opodes onsidered within this work are limited to the four



10Algorithm 2 Algorithm for the L-GP arhiteture desribed in Setion 2.2.1. Generate the population randomly. Let T be the number of ompleted tourna-ments (initially zero).2. Randomly selet 4 tournament partiipants from the population.3. Evaluate eah individual in the tournament and rank them.4. Copy the best two individuals over the worst two individuals.5. Perform rossover and mutation aording to their respetive probabilities ofourrene.6. Inrement T ; if T is less than the tournament limit (50000) and the populationhas not yet onverged, go to 2.7. Reord the best individual, other desired statistis.arithmeti instrutions alone (addition, subtration, multipliation, proteted divi-sion), and operate on either two registers or a register and input from the data set.The range of register referenes Rx and Ry is de�ned a priori by the number of (gen-eral purpose) registers alloated to the (virtual) register mahine. Naturally the rangeof referenes to inputs, Iy, is de�ned by the number of features in the data set. Pre-vious work has established empirially that the arithmeti operators are su�ient forsolving a wide range of problems, inluding lassi�ation [13℄ and intrusion detetion[18℄.2.2.2 InitialisationIndividuals are initialised by �rst seleting the maximum page ount, with uniformprobability over the interval [1, ...MaxPages]. Eah instrution is then initialised by�rst seleting an instrution type where instrutions de�ning onstants are half aslikely as either register-register instrutions or register-input instrutions. That is tosay, without suh a bias, half of the instrutions omprising an individual would takethe form of register-register and register-input instrutions, and the other half would



11desribe onstants [8℄.2.2.3 EvaluationIn the geneti programming evaluation phase, individuals are assigned �tness valuesbased on a problem-dependent �tness metri. Fitness for an individual is typiallyde�ned in terms of the individual's ability to orretly solve the problem. For example,in lassi�ation, the �tness of an individual may orrespond to the number of orretlylassi�ed exemplars. For a regression problem, the �tness of an individual might beinterpreted as a funtion of the distane between the orret points and the andidatepoints produed by the GP individual.The �tness funtion sores or ranks individuals, enabling though biasing the rank-ing and seletion phase. The seletion of appropriate �tness funtions for lassi�ationproblems forms the ontribution of this thesis and is presented in detail in Setion 3.2.2.4 SeletionWe used steady-state tournament seletion with a tournament size of four. The fourindividuals are seleted with uniform probability from the population and rankedaording to the evaluation funtion. The best two individuals in the tournament areseleted for reprodution. They are opied over the worst two tournament individualsand rossover and mutation applied.The 'opy' operator replaes the losers of the tournament in the original populationand is inherently elitist (best of the population is guaranteed to survive). Moreover,suh a sheme is known to result in a higher takeover rate2 than generational seletion[6℄.2Poor performing individuals die out more quikly than with the ase of proportional seletion.



122.2.5 Searh (Crossover and Mutation)The rossover operator onsists of swapping randomly seleted single pages of equalinstrutions between two parent individuals. This guarantees that the length of eahindividual remains �xed. An annealing shedule is used to inrementally modify thenumber of instrutions onstituting a page during training [8℄.In addition to the rossover operator, L-GP typially employs two types of mu-tation. The �rst onsists of randomly hoosing an instrution within an individualand performing the XOR operation between that instrution and a random integer.Mutation therefore provides an avenue for introduing instrutions not urrently inthe population. The seond mutation strategy is to swap two randomly hosen in-strutions, again within the same individual. This establishes a path for investigatingalternative instrution orders within the same individual. Both have assoiated prob-abilities de�ning the frequeny of appliation.2.3 Problem RepresentationsHits A lassi measure of �tness for lassi�ation problems is the hits-based metri,as in Koza's geneti programming experiments [10℄. A hits-based metri measures the�tness of a partiular problem solving method in terms of the number of subinstanesof the problem whih that method orretly solves. In terms of geneti programming,the hits-based �tness of an individual would orrespond to the number of exemplars ina training data set whih are orretly lassi�ed by the individual into their respetivelasses.Typially, the hits-based metri is enabled by the use of a wrapper funtion whihmaps the raw output of a GP individual to a disrete lassi�ation interval, as inEquation (1.1) on page 2, where the disrete value indiates the GP lassi�ation. Thedrawbak of the swithing-type wrapper is that we are limited to binary lassi�ation



13problems, although this may be overome to some degree through a ombination ofexperts, as in ensemble programming, boosting or bagging [9℄ or through problemdeomposition [15℄.MSE / SSE The mean squared error and sum squared error metris are desribedby Banzhaf et al in [1℄.The sum squared error metri haraterises error as the sum, over all exemplars,of the squares of the magnitudes of the di�erenes between the atual outputs3, aand the desired outputs, d. In [1℄, Banzhaf et al use the following,
n
∑

i=1

(ai − di)
2The mean squared error metri is the sum of the squared error, divided by thenumber of outputs, n, as in [1℄,

1

n

n
∑

i=1

(ai − di)
2A useful feature of the squared error metri is that error is not distributed uni-formly. The error rate inreases quadratially as the magnitude of the absolute errorinreases. Additionally, dividing by n to obtain the mean squared error will temperlarge error values. Additionally, the error rate now is a ontinuous value, permittinggreater sensitivity to hanges in the GP performane.Weighted Hits Eggermont et al, in [4℄, desribe a method involving the ombina-tion of an error metri with weights whih are adjusted by a predetermined quantumat eah generation. Eggermont et al desribe the overall error f(x) for an individual3[1℄ makes no referene to the wrapper employed. Thus it is not lear whether the 'atual output'implies a linear wrapper (that is, the raw GP output is used diretly) or the raw GP output ismapped to an interval appropriate for interpretation in terms of a (binary) lassi�ation.
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x,

f(x) =
∑

r∈D

wr · error(x, r)where error(x, r) may be a swithing-type funtion, for example,
error(x, r) =

{

1 if x classifies data record r incorrectly
0 otherwiseor error(x, r) ould be a ontinuous funtion, as in mean squared error, desribedpreviously. The weights magnify errors whih our more frequently over time,thereby penalising individuals whih persist in mislassifying a partiular reord.This tehnique showed improvement over standard GP on some datasets and pro-dued omparable or inferior performane on others.Stati and Dynami Range Seletion Tree strutured GP is limited to a sin-gle output. Thus, when used with the swithing-type wrapper, Equation (1.1), it isformulated as a funtion with only two distint output values. This beomes a prob-lem in the ase of a lassi�ation problem involving multiple lasses, unless ompositetehniques are used to ombine multiple, separately evolved, binary lassi�ers to solvea single problem.One method for performing multiple lassi�ations without evolving separate las-si�ers is desribed as range seletion, by Loveard et al in [15℄. It is an extension ofthe onept of a binary swithing funtion. The binary swithing funtion Equation(1.1) assoiates two ranges of output values, (−∞, 0] and (0,∞), with the lass labels

0 and 1, respetively. The range seletion strategy divides the one dimensional spaeassoiated with the raw GP output into further intervals, with as many labels as thereare lass intervals.Loveard et al propose two strategies. The �rst is stati range seletion, where the



15intervals are �xed. However, they had more suess with dynami range seletion,where, for eah individual, its range intervals are determined at eah generation bysetting aside a portion of the training data. Thus, eah interval's limits are determinedusing a nearest neighbour algorithm on the outputs for these exemplars. Fitness takesthe form of ounting the number of times that exemplars from the remainder of thetraining set produe a raw GP output value lying in a region assigned the same lasslabel.2.4 Robustness and GeneralisationAn important riterion of quality in any mahine learning algorithm is the ability toprodue robust and, more importantly, general solutions. In [12℄, Kushhu de�nesrobustness as �the desired suessful performane of the solution when it is applied toan environment similar to the one it was evolved for,� whereas he de�nes generalisationto refer to the �performane of the [solution℄ during the testing proess�.We ontend that swithing-type wrappers ontribute to poor generalisation in thatthey obsure �ne di�erenes in the raw GP output to suh an extent that the GPalgorithm is rewarded for behaviour not onduive to identifying robust solutions.For example, a drawbak of range seletion in terms of robustness is that, as withthe swithing-type wrapper funtion, it obsures distintions between output valueswithin the seleted intervals. No reward is provided for mapping exemplars to rawGP output values that both orrespond to the relevant region and are distant fromthe region boundaries.This onsideration is important in our work as our lustering methodology, byvirtue of its lose assoiation with the raw output of the geneti programming system,may expliitly reward a mapping that maximises the separation between lasses, inomparison with methods based on swithing funtions.



Chapter 3Methodology3.1 Error FuntionsSine Koza popularized the Geneti Programming approah, the wrapper for lassi-�ation problems has taken the form of a swithing funtion, Figure 1.1 (a) [10, 11℄.As indiated in the introdution, we note that suh a wrapper e�etively throws awaya lot of useful information that ould adversely a�et the generalisation performaneof the resulting GP lassi�er. There is, however, a long history of wrapper funtiondevelopment within the ontext of neural networks1. Moreover, the seletion of awrapper also has diret impliations for the nature of the orresponding �tness (ost)funtion. A wrapper based on the swithing funtion limits the �tness funtion toa mere ount of the number of orretly lassi�ed exemplars. That is to say, theorresponding distane metri is binary. Conversely, neural networks are typiallyrequired to have an ativation funtion that is smooth (i.e. di�erentiable). If weonsider the partiular ase of global ativation funtions2, this results in a require-ment for a monotonially inreasing funtion, where the most popular operator forahieving this is the sigmoid funtion [7℄, Figure 1.1 (b).As established in the introdution, this now provides the basis for exemplar errorsthat inrease as the transition point of the ativation funtion is approahed, Figure1.1 (b), as well as when exemplars are expliitly mislassi�ed (wrong side of the1The neural network literature refers to wrapper funtions as ativation funtions [7℄.2Loal ativation (wrapper) funtions have also been widely utilised in the neural network liter-ature, partiularly within the ontext of hidden layer neurons (e.g. Radial basis funtion networksand Support Vetor Mahines). 16



17Error Name Wrapper Used Error (a=atual, t=target)absolute 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|Bernoulli (1.0 + exp(−gpout))
−1 − log(a + t − 1.0)Hits-Based (gpout > 0)? a = 1 else a = 0 1 − equal?(a, t)Minkowski 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|rsquared 2 ∗ (1.0 + exp(−gpout))
−1 − 1 |actual − target|2Table 3.1: Funtions used in Experiment 2. (The equal?(a, t) funtion for hits-basederror returns 1 if a and t are equal, and 0 otherwise.)wrapper transition point). Moreover, as eah error distane is now real valued, weare also free to build a �tness (ost) funtion that penalizes or weights errors indi�erent ways.In this work we will onsider �tness funtions based on one of �ve forms of errordistane - absolute, Bernoulli, Minkowski, and squared - inluding the swithing typewrapper. The seletion of these funtions was informed by previous neural networkliterature [7, 19℄, where ost funtions have been extensively evaluated, in omparisonwith the GP literature. Table 3.1 summarizes the assoiation between wrapper anderror metri. Spei�ally, the Bernoulli �tness funtion assumes a probabilisti modelfor the lassi�ation problem (labels are binary) [20℄, thus the ativation funtionmaps the 'GPout' axis to the unit interval, using a sigmoid type global mapping, e.g.Figure 1.1 (b), limited to the interval [0, 1]. The assoiated Bernoulli error metriapplies an exeptionally high penalty to any exemplar mislassi�ation. We also notethat suh a formulation is equivalent to the entropy penalty funtion. The absoluteerror assumes an equal penalty for any error, and makes use of the wider interval ofthe hyperboli tangent wrapper funtion, Figure 1.1 (b). Minkowski and square errorapply an inreasing (dereasing) penalty to larger (smaller) exemplar errors relativeto an error distane of unity, thus the wider range of the sigmoid wrapper funtion isagain appropriate. In all ases the �tness funtion is merely the sum of error takenaross all training exemplars for a given wrapper / error distane metri ombination.



183.2 Clustering and Loal Wrappers for GP Evaluation MetrisIn the previous setion, we introdued a rationale for utilising non-swithing wrapperfuntions and their orresponding error metri to enourage a wider lass separationover training exemplars. In this setion, we take a di�erent approah to enouragingsuh a separation. To do so we reognise that the overall objetive is to maximisethe distane between points on the 'raw' GP output axis representing the same lass.Viewed from this perspetive, the objetive is to map the lass data into separatelusters (on the 'raw' GP output axis) whose intraluster variane is minimised, butinterluster distane is maximised, as in Figure 3.1. Suh a rationale does not expli-itly use a wrapper funtion for �tness evaluation.3Setion 3.2.2 proposes a loal wrapper funtion approah. In this ase, error isdesribed in terms of two Gaussian distributions, one for in lass and one for outlass. Error is minimized with respet to boh lass and (loal) wrapper membership.Class separation is now less diretly represented, but takes the form of an indiretproperty of minimising membership of the wrong distribution.3.2.1 Class Separation Distane MaximisationLet us onsider the senario of evaluating a single individual on all the exemplars of atraining or test data set for a binary lassi�ation problem. The data set, R, ontainstraining exemplars. Eah exemplar pi is itself a pair, onsisting of an ordered tupleof input features and an a priori lassi�ation label li. Exeuting a GP individual(program) on eah exemplar pi generates a set S of pairs of the form (gpout(i), li),where gpout(i) is the raw GP output on exemplar i.Now that we have GP outputs and a label for eah GP output assigning it toa partiular lass, we an now haraterise the respetive lass distributions in the3The wrapper funtion may be onsidered linear or an identity funtion.
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class Bclass A GPoutput

GPoutputclass Bclass AFigure 3.1: Distribution of GP output with and without suessful lustering on theGP output number line.GP output spae. For this we draw on metris from pattern reognition and featureseletion, partiularly the mean, variane and lass separation distane, desribed in[2, pp. 516-517℄. We reprodue these here for referene.Let us de�ne Sk to be a set ontaining every gpout(i) in S for whih li = k. Thatis, Sk ontains all the GP output values in S that were generated for a reord i withlabel k ∈ {0, 1}. Then the approximate lass mean4 is alulated as in Equation(3.1). (Here gpout(j) refers to elements of Sk.) Similarly, the variane is expressed inEquation (3.2) using the approximate lass mean.
µ̂k =

1

|Sk|

|Sk|
∑

j=1

gpout(j) (3.1)
σ̂2

k =
1

|Sk|

|Sk|
∑

j=1

(gpout(j) − µ̂k)
2 (3.2)Finally, Equation (3.3) haraterises the distane between the approximate lassmeans, normalised by the approximate lass variane.

D̂k1k2
=

|µ̂k1
− µ̂k2

|
√

σ̂2
k1

+ σ̂2
k2

(3.3)In our experiments, we use the value D̂k1k2
to rank individuals during the seletionphase. Thus, individuals are rewarded for generating a more distint separationbetween the two lasses, that is, maximising Equation (3.3). In summary, GP is4From [2℄: �The aret ... remind[s℄ us that these are estimates of the lass means based upon thetraining set[.℄�
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class 1 meanclass 0 mean
GPoutFigure 3.2: Identi�ation of in-lass (+) and out-lass (×) raw GP values using aGaussian model.expliitly rewarded for providing a mapping from a high dimensional input spae to aone-dimensional output spae suh that the lass separation distane of the raw GPoutput spae is maximised. Post-training, the model is applied to unseen data usinga nearest neighbour algorithm to determine lass membership.3.2.2 Loalised Wrapper-based GP ClassifersThe lassi�ation metri desribed in the previous setion provides the opportunity tobase the lassi�er output on a wrapper desribed by a loal membership funtion. (e.g.a Gaussian). In this ase, when unseen data is mapped to regions of the GP outputaxis that do not orrespond to the (luster) mapping identi�ed during training, theyshould be regarded as distint from the distribution used to develop the GP model,Figure 3.2.The wrapper for suh a loal membership funtion is built by estimating the meanand variane of eah lass over the orresponding raw GP output values (gpout). Erroris then expressed relative to eah of the individual lasses insofar as their membersonform to a normal distribution. The objetive is to enourage as many of the in-lass exemplars to appear as lose to the mean of the lass' Gaussian membershipfuntion as possible, and to distane themselves as far as possible from the mean of



21the opposite lass, or (where x is the in-lass and y is the out-lass),
inclasserror =

Nx
∑

i=1

(

1 − exp

(

−
1

2σ2
x

‖gpout(i) − µx‖
2

)) (3.4)
outclasserror =

Nx
∑

i=1

(

exp

(

−
1

2σ2
y

‖gpout(i) − µy‖
2

)) (3.5)where Nx is the size of the in-lass x and where the �tness of the individual is thesum of of the lass errors for both lasses and the minimum value denotes the �ttestindividual. Note that we evaluate these equations twie, one for eah set of pointsrepresenting lasses 0 and 1, to obtain the total error (that is, one with x = 0, y = 1to obtain the total error for lass 0 and again with x = 1, y = 0 to obtain the totalerror for lass 1). Note also that the normalisation ( 1√
2πσ

) typially assoiated with aGaussian distribution (enforing a unit integral area) is not utilised. This ensures thatthe minimal distane ondition, gpout(i) = µ1, returns a maximum membership (of 1).Without this onstraint, the error metri of (3.4) and (3.5) will not be appropriatelysaled.Relative to the luster separation approah of setion 3.5, the loalised wrapperapproah has the impliit advantage that, as both in-lass and out-lass error are a-umulated, seletion pressure enouraging separation between lusters is maintained.The drawbak of the loal wrapper approah relative to the luster separation metriis omputational; three passes through the training data are neessary before �tnessof an individual may be expressed. A pass through the training data is required toestimate the mean and a seond pass estimates the variane of the in-lass data. Athird pass through the entire training dataset is required to estimate lass member-ship, Equation (3.4) and (3.5). However, the program expressed by the individual isonly run one through the entire proess (to produe the raw GP output values).Post-training, we lassify test data by using the Gaussian funtion expliitly as a



22membership funtion, Equation 3.6, where x orresponds to an exemplar from the testdata set; gpout(x) is the raw GP output produed by the individual when evaluatedon exemplar x; and i is the lass for whih we are testing membership.
membership(x, i) = exp

(

−
1

2σ2
i

‖gpout(x) − µi‖
2

) (3.6)Then, the lass i to whih a GP individual assigns an exemplar x from the testdata is deided by hoosing i ∈ {0, 1} suh that the value of membership(x, i) ismaximised.



Chapter 4ResultsThis setion reports on two sets of experiments. In the �rst ase, the signi�aneof population size and program omplexity (instrution ount limit) are investigatedusing the hits �tness funtion. These are typially onsidered the prinipal designparameters assoiated with GP models [10℄. In doing so, we demonstrate that nei-ther parameter has a signi�ant impat on solution quality. Population size doeshowever appear to be orrelated with additional solution omplexity. The seondstudy onsiders the ontribution of loal and global wrapper operators as disussedin Chapter 3. The loal wrapper operators are shown to be signi�antly more robustthan their global ounterparts. Thus, from a pragmati perspetive, more onsidera-tion should be given to establishing an appropriate representation and �tness funtionthan testing the impat of size and omplexity onstraints.4.1 Initial Parameters for Geneti ProgrammingWe hypothesised that the maximum page ount and initial population size, beyondneessary minimum values, would have no signi�ant e�et on the median �tness andmedian program length of best-of-run solutions (programs). We used six data sets,of whih two are regression problems and four are lassi�ation problems. These aresummarised in Table 4.1.The datasets we have hosen bear ertain harateristis. The 'breast' and '-heart' datasets are medial diagnosis lassi�ation sets whih are known to supportauraies in the 80% to 90% range [14℄. The 'liver' lassi�ation problem dataset23



24Name # of exemplars Problem type Funtionbreast 699 lassi�ation --heart 303 lassi�ation -liver 345 lassi�ation -ts 192 lassi�ation -sexti 50 regression f(x) = x6 − 2x4 + x2twobox 10 regression f(x) = x0y0z0 − x1y1z1Table 4.1: Data sets used and their attributesis also based on medial diagnoses. The 'liver' set typially supports a lassi�a-tion auray of about 60% to 70% [14℄. The 'ts' dataset is an arti�ial benhmarklassi�ation problem frequently used in neural network and geneti programmingresearh [8℄. The dataset ontains points drawn from two intertwined spirals on a twodimensional Cartesian spae. The two regression problems, 'sexti' and 'twobox', areboth arti�ial datasets whih represent well known GP benhmarks [11℄. We empha-sise that our objetive is to provide for the omparative evaluation of the error-ostfuntion, as opposed to establishing new levels of performane on these datasets.Eah dataset was split into training and test partitions. The training partitionontained 75% of the exemplars in the original dataset while the test partition on-tained 25% of the exemplars in the original dataset. These partitions were generatedby randomly seleting exemplars with the onstraint that the ratio of lass member-ship among exemplars in the original dataset must be preserved in the training andtest sets.The experimental design is enumerated in Table 4.2. For eah dataset, we per-formed 50 independent runs where we varied two parameters, maximum page ount(for values of 24, 48 and 72) and initial population size (for values of 125, 500, 1000and 5000). For these runs, we pregenerated 50 random seeds and used this set ofseeds for eah ombination of maximum page ount and initial population size. Wetherefore bloked for the e�et of random initialisation in our experiments.



25Objetive (Corretly lassify exemplars) OR (�t a urve)Terminal Set x1, x2, x3, x4Funtional Set +,-,*,%, load onstantFitness Cases # of exemplars in datasetFitness Sum Squared ErrorSeletion Tournament (λ = 4) SeletionHits (Classi�ation) # of orret lassi�ationsHits (Regression) # of ases with abs. error < 0.01Maximum Page Size 8Maximum Page Count (24, 48, 72)Init. Population Size (125, 500, 1000, 5000)Termination 50000 tournaments or 100% hitsExperiments 50 independent runsTable 4.2: Parameters for the lassi�ation and regression problems desribed in Table4.14.2 DisussionUsing the experimental framework desribed in Setion 4.1, we examined the perfor-mane of linear geneti programming while varying the stati parameters of initiali-sation.We measured two aspets of performane for individuals in our experiments. Wereorded the �tness, in terms of the quartile hits sored by that individual on thetraining and test data, and the quartile program length, in terms of the individual'sinstrution ount after training. Intron removal was typially employed when evalu-ating solution instrution ounts, where this might result in a 70% to 80% redutionin instrution ount [1℄.For lassi�ation problems, hits are diretly measured by omparing the atualoutput of the swithing-type wrapper with the desired output from the data set'slass labels. We formulated the regression problems as data sets generated from thedesired funtion, omplete with inputs and outputs. A hit for a GP individual on aregression problem was de�ned as a math between the output of the individual andthe desired output from the data set, within a tolerane of ±0.01.
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Figure 4.1: Median hits (for training and test) by initial population size and maximumpage ount for the BREAST lassi�ation problem
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Figure 4.2: Median hits (for training and test) by initial population size and maximumpage ount for the C-HEART lassi�ation problemAdditionally, we reorded the minimum, average and maximum �tness sored ineah tournament. Using this statisti, we monitored the onvergene in �tness of theGP searh proess.The results we observe support the hypothesis that the population size, as wellas the maximum page ount, largely fail to a�et the outome of the linear genetiprogramming framework, enouraging exploration of more dynami means for mod-ifying performane. Observations supporting this onlusion are detailed in Setions4.2.1 to 4.2.3.4.2.1 Fitness (Hits)Figures 4.1 through 4.6 show the quartile hits for eah ombination of initial popu-lation size (125, 500, 1000, 5000) and maximum page ount. (24, 48, 72). As the
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Figure 4.3: Median hits (for training and test) by initial population size and maximumpage ount for the LIVER lassi�ation problem
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Figure 4.4: Median hits (for training and test) by initial population size and maximumpage ount for the TS lassi�ation problem
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Figure 4.5: Median hits (for training and test) by initial population size and maximumpage ount for the SEXTIC regression problem
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Figure 4.6: Median hits (for training and test) by initial population size and maximumpage ount for the TWOBOX regression probleminitial population size and maximum page ount are varied, we an observe no signif-iant hange in the median number of hits. Note that for the sexti problem, Figure4.5, the quartiles and median are all the same value. This implies that over 75% ofindividuals solve the problem orretly.4.2.2 Program LengthFigures 4.7 through 4.12 show the quartile program lengths for eah ombination ofinitial population size and maximum page ount. The page ount limits of 24, 48 and72 have orresponding instrution limits of 192, 384 and 576. (That is, a maximumof 8 instrutions per page.) There appears to be a orrelation between an inreasingmaximum page ount and the quartile program lengths. A maximum page ount of72 produes a muh wider spread than a maximum page ount of 24. Moreover, aslarger populations are employed, the solution length tends to inrease, relative to thesmallest population (125 individuals).4.2.3 Tournament FitnessIn the interest of verifying the onvergene of �tness, we reorded the median mini-mum, median average and median best �tness for eah tournament. We manipulatedthe initial population size and maximum page ount as before. Figures A.1 through
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Figure 4.7: Median program length by initial population size and maximum pageount for the BREAST lassi�ation problem
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Figure 4.8: Median program length by initial population size and maximum pageount for the C-HEART lassi�ation problem
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Figure 4.9: Median program length by initial population size and maximum pageount for the LIVER lassi�ation problem
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Figure 4.10: Median program length by initial population size and maximum pageount for the TS lassi�ation problem
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Figure 4.11: Median program length by initial population size and maximum pageount for the SEXTIC regression problem
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Figure 4.12: Median program length by the initial population size and maximum pageount for the TWOBOX regression problem



31A.6, on pages 48 through 53 (in Appendix A), display the results we reorded, withbezier urve approximation. Observing these diagrams, we an see that, for all prob-lem datasets, the minimum �tness tends toward zero over 50000 tournaments. In thease of the SEXTIC problem, inreasing the maximum page ount leads to an inreasein the number of tournaments required for onvergene. In addition, the smaller pop-ulation models appear to express more variation in the minimum-average-maximum�tness. Fators in�uening this would inlude the higher likelihood of (poorly per-forming) hildren replaing �tter individuals in the population (or replaement error)under a small population model than under a large population model.4.2.4 SummaryThe results in the preeding setions support the following observations:
• experimentally varying the population size and maximum page ount produesa negligible di�erene in quartile performane (in terms of hits); and
• an inrease in population size and maximum page ount appears to orrelatewith an inrease in program length.Having observed stable results under the modi�ation of these parameters, we turnedour attention to experimentally varying other aspets of the geneti programmingmodel, in partiular, our objet of interest, the error funtion.4.3 Error FuntionsGiven that our initial parameters for linear geneti programming failed to in�ueneoverall �tness and program length, we proeeded to examine the e�et of modifyingthe error funtion, running 50 trials for eah error funtion on eah data set. In ourinitial analysis we onentrate on the ase of global wrapper funtions, as introdued



32Objetive (Corretly lassify exemplars) OR (�t a urve)Terminal Set x1, x2, x3, x4Funtional Set +,-,*,%, load onstantFitness Cases # of exemplars in datasetFitness (Eah funtion from Table 3.1)Seletion Tournament (λ = 4) SeletionHits (Classi�ation) # of orret lassi�ationsHits (Regression) # of ases with abs. error < 0.01Maximum Page Size 8Maximum Page Count 24Init. Population Size 125Termination 50000 tournaments or 100% hitsExperiments 50 independent runsTable 4.3: Parameters for the error funtion experimentsin Setion 3.1, Table 3.1. The omparison between loal and global wrappers followsin Setion 4.4. Eah of these funtions was tested with the parameters desribed inTable 4.3.For this experiment, we used the results of the previous experiment as a guideline.To minimise exeution time, we �xed the initial population size and the maximumpage ount at values of 125 and 24, respetively. The varied quantity was the �tnessfuntion used during evaluation of programs. From the reorded observations, weextrated the median hits, median program length, median distanes between lassmeans and raw GP output.The error funtion is the only diret feedbak available to geneti programmingregarding the solution spae whih it explores. Varying the desriptiveness of infor-mation supporting this funtion should a�et the quality and quantity of feedbaka�orded to the GP searh proess.Beause eah funtion quanti�es error di�erently, it is impossible to diretly om-pare their error values. Thus, we inluded the hits-based metri as a baseline for errorand, post-training, applied a swithing-type wrapper to the remaining funtions toobtain a omparable ount of the hits.
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Figure 4.13: Median training and test perentage hits for the BREAST lassi�ationproblem with a maximum page ount of 24 and initial population size of 125.4.3.1 Median HitsThe median training and test hits were reorded for eah of the six datasets and areshown in Figures 4.13 to 4.18. As suh, better solutions are assoiated with a largerhits ount.For lassi�ation problems, the distintion most apparent is that between all errorfuntions and the Bernoulli error formulation. This error metri is outperformed bythe majority of other funtions on the BREAST dataset - the easiest of the problems.We omitted this funtion in further experiments. We next notie that the hits typemetri atually performed respetably aross all lassi�ation problems onsidered,with the absolute error metri also returning onsistently good results. All otherwrapper-metri ombinations did not perform as well. On spei� data sets, theother metris were able to return results with less variane, however, there is littleonsisteny to this property aross di�erent data sets.For the regression problems, we an also ignore the Bernoulli funtion as its de�ni-tion only holds in the ase of lassi�ation problems. For both the regression datasets(SEXTIC and TWOBOX), the most reliable results are seen in the spetrum ofMinkowski error funtions between the absolute error funtion and the squared fun-tion. For the SEXTIC problem, we see that the absolute error funtion (and thesimilar low end of the Minkowski spetrum of funtions) produes poor performane.
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Figure 4.14: Median training and test hits for the C-HEART lassi�ation problemwith a maximum page ount of 24 and initial population size of 125.
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Figure 4.15: Median training and test hits for the LIVER lassi�ation problem witha maximum page ount of 24 and initial population size of 125.
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Figure 4.16: Median training and test hits for the TS lassi�ation problem with amaximum page ount of 24 and initial population size of 125.
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Figure 4.17: Median training and test hits for the SEXTIC regression problem witha maximum page ount of 24 and initial population size of 125.
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Figure 4.18: Median training and test hits for the TWOBOX regression problem witha maximum page ount of 24 and initial population size of 125.
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Figure 4.19: Quartile pruned program length for the best individuals on the BREASTlassi�ation problem with a maximum page ount of 24 and initial population sizeof 125.4.3.2 Median Program LengthWe olleted the quartile pruned program lengths for the best-of-run programs, Fig-ures 4.19 to 4.24. For the regression problems we onsidered (SEXTIC and TWOBOX),the hits-based and squared error metris produed programs with signi�antly greaterlengths (as measured at the 95% on�dene interval using a standardised student T-test). For lassi�ation problems, the hits and square error metris again resulted inmore omplex individuals, but was no longer neessarily signi�ant at the 95% on�-dene interval. (e.g. BREAST returned similar omplexity aross all metris whereasTS again established hits and square error as the most omplex solutions.) However,we do note that as problem di�ulty inreases, the hits and square error metris tendto result in more omplex solutions relative to the other metris onsidered.4.3.3 SummaryThe results in the preeding setions support the following observations:
• global error funtions are mostly indistinguishable in terms of hits-based per-formane;
• most global error funtions support generalisation to the test set, but show poorrobustness in that they do so unreliably; and
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Figure 4.20: Quartile pruned program length for the best individuals for the C-HEART lassi�ation problem with a maximum page ount of 24 and initial popula-tion size of 125.
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Figure 4.21: Quartile pruned program length for the LIVER lassi�ation problemwith a maximum page ount of 24 and initial population size of 125.
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Figure 4.22: Quartile pruned program length for the TS lassi�ation problem witha maximum page ount of 24 and initial population size of 125.
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Figure 4.23: Quartile pruned program length for the SEXTIC regression problemwith a maximum page ount of 24 and initial population size of 125.

 0

 50

 100

 150

 200

 250

 300

 350

squaredmin1.8min1.6min1.4min1.2hitsbasedbernoulliabs

P
ru

ne
d 

Q
ua

rt
ile

 S
ol

ut
io

n 
Le

ng
th

 (
In

st
ru

ct
io

n 
C

ou
nt

)

Error Functions

Pruned Quartile Solution Length vs. Error Function (TWOBOX_pruned data set, pop. size 125, max. page count 24)

Figure 4.24: Quartile pruned program length for the TWOBOX regression problemwith a maximum page ount of 24 and initial population size of 125.
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• in terms of program length, the hits-based and sum squared error metris pro-due the most omplex individuals.In this result, we observe that, while global error funtions demonstrate potential forhigh performane aross many initialisations, high performane repeats only inter-mittently in the sample. In the next experiment, we examined loalised methods inan e�ort to promote more reliable disovery of solutions.4.4 Clustering and Loal Wrapper for GP Evaluation MetrisIn this setion, we introdue the proposed lass separation distane metri and a loalwrapper error metri. We used the hits-based and square error metris as a baseline.To produe omparable hits totals for the latter three methods, we had to expresseah metri's output in terms of hits (post training) through unique methods. Forthe squared error metri, we used the swithing-type wrapper post-training, as inprevious examples.For the lass separation distane metri, during the test phase, we determined lassmembership using a nearest neighbour strategy. For eah exemplar, we determinedraw GP output, then found the nearest neighbouring lass mean (on the GP outputaxis) and assigned this exemplar to the lass orresponding to that mean. The lassmeans are obtained during the training phase.For the loal wrapper ase, we establish the mean and variane for both lassesduring training and use these during testing to selet lass membership aording toa maximum membership strategy. That is, unseen exemplars are lassi�ed aordingto the Gaussian funtion whih maximises their membership, where the Gaussianin question is generated from the mean and variane assoiated with eah respetivelass during the training phase. This is the assignment rule desribed in Setion 3.2.2.
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(b) testFigure 4.25: Quartile training and test hits for the BREAST dataset with global andloal wrapper funtions4.4.1 Raw Hits for the Loal Wrapper Method on Raw GP OutputIn examining the quartile hits on the lassi�ation datasets, shown in Figures 4.25through 4.28, we observe that the variane in the ase of lassi�ers trained using ahits metri and squared error metri is signi�antly higher than that for the lusterseparation error funtion. We also see that the onsisteny of performane arossall four lassi�ation datasets for the lass separation distane metri is partiularlygood, whereas the loal wrapper metri appears to overspeialise on training data onspei� datasets. That is to say, the variane on training data is very low whereasthat on test data is signi�antly higher. With respet to the squared error metri,a lower variane in lassi�er performane was established relative to the hits basedmetri, indiating that the additional feedbak provided by this metri was useful,although not neessarily su�ient to provide better median performane. The hitsbased wrapper tends to return the most variation in lassi�er behaviour, a hara-teristi that frequently provides the best single lassi�er over a set of initialisations(enourages a lot of exploration during training) but at the expense of repeatabilityin the searh proess. Conversely, the luster separation wrapper appears to providethe most onsistent lassi�er behaviour, as indiated by the high median and tighterror bars, irrespetive of dataset.
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(b) testFigure 4.26: Quartile training and test hits for the C-HEART dataset with globaland loal error wrapper funtions
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(b) testFigure 4.27: Quartile training and test hits for the LIVER dataset with global andloal error wrapper funtions
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(b) testFigure 4.28: Quartile training and test hits for the TS dataset with global and loalerror wrapper funtions
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Figure 4.29: Quartile pruned program lengths for the BREAST dataset with fourlassi�ation metris based on raw GP output
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Figure 4.30: Quartile pruned program lengths for the C-HEART dataset with fourlassi�ation metris based on raw GP output4.4.2 Pruned Program Lengths for Raw GP MethodsFigures 4.29 through 4.32 summarise quartile pruned program length, following theremoval of useless (ie intron) instrutions. On the simpler problems of BREAST andC-HEART, similar solution omplexities are returned. In the ase of the more hal-lenging problems (Liver and Two Spirals), the luster separation and loal wrappermetris returned signi�antly shorter programs, where Figure 4.27 indiates that nopenalty has ome to the lassi�ation performane.4.4.3 ConsequenesThe results in the preeding setions support the following observations:
• the hits-based wrapper generalises to the test set but annot be alled a robust
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Figure 4.31: Quartile pruned program lengths for the LIVER dataset with four las-si�ation metris based on raw GP output

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

class_sepsquaredhitsbasedbernoulliabs

P
ru

ne
d 

Q
ua

rt
ile

 S
ol

ut
io

n 
Le

ng
th

 (
In

st
ru

ct
io

n 
C

ou
nt

)

Error Functions

Pruned Quartile Solution Length vs. Error Function (TS_pruned data set, pop. size 125, max. page count 24)

(a) trainingFigure 4.32: Quartile pruned program lengths for the TS dataset with four lassi�a-tion metris based on raw GP output



44solution, in that it appears to su�er from poor repeatability (that is, it is de-pendent on the initialisation and su�ers wide variane in quartile performane);
• the loal wrapper method repeatably produes good individuals on the trainingset but only partially generalises to the test set (nevertheless, the upper quartileand median nearly overlap);
• the lass separation distane metri ombines both good generalisation androbust (repeatable) performane.Although the loal wrapper method failed to produe learly robust solutions for theproblems we onsidered, the lass separation distane metri provided both generaland robust behaviour onsistently aross all data sets.



Chapter 5ConlusionWithin a (linear) geneti programming framework, we examined the in�uene of initialpopulation parameters on the outome of geneti programming models on seleteddatasets representing lassi�ation and regression problems.Our results indiate that initial parameters do not signi�antly in�uene the �tnessof resulting solutions within the ontext of a �xed length representation. Populationsize does appear to be orrelated with solution omplexity. This result enouragesinvestigation of the e�ets of funtional parameters, motivating our study of errorfuntions in geneti programming. That is to say, a better method for in�ueningsolution quality is through the de�nition of the �tness funtion than seletion ofpopulation parameters.We examined the role of wrapper-based error funtions in GP �tness. In this ase,we observed that the hits-based metri performed most onsistently aross lassi�-ation problems, followed by the absolute error metri. For regression problems, wefound that the Minkowski series of error funtions provided onsistent performane inomparison with other funtions. We question whether the swithing-type wrapperfuntion obsured information ontent for more omplex funtions inluding absoluteerror and squared error.Our next trials investigated the properties of error metris expliitly designedto enourage a robust mapping on the raw GP output axis, spei�ally a lusterseparation metri and a loal wrapper funtion was introdued. Our lass separationmetri was intended to emphasise the di�erene between two lusters in the raw GP45



46output. We found that this metri returned the most onsistent results aross the setof lassi�ation problems evaluated.In terms of future work, we believe that the reformulation of the lassi�ationproblem as a lustering problem will provide the basis for one lass lassi�ers andthe use of multi-objetive optimisation tehniques for problem deomposition. Inessene, by fousing on the behaviour of the raw GP output values, the lassi�ationproblem takes the form of a lustering problem. When this is the ase, methods frommultiobjetive optimisation are appliable, thus providing for problem deompositionand multi-model solutions [16℄.Moreover, one lass lassi�ation may now be appropriate as the task is now de-�ned in terms of establishing a mapping from input to output spaes (over exemplarsfrom one lass) in whih the objetive is expressed in terms of establishing raw GPoutput values with a spei� loal distribution. (e.g. a Gaussian distribution).Finally, we note that the loal wrapper approah may lead to a Bayes modelformulation of the lassi�ation problem. Suh a sheme is not appliable to theurrent loal wrapper model (e.g. as implemented using a post-proessing tehnique)as the underlying assumptions for the two models are inherently di�erent.



Appendix ATournament Fitness

47
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.1: Median bezier smoothed minimum, median average and median maxi-mum �tness at eah tournament for the BREAST lassi�ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.2: Median minimum, median average and median maximum �tness at eahtournament for the C-HEART lassi�ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.3: Median minimum, median average and median maximum �tness at eahtournament for the LIVER lassi�ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.4: Median minimum, median average and median maximum �tness at eahtournament for the TS lassi�ation problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.5: Median minimum, median average and median maximum �tness at eahtournament for the SEXTIC regression problem
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(a) Maximum Page Count 24
(b) Maximum Page Count 48
() Maximum Page Count 72Figure A.6: Median minimum, median average and median maximum �tness at eahtournament for the TWOBOX regression problem
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