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Abstract

Genetic programming offers freedom in the definition of the cost function that is
unparalleled in the realm of supervised learning algorithms. However, this freedom
goes largely unexploited in previous work. Here, we revisit the design of fitness
functions for genetic programming by explicitly considering the contribution of the
wrapper and cost function.

Within the context of supervised learning, as applied to classification problems,
a clustering methodology is introduced using cost functions which encourage max-
imisation of separation between in and out of class exemplars. Through a series of
empirical investigations of the nature of these functions, we demonstrate that classi-
fier performance is much more dependable than previously the case under the genetic
programming paradigm. In addition, we also observe solutions with lower complexity
than typically returned by the classically employed hits (or even sum square error)

based cost functions.

xi



Chapter 1

Introduction

One of the purported advantages of Genetic Programming (GP) relative to other
supervised learning algorithms is that there is much more freedom in how the fitness

(cost) function is expressed.

A cost function, as in neural networks, typically measures the distance between
the actual output of a solution and the desired output of a solution, indicating the
suitability of that solution for solving a particular problem |7|. In GP, the cost
function is paired with a wrapper function which constrains the value of the cost
function within a desired interval. Because the wrapper acts as an interface to the
cost function, mediating between the ranking subsystem in GP and the feedback of

the cost function, GP permits additional freedom in the definition of the cost function.

For example, neural networks are typically required to have a cost function that
is smooth and therefore differentiable |7| whereas no such requirement exists for GP
[10]. To date, however, GP fitness functions do not necessarily build on this freedom
in a manner designed to encourage the identification of robust solutions [12|. In this
work the design of fitness functions for classification problems is revisited by explic-
itly considering the contributions made by wrapper and cost function. Specifically,
the GP wrapper is used to transform the ‘raw’ GP output, a value limited only by
the numerical range of the computing platform, to an interval appropriate for distin-
guishing class. Here binary classification problems are considered, thus typical ranges
would be [0,1] or [—1,1]. Common practice has been to utilize a wrapper based on a

binary switching function, as in Figure 1.1 (a).



-1 z <0
f(z) = (1.1)

1 x>0

The ensuing fitness (cost) function then merely counts the number of misclassified
training exemplars. The hypothesis of this work is that such an approach to design-
ing a wrapper-cost function combination results in sub-optimal classifiers with poor
robustness properties. Specifically, the switching type wrapper hides useful informa-
tion: it does not explicitly encourage the raw GP output values to be distributed away
from the switching point of the wrapper as in Figure 1.1 (a). In particular, as long as
the GP output points for each class fall on the correct side of the switching function
transition, there will be zero error, irrespective of their distance from the wrapper
class transition. Conversely, a wrapper with a finite transition region between the two
class labels would provide the basis for a more informative cost function, therefore
quantifying the degree of any error or the degree of separation currently achieved
between two classes, as in Figure 1.1 (b). In this case, points on the GP output axis
at the transition region of the wrapper function will result in a nonzero error. Er-
ror minimisation now corresponds to both mapping points to the correct side of the
wrapper transition point and maximising the distance from the transition point. We
consider such a solution as more robust as the greater separation between two classes
on the GP output axis is less likely to result in previously unseen exemplars being
mapped to the wrong side of the wrapper transition' (a misclassification). Moreover,
the new wrapper also provides the basis for establishing certainty in the classification,
as opposed to merely presenting the result as a binary in class or out of class answer.

In this work, we propose taking this concept further by concentrating on explicitly

maximising the separation between in and out of class exemplars by expressing the

!Training data is implicitly assumed to be representative of the wider (unseen) test data, as per
any machine learning classifier.
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(a) Wrapper with switching (b) Wrapper function with
function finite transition region

Figure 1.1: a) a switching type wrapper which obscures error information; b) an error
function with a smooth transition between class labels

problem in terms of the original GP output values, that is, the horizontal axis in
Figure 1.1. We identify the cluster means for each class and measure the error by
finding the separation between cluster means. We then use a nearest neighbour
strategy to determine the class membership of previously unseen data. We intend
this to encourage the development of a robust separation between classes, based on
the training data. We also employ a local wrapper for predicting in or out of class
membership, placing increased emphasis not only on the class separation but also
on predictable class membership behaviour, as defined in terms of variance from the
mean. In both cases, an increased emphasis on a clear separation between clusters
may offer an improvement in post-training GP performance.

This thesis is organised into several chapters. Chapter 2 summarises previous work
in genetic programming related to our hypothesis. Chapter 3 describes our methodol-
ogy and details of our linear genetic programming framework and evaluation methods.
Chapter 4 summarises our experimental design and explains our observations. Chap-
ter 5 offers our conclusions and suggests future avenues of exploration in this area of

research.



Chapter 2

Previous Work

For classification and regression problems, previous studies in evolutionary compu-
tation have introduced a variety of techniques for expressing error in the genetic
programming evaluation phase. Here we describe the relevant methodologies which
led to and informed our exploration of clustering methodologies for genetic program-
ming classifiers. In the following, raw GP output denotes the value returned by the
GP model before application of the wrapper function, that is, a value found on the

horizontal axis as opposed to the vertical axis of Figure 1.1.

2.1 Evolutionary Computation

Evolutionary computation is a family of computational search methods inspired by
the incremental and adaptive action of the process of biological evolution |5]|. Bio-
logical evolution, as it is commonly understood, is an emergent process occurring in
populations composed of individuals engaging in mutual competition for resources,
whose physical characteristics are determined by an inherited scheme passed on during
reproduction. Observing the “multitude of forms”! produced by the systematic effect
of biological evolutionary operators, there can be derived a nominal motivation for
the evolution of computational methods, using biological evolution for metaphorical

inspiration |3, 10].

1“On separate continents, and on different parts of the same continent when divided by barriers
of any kind, and on outlying islands, what a multitude of forms exist [...]”, Charles Darwin in [3].



2.1.1 Techniques in Evolutionary Computation

Within the field of evolutionary computation, genetic algorithms and genetic pro-
gramming embody the notions of using evolutionary methods to produce both nu-
merical solutions to problems (optimisation) and produce programmatic solutions to

problems (modelling), respectively.

Genetic algorithms and genetic programming address fundamental machine learn-
ing design problems by taking advantage of the incremental improvement offered by

an evolutionary approach.

In the construction of a machine learning algorithm, we are faced with a variety
of design choices affecting the algorithm’s applicability and performance in assorted
operational environments. A learner must be able to determine how suitable a chosen
strategy is for reaching its goal. This implies that a target function must be judiciously
chosen based on prior knowledge of the problem environment to provide the learner
with adequate feedback about its progress. A learning machine must also use an
appropriate representation for the problem and the environment in which solutions
will be located. Finally, a learner which uses a number of steps in succession to solve
a problem must be able to discern which steps proved valuable in solving the problem

so that positive or negative credit may be assigned to those steps [17].

Evolutionary computation addresses the credit assignment problem through the
action of evolutionary modification operators. When mutation or crossover occur for
a given individual or pair of individuals, any change in fitness can be ascribed to
the change caused by the last mutation or crossover in the individual’s composition.
Thus, every change in an individual that is the direct result of evolutionary operation
is evaluated and consequently scored in the next generation or the next evaluation.

Credit is assigned automatically.

Representation and goal measurement are typically handled through a prior:i or
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expert knowledge. Even in these cases, some adjustments may be left to the evolu-

tionary process where possible, resulting in a self-tuning mechanism.

2.1.1.1 Genetic Algorithms

In the case of genetic algorithms, evolutionary operators operate on linear sequences
of genes, or strings. The representation for such a string takes one of three forms:
bit, integer or real-valued, selected on their relative appropriateness to the problem
domain. There is typically a representative mapping between the genes of this string
and potential solutions to the problem in question. In [5], two examples of optimi-
sation problems which may be solved through the application of genetic algorithms

include

e the Eight Queens Problem (where the solution space is represented by eight
numbers indicating the row on which each queen ought to be placed, noting
that any two queens may not share a column, diagonal or row. The fitness for

a solution is quantified by counting the number of illegal queen placements. )

e the 0-1 Knapsack Problem (where the solution space is represented by a binary
string of length n, where each gene represents the inclusion or exclusion of an
item ¢ with cost ¢; and value v;. The fitness for a solution is quantified by the
magnitude of the sum of the products of the costs and values of the included

items.)

In each of the above example applications of genetic algorithms, a string is modified
by repeated application of evolutionary selection and search operators. The string
of numbers itself directly represents a solution to the problem. This process may be
halted at any time or when a chosen stop criterion is reached. The best solution is

collected from the population of evolved solutions.



2.1.1.2 Genetic Programming

Where genetic algorithms techniques focus on the evolution of solutions to problems
from discrete and continuous optimisation, genetic programming evolves programs
which solve modelling problems. Here, the fitness of a candidate solution is deter-
mined by executing and comparing its output with the correct output for a problem,
that is, a supervised or reinforcement learning context. The representation for genetic
programming has historically taken the form of tree-based functional expressions but
it can take other forms, including linear programs, to which we shall return in section
2.2.

Among other applications, genetic programming can be used in the case of classi-
fication problems and regression problems, as in [10|, where genetic programming is

used to

e produce decision trees for the intertwined spirals problem:;

e model an unknown function through symbolic regression.

Genetic programming typically follows an algorithm similar to that of genetic algo-
rithms, with the main difference being that the evaluation step involves execution of
program instructions |5, 8]. Algorithm 1 on the following page outlines the form of
the generic evolutionary computation paradigm.

Returning to the machine learning design choices discussed in Section 2.1.1, we
find that the credit assignment problem is partially addressed in the effects of steps
2 to 4. In step 2, each candidate solution (individual) is evaluated according to the
fitness function. Steps 3 and 4 select individuals for mutation and reproduction based
directly on these fitness values. Because the population is initially systematically
diversified, fitness is also initially very diverse. Each mutation and crossover results

in changes to individuals - those changes are evaluated in the next iteration of the



Algorithm 1 The typical genetic programming algorithm. |5]

1.

Initialise a population of N individuals. Choose the probability of mutation,
p(m), and probability of crossover, p(c).

. Evaluate each individual, ¢, according to the fitness function, recording the

maximum fitness, f,, as well as each individual’s fitness, f;.

Assign to every individual a probability of reproduction p(r) = J{[—l

Test p(r) for each individual to determine inclusion as a parent in a mating

pool, P.

For each parent in the mating pool, apply the mutation operator with proba-
bility p(m) and apply crossover (with a randomly selected partner) with prob-
ability p(c), producing one or two children.

Replace each parent with its child.

If the population has not yet converged and not yet reached a maximum number
of generations, go to step 2.

algorithm. Thus, every incremental change toward or away from a particular strategy

is evaluated, ensuring that credit is assigned for all changes.

The genetic programming environment has certain characteristics selected in com-

mon with other methods for evolutionary computation. These include many options

of which a few are listed here in parentheses.

representation (tree-structured, linear instructions, graph based)

initialisation (random or partially constrained)

evaluation (fitness functions)

selection operators (fitness-proportional, tournament based, degree of elitism)

search operators (crossover, mutation)

In our work, we have used the modified genetic programming algorithm described



Instruction Type ‘ Generic Form ‘
reg-reg R, < R, opcode R,
reg-input R, < R, opcode I,
constant R, < 'n’ bit integer constant

Table 2.1: Instruction types for our linear genetic programming model

here as Algorithm 2. The main differences in our approach include (steady state) tour-
nament selection rather than a generational approach and a linear representation for
individuals rather than tree-based as in Koza’s canonical genetic programming model
[10, 11|. These are described more fully in the following section. The contribution of

this thesis, however, is independent of the particular form of GP employed.

2.2 Page-based Linear Genetic Programming

We employ a fixed length, linear GP representation in which individuals take the form
of instruction sequences, grouped into pages of a common instruction count, as in [8|.
To define maximum program length, we a priori state maximum page count. The
natural implication of this is that the initial population is initialised over the total
range of permitted program lengths; whereas a variable length representation begins
with individuals initialised over a limited range (of short programs) and lets them grow
up to some a priori specified size limit. The fixed length representation is enforced by
limiting crossover to the exchange of a single equal length page of instructions between
two parents. Each 2-address instruction is represented by an integer and therefore a

page of instructions is a sequence of integers which are decoded at run-time.

2.2.1 Representation

The linear programs operate upon a (virtual) register-based machine. The instruc-
tion format supports three instruction types: register-register, register-input and con-

stants, see Table 2.1. Opcodes considered within this work are limited to the four
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Algorithm 2 Algorithm for the L-GP architecture described in Section 2.2.
1. Generate the population randomly. Let 7" be the number of completed tourna-
ments (initially zero).

2. Randomly select 4 tournament participants from the population.
3. Evaluate each individual in the tournament and rank them.
4. Copy the best two individuals over the worst two individuals.

5. Perform crossover and mutation according to their respective probabilities of
occurrence.

6. Increment T'; if T is less than the tournament limit (50000) and the population
has not yet converged, go to 2.

7. Record the best individual, other desired statistics.

arithmetic instructions alone (addition, subtraction, multiplication, protected divi-
sion), and operate on either two registers or a register and input from the data set.
The range of register references R, and R, is defined a priori by the number of (gen-
eral purpose) registers allocated to the (virtual) register machine. Naturally the range
of references to inputs, I, is defined by the number of features in the data set. Pre-
vious work has established empirically that the arithmetic operators are sufficient for
solving a wide range of problems, including classification [13] and intrusion detection

18],

2.2.2 Initialisation

Individuals are initialised by first selecting the maximum page count, with uniform
probability over the interval [1,...MaxPages]. Each instruction is then initialised by
first selecting an instruction type where instructions defining constants are half as
likely as either register-register instructions or register-input instructions. That is to
say, without such a bias, half of the instructions comprising an individual would take

the form of register-register and register-input instructions, and the other half would
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describe constants |8|.

2.2.3 Evaluation

In the genetic programming evaluation phase, individuals are assigned fitness values
based on a problem-dependent fitness metric. Fitness for an individual is typically
defined in terms of the individual’s ability to correctly solve the problem. For example,
in classification, the fitness of an individual may correspond to the number of correctly
classified exemplars. For a regression problem, the fitness of an individual might be
interpreted as a function of the distance between the correct points and the candidate

points produced by the GP individual.

The fitness function scores or ranks individuals, enabling though biasing the rank-
ing and selection phase. The selection of appropriate fitness functions for classification

problems forms the contribution of this thesis and is presented in detail in Section 3.

2.2.4 Selection

We used steady-state tournament selection with a tournament size of four. The four
individuals are selected with uniform probability from the population and ranked
according to the evaluation function. The best two individuals in the tournament are
selected for reproduction. They are copied over the worst two tournament individuals

and crossover and mutation applied.
The 'copy’ operator replaces the losers of the tournament in the original population
and is inherently elitist (best of the population is guaranteed to survive). Moreover,

such a scheme is known to result in a higher takeover rate? than generational selection

6].

2Poor performing individuals die out more quickly than with the case of proportional selection.
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2.2.5 Search (Crossover and Mutation)

The crossover operator consists of swapping randomly selected single pages of equal
instructions between two parent individuals. This guarantees that the length of each
individual remains fixed. An annealing schedule is used to incrementally modify the
number of instructions constituting a page during training [8].

In addition to the crossover operator, L-GP typically employs two types of mu-
tation. The first consists of randomly choosing an instruction within an individual
and performing the XOR operation between that instruction and a random integer.
Mutation therefore provides an avenue for introducing instructions not currently in
the population. The second mutation strategy is to swap two randomly chosen in-
structions, again within the same individual. This establishes a path for investigating
alternative instruction orders within the same individual. Both have associated prob-

abilities defining the frequency of application.

2.3 Problem Representations

Hits A classic measure of fitness for classification problems is the hits-based metric,
as in Koza’s genetic programming experiments [10]. A hits-based metric measures the
fitness of a particular problem solving method in terms of the number of subinstances
of the problem which that method correctly solves. In terms of genetic programming,
the hits-based fitness of an individual would correspond to the number of exemplars in
a training data set which are correctly classified by the individual into their respective
classes.

Typically, the hits-based metric is enabled by the use of a wrapper function which
maps the raw output of a GP individual to a discrete classification interval, as in
Equation (1.1) on page 2, where the discrete value indicates the GP classification. The

drawback of the switching-type wrapper is that we are limited to binary classification
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problems, although this may be overcome to some degree through a combination of
experts, as in ensemble programming, boosting or bagging [9] or through problem

decomposition [15].

MSE / SSE The mean squared error and sum squared error metrics are described
by Banzhaf et al in [1].

The sum squared error metric characterises error as the sum, over all exemplars,
of the squares of the magnitudes of the differences between the actual outputs®, a

and the desired outputs, d. In [1|, Banzhaf et al use the following,

(a; — d;)?

1

n

)

The mean squared error metric is the sum of the squared error, divided by the

number of outputs, n, as in [1],

(a; — d;)’°
1

n
1=

A useful feature of the squared error metric is that error is not distributed uni-
formly. The error rate increases quadratically as the magnitude of the absolute error
increases. Additionally, dividing by n to obtain the mean squared error will temper

large error values. Additionally, the error rate now is a continuous value, permitting

greater sensitivity to changes in the GP performance.

Weighted Hits Eggermont et al, in |4, describe a method involving the combina-
tion of an error metric with weights which are adjusted by a predetermined quantum

at each generation. Eggermont et al describe the overall error f(z) for an individual

3]1] makes no reference to the wrapper employed. Thus it is not clear whether the ’actual output’
implies a linear wrapper (that is, the raw GP output is used directly) or the raw GP output is
mapped to an interval appropriate for interpretation in terms of a (binary) classification.
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f(z) = Zwr ~error(z,r)

reD

where error(z,r) may be a switching-type function, for example,

1 if z classifies data record r incorrectly

67’7"07"(37, T) = {0 otherwise

or error(z,r) could be a continuous function, as in mean squared error, described
previously. The weights magnify errors which occur more frequently over time,
thereby penalising individuals which persist in misclassifying a particular record.
This technique showed improvement over standard GP on some datasets and pro-

duced comparable or inferior performance on others.

Static and Dynamic Range Selection Tree structured GP is limited to a sin-
gle output. Thus, when used with the switching-type wrapper, Equation (1.1), it is
formulated as a function with only two distinct output values. This becomes a prob-
lem in the case of a classification problem involving multiple classes, unless composite
techniques are used to combine multiple, separately evolved, binary classifiers to solve
a single problem.

One method for performing multiple classifications without evolving separate clas-
sifiers is described as range selection, by Loveard et al in [15]. It is an extension of
the concept of a binary switching function. The binary switching function Equation
(1.1) associates two ranges of output values, (—oo, 0] and (0, c0), with the class labels
0 and 1, respectively. The range selection strategy divides the one dimensional space
associated with the raw GP output into further intervals, with as many labels as there
are class intervals.

Loveard et al propose two strategies. The first is static range selection, where the



15

intervals are fixed. However, they had more success with dynamic range selection,
where, for each individual, its range intervals are determined at each generation by
setting aside a portion of the training data. Thus, each interval’s limits are determined
using a nearest neighbour algorithm on the outputs for these exemplars. Fitness takes
the form of counting the number of times that exemplars from the remainder of the
training set produce a raw GP output value lying in a region assigned the same class

label.

2.4 Robustness and Generalisation

An important criterion of quality in any machine learning algorithm is the ability to
produce robust and, more importantly, general solutions. In [12], Kushchu defines
robustness as “the desired successful performance of the solution when it is applied to
an environment similar to the one it was evolved for,” whereas he defines generalisation
to refer to the “performance of the [solution| during the testing process”.

We contend that switching-type wrappers contribute to poor generalisation in that
they obscure fine differences in the raw GP output to such an extent that the GP
algorithm is rewarded for behaviour not conducive to identifying robust solutions.

For example, a drawback of range selection in terms of robustness is that, as with
the switching-type wrapper function, it obscures distinctions between output values
within the selected intervals. No reward is provided for mapping exemplars to raw
GP output values that both correspond to the relevant region and are distant from
the region boundaries.

This consideration is important in our work as our clustering methodology, by
virtue of its close association with the raw output of the genetic programming system,
may explicitly reward a mapping that maximises the separation between classes, in

comparison with methods based on switching functions.



Chapter 3

Methodology

3.1 Error Functions

Since Koza popularized the Genetic Programming approach, the wrapper for classi-
fication problems has taken the form of a switching function, Figure 1.1 (a) [10, 11].
As indicated in the introduction, we note that such a wrapper effectively throws away
a lot of useful information that could adversely affect the generalisation performance
of the resulting GP classifier. There is, however, a long history of wrapper function
development within the context of neural networks'. Moreover, the selection of a
wrapper also has direct implications for the nature of the corresponding fitness (cost)
function. A wrapper based on the switching function limits the fitness function to
a mere count of the number of correctly classified exemplars. That is to say, the
corresponding distance metric is binary. Conversely, neural networks are typically
required to have an activation function that is smooth (i.e. differentiable). If we
consider the particular case of global activation functions?, this results in a require-
ment for a monotonically increasing function, where the most popular operator for
achieving this is the sigmoid function [7], Figure 1.1 (b).

As established in the introduction, this now provides the basis for exemplar errors
that increase as the transition point of the activation function is approached, Figure

1.1 (b), as well as when exemplars are explicitly misclassified (wrong side of the

!The neural network literature refers to wrapper functions as activation functions [7].

2Local activation (wrapper) functions have also been widely utilised in the neural network liter-
ature, particularly within the context of hidden layer neurons (e.g. Radial basis function networks
and Support Vector Machines).

16
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Error Name ‘ Wrapper Used ‘ Error (a=actual, t=target) ‘
absolute | 2% (1.0 + exp(—gpous)) ~* — 1 lactual — target|
Bernoulli (1.0 + exp(—gpour)) " —log(a+1t—1.0)

Hits-Based | (gpout > 0)? a =1 else a =0 1 — equal?(a,t)

Minkowski | 2 (1.0 + exp(—gpout)) " — 1 lactual — target|”
squared | 2% (1.0 4+ exp(—gpous)) * — 1 actual — target|”

Table 3.1: Functions used in Experiment 2. (The equal?(a,t) function for hits-based
error returns 1 if a and t are equal, and 0 otherwise.)

wrapper transition point). Moreover, as each error distance is now real valued, we
are also free to build a fitness (cost) function that penalizes or weights errors in

different ways.

In this work we will consider fitness functions based on one of five forms of error
distance - absolute, Bernoulli, Minkowski, and squared - including the switching type
wrapper. The selection of these functions was informed by previous neural network
literature |7, 19|, where cost functions have been extensively evaluated, in comparison
with the GP literature. Table 3.1 summarizes the association between wrapper and
error metric. Specifically, the Bernoulli fitness function assumes a probabilistic model
for the classification problem (labels are binary) [20], thus the activation function
maps the ‘GPout’ axis to the unit interval, using a sigmoid type global mapping, e.g.
Figure 1.1 (b), limited to the interval [0,1]. The associated Bernoulli error metric
applies an exceptionally high penalty to any exemplar misclassification. We also note
that such a formulation is equivalent to the entropy penalty function. The absolute
error assumes an equal penalty for any error, and makes use of the wider interval of
the hyperbolic tangent wrapper function, Figure 1.1 (b). Minkowski and square error
apply an increasing (decreasing) penalty to larger (smaller) exemplar errors relative
to an error distance of unity, thus the wider range of the sigmoid wrapper function is
again appropriate. In all cases the fitness function is merely the sum of error taken

across all training exemplars for a given wrapper / error distance metric combination.
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3.2 Clustering and Local Wrappers for GP Evaluation Metrics

In the previous section, we introduced a rationale for utilising non-switching wrapper
functions and their corresponding error metric to encourage a wider class separation
over training exemplars. In this section, we take a different approach to encouraging
such a separation. To do so we recognise that the overall objective is to maximise
the distance between points on the 'raw’ GP output axis representing the same class.
Viewed from this perspective, the objective is to map the class data into separate
clusters (on the raw’ GP output axis) whose intracluster variance is minimised, but
intercluster distance is maximised, as in Figure 3.1. Such a rationale does not explic-
itly use a wrapper function for fitness evaluation.?

Section 3.2.2 proposes a local wrapper function approach. In this case, error is
described in terms of two Gaussian distributions, one for in class and one for out
class. Error is minimized with respect to boh class and (local) wrapper membership.

Class separation is now less directly represented, but takes the form of an indirect

property of minimising membership of the wrong distribution.

3.2.1 Class Separation Distance Maximisation

Let us consider the scenario of evaluating a single individual on all the exemplars of a
training or test data set for a binary classification problem. The data set, R, contains
training exemplars. Each exemplar p; is itself a pair, consisting of an ordered tuple
of input features and an a priori classification label ;. Executing a GP individual
(program) on each exemplar p; generates a set S of pairs of the form (gpou:(7), (),
where gpou (i) is the raw GP output on exemplar i.

Now that we have GP outputs and a label for each GP output assigning it to

a particular class, we can now characterise the respective class distributions in the

3The wrapper function may be considered linear or an identity function.
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Figure 3.1: Distribution of GP output with and without successful clustering on the
GP output number line.

GP output space. For this we draw on metrics from pattern recognition and feature
selection, particularly the mean, variance and class separation distance, described in
|2, pp. 516-517|. We reproduce these here for reference.

Let us define Sy, to be a set containing every gpy. (i) in S for which [; = k. That
is, Sy contains all the GP output values in S that were generated for a record ¢ with
label k € {0,1}. Then the approximate class mean* is calculated as in Equation
(3.1). (Here gpous(j) refers to elements of Si.) Similarly, the variance is expressed in

Equation (3.2) using the approximate class mean.

1 |Sk|
fir = 75 > 9Pout(J) (3.1)
‘Sk‘ j=1
- 1 1Skl . o
Or =757 Z(gpout(]) — fig) (3.2)
|Sk| j=1

Finally, Equation (3.3) characterises the distance between the approximate class
means, normalised by the approximate class variance.

|y — |

Dyiy = (3.3)

52 | 52
Oy + Ok,
In our experiments, we use the value Dy, to rank individuals during the selection

phase. Thus, individuals are rewarded for generating a more distinct separation

between the two classes, that is, maximising Equation (3.3). In summary, GP is

4From [2]: “The caret ... remind|[s] us that these are estimates of the class means based upon the
training set][.]”
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: GPout
class 0 mean class 1 mean

Figure 3.2: Identification of in-class (4) and out-class (x) raw GP values using a
Gaussian model.

explicitly rewarded for providing a mapping from a high dimensional input space to a
one-dimensional output space such that the class separation distance of the raw GP
output space is maximised. Post-training, the model is applied to unseen data using

a nearest neighbour algorithm to determine class membership.

3.2.2 Localised Wrapper-based GP Classifers

The classification metric described in the previous section provides the opportunity to
base the classifier output on a wrapper described by a local membership function. (e.g.
a Gaussian). In this case, when unseen data is mapped to regions of the GP output
axis that do not correspond to the (cluster) mapping identified during training, they
should be regarded as distinct from the distribution used to develop the GP model,
Figure 3.2.

The wrapper for such a local membership function is built by estimating the mean
and variance of each class over the corresponding raw GP output values (gpoy,). Error
is then expressed relative to each of the individual classes insofar as their members
conform to a normal distribution. The objective is to encourage as many of the in-
class exemplars to appear as close to the mean of the class’ Gaussian membership

function as possible, and to distance themselves as far as possible from the mean of
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the opposite class, or (where z is the in-class and y is the out-class),

Ny 1
inclasserror =y <1 — exp <— lgPowut(7) — ux||2>> (3.4)

2
= 202

Ny 1
outclasserror = <6Xp (— lgPowut (7)) — ,uy||2>> (3.5)

i=1 275
where N, is the size of the in-class z and where the fitness of the individual is the
sum of of the class errors for both classes and the minimum value denotes the fittest
individual. Note that we evaluate these equations twice, once for each set of points
representing classes 0 and 1, to obtain the total error (that is, once with x =0,y =1
to obtain the total error for class 0 and again with x = 1,y = 0 to obtain the total
1

error for class 1). Note also that the normalisation (\/—) typically associated with a

2no

Gaussian distribution (enforcing a unit integral area) is not utilised. This ensures that
the minimal distance condition, gpyu:(i) = 1, returns a maximum membership (of 1).
Without this constraint, the error metric of (3.4) and (3.5) will not be appropriately
scaled.

Relative to the cluster separation approach of section 3.5, the localised wrapper
approach has the implicit advantage that, as both in-class and out-class error are ac-
cumulated, selection pressure encouraging separation between clusters is maintained.
The drawback of the local wrapper approach relative to the cluster separation metric
is computational; three passes through the training data are necessary before fitness
of an individual may be expressed. A pass through the training data is required to
estimate the mean and a second pass estimates the variance of the in-class data. A
third pass through the entire training dataset is required to estimate class member-
ship, Equation (3.4) and (3.5). However, the program expressed by the individual is
only run once through the entire process (to produce the raw GP output values).

Post-training, we classify test data by using the Gaussian function explicitly as a
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membership function, Equation 3.6, where x corresponds to an exemplar from the test
data set; gpou:(x) is the raw GP output produced by the individual when evaluated

on exemplar x; and ¢ is the class for which we are testing membership.

1

s lgpaua) — ) (3.0)

membership(x,i) = exp (—

Then, the class ¢ to which a GP individual assigns an exemplar = from the test
data is decided by choosing i € {0,1} such that the value of membership(x,i) is

maximised.



Chapter 4

Results

This section reports on two sets of experiments. In the first case, the significance
of population size and program complexity (instruction count limit) are investigated
using the hits fitness function. These are typically considered the principal design
parameters associated with GP models [10]. In doing so, we demonstrate that nei-
ther parameter has a significant impact on solution quality. Population size does
however appear to be correlated with additional solution complexity. The second
study considers the contribution of local and global wrapper operators as discussed
in Chapter 3. The local wrapper operators are shown to be significantly more robust
than their global counterparts. Thus, from a pragmatic perspective, more considera-
tion should be given to establishing an appropriate representation and fitness function

than testing the impact of size and complexity constraints.

4.1 Initial Parameters for Genetic Programming

We hypothesised that the maximum page count and initial population size, beyond
necessary minimum values, would have no significant effect on the median fitness and
median program length of best-of-run solutions (programs). We used six data sets,
of which two are regression problems and four are classification problems. These are
summarised in Table 4.1.

The datasets we have chosen bear certain characteristics. The ’breast’ and ’c-
heart’ datasets are medical diagnosis classification sets which are known to support

accuracies in the 80% to 90% range [14]. The ’liver’ classification problem dataset

23
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Name ‘ # of exemplars ‘ Problem type ‘ Function
breast 699 classification -
c-heart 303 classification -
liver 345 classification -
ts 192 classification -
sextic 50 regression flx) = 2% — 22% + 22
twobox 10 regression f(x) = zoyozo — T19121

Table 4.1: Data sets used and their attributes

is also based on medical diagnoses. The ’liver’ set typically supports a classifica-
tion accuracy of about 60% to 70% [14]. The ’ts’ dataset is an artificial benchmark
classification problem frequently used in neural network and genetic programming
research [8|. The dataset contains points drawn from two intertwined spirals on a two
dimensional Cartesian space. The two regression problems, 'sextic’ and 'twobox’, are
both artificial datasets which represent well known GP benchmarks [11]. We empha-
sise that our objective is to provide for the comparative evaluation of the error-cost

function, as opposed to establishing new levels of performance on these datasets.

Each dataset was split into training and test partitions. The training partition
contained 75% of the exemplars in the original dataset while the test partition con-
tained 25% of the exemplars in the original dataset. These partitions were generated
by randomly selecting exemplars with the constraint that the ratio of class member-
ship among exemplars in the original dataset must be preserved in the training and

test sets.

The experimental design is enumerated in Table 4.2. For each dataset, we per-
formed 50 independent runs where we varied two parameters, maximum page count
(for values of 24, 48 and 72) and initial population size (for values of 125, 500, 1000
and 5000). For these runs, we pregenerated 50 random seeds and used this set of
seeds for each combination of maximum page count and initial population size. We

therefore blocked for the effect of random initialisation in our experiments.



Objective

(Correctly classify exemplars) OR (fit a curve)

Terminal Set

X1, T2, T3, Ty

Functional Set

+,-*%%, load constant

Fitness Cases

# of exemplars in dataset

Fitness

Sum Squared Error

Selection

Tournament (A = 4) Selection

Hits (Classification)

# of correct classifications

Hits (Regression)

# of cases with abs. error < 0.01

Maximum Page Size

8

Maximum Page Count

(24, 48, 72)

Init. Population Size

(125, 500, 1000, 5000)

25

50000 tournaments or 100% hits
50 independent runs

Termination
Experiments

Table 4.2: Parameters for the classification and regression problems described in Table
4.1

4.2 Discussion

Using the experimental framework described in Section 4.1, we examined the perfor-
mance of linear genetic programming while varying the static parameters of initiali-

sation.

We measured two aspects of performance for individuals in our experiments. We
recorded the fitness, in terms of the quartile hits scored by that individual on the
training and test data, and the quartile program length, in terms of the individual’s
instruction count after training. Intron removal was typically employed when evalu-
ating solution instruction counts, where this might result in a 70% to 80% reduction

in instruction count |1].

For classification problems, hits are directly measured by comparing the actual
output of the switching-type wrapper with the desired output from the data set’s
class labels. We formulated the regression problems as data sets generated from the
desired function, complete with inputs and outputs. A hit for a GP individual on a
regression problem was defined as a match between the output of the individual and

the desired output from the data set, within a tolerance of +0.01.
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Figure 4.1: Median hits (for training and test) by initial population size and maximum
page count for the BREAST classification problem

Quartile Normalised Hits vs. Population Size (training portion of C-HEART_rel sef) Quartile Normalised Hits vs. Population Size (test portion of C-HEART._rel sef)
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Figure 4.2: Median hits (for training and test) by initial population size and maximum
page count for the C-HEART classification problem

Additionally, we recorded the minimum, average and maximum fitness scored in
each tournament. Using this statistic, we monitored the convergence in fitness of the
GP search process.

The results we observe support the hypothesis that the population size, as well
as the maximum page count, largely fail to affect the outcome of the linear genetic
programming framework, encouraging exploration of more dynamic means for mod-
ifying performance. Observations supporting this conclusion are detailed in Sections

4.2.1 to 4.2.3.

4.2.1 Fitness (Hits)

Figures 4.1 through 4.6 show the quartile hits for each combination of initial popu-

lation size (125, 500, 1000, 5000) and maximum page count. (24, 48, 72). As the
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Quartile Normalised Hits vs. Population Size (test portion of LIVER_rel set)
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Figure 4.3: Median hits (for training and test) by initial population size and maximum

page count for the LIVER classification problem
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Figure 4.4: Median hits (for training and test) by initial population size and maximum

page count for the TS classification problem
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Figure 4.5: Median hits (for training and test) by initial population size and maximum

page count for the SEXTIC regression problem
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Quartile Normalised Hits vs. Population Size (training portion of TWOBOX_rel set) Quartle Normalised Hits vs. Population Size (test portion of TWOBOX_rel sef)

" TWOBOX _rel-pagelimit 24 —+— " TWOBOX_rel-pagelimit 24 ——
TWOBOX rel-pagelimit 48 +---- TWOBOX rel-pagelimit 48 +----
>+ ITwoBox_rerpagehm 72 Ko TWOBOX _rel-pagelimit 72 +-- -+

°
=
&

Quartile Normalised Hits (test)

Quartile Normalised Hits (training)

. . . . . . . .
125 500 1000 5000 125 500 1000 5000
Population Size Population Size

Figure 4.6: Median hits (for training and test) by initial population size and maximum
page count for the TWOBOX regression problem

initial population size and maximum page count are varied, we can observe no signif-
icant change in the median number of hits. Note that for the sextic problem, Figure
4.5, the quartiles and median are all the same value. This implies that over 75% of

individuals solve the problem correctly.

4.2.2 Program Length

Figures 4.7 through 4.12 show the quartile program lengths for each combination of
initial population size and maximum page count. The page count limits of 24, 48 and
72 have corresponding instruction limits of 192, 384 and 576. (That is, a maximum
of 8 instructions per page.) There appears to be a correlation between an increasing
maximum page count and the quartile program lengths. A maximum page count of
72 produces a much wider spread than a maximum page count of 24. Moreover, as
larger populations are employed, the solution length tends to increase, relative to the

smallest population (125 individuals).

4.2.3 Tournament Fitness

In the interest of verifying the convergence of fitness, we recorded the median mini-
mum, median average and median best fitness for each tournament. We manipulated

the initial population size and maximum page count as before. Figures A.1 through
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Quartile Solution Length vs. Population Size (TS_pruned data set)
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Figure 4.10: Median program length by initial population size and maximum page
count for the TS classification problem
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Figure 4.11: Median program length by initial population size and maximum page
count for the SEXTIC regression problem
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A.6, on pages 48 through 53 (in Appendix A), display the results we recorded, with
bezier curve approximation. Observing these diagrams, we can see that, for all prob-
lem datasets, the minimum fitness tends toward zero over 50000 tournaments. In the
case of the SEXTIC problem, increasing the maximum page count leads to an increase
in the number of tournaments required for convergence. In addition, the smaller pop-
ulation models appear to express more variation in the minimum-average-maximum
fitness. Factors influencing this would include the higher likelihood of (poorly per-
forming) children replacing fitter individuals in the population (or replacement error)

under a small population model than under a large population model.

4.2.4 Summary

The results in the preceding sections support the following observations:

e experimentally varying the population size and maximum page count produces

a negligible difference in quartile performance (in terms of hits); and

e an increase in population size and maximum page count appears to correlate

with an increase in program length.

Having observed stable results under the modification of these parameters, we turned
our attention to experimentally varying other aspects of the genetic programming

model, in particular, our object of interest, the error function.

4.3 Error Functions

Given that our initial parameters for linear genetic programming failed to influence
overall fitness and program length, we proceeded to examine the effect of modifying
the error function, running 50 trials for each error function on each data set. In our

initial analysis we concentrate on the case of global wrapper functions, as introduced
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Objective (Correctly classify exemplars) OR (fit a curve)
Terminal Set T1, Lo, T3, Ty
Functional Set +,-,%.%, load constant
Fitness Cases # of exemplars in dataset
Fitness (Each function from Table 3.1)
Selection Tournament (A = 4) Selection
Hits (Classification) # of correct classifications
Hits (Regression) # of cases with abs. error < 0.01
Maximum Page Size 8
Maximum Page Count 24
Init. Population Size 125
Termination 50000 tournaments or 100% hits
Experiments 50 independent runs

Table 4.3: Parameters for the error function experiments

in Section 3.1, Table 3.1. The comparison between local and global wrappers follows
in Section 4.4. Each of these functions was tested with the parameters described in

Table 4.3.

For this experiment, we used the results of the previous experiment as a guideline.
To minimise execution time, we fixed the initial population size and the maximum
page count at values of 125 and 24, respectively. The varied quantity was the fitness
function used during evaluation of programs. From the recorded observations, we
extracted the median hits, median program length, median distances between class
means and raw GP output.

The error function is the only direct feedback available to genetic programming
regarding the solution space which it explores. Varying the descriptiveness of infor-
mation supporting this function should affect the quality and quantity of feedback
afforded to the GP search process.

Because each function quantifies error differently, it is impossible to directly com-
pare their error values. Thus, we included the hits-based metric as a baseline for error
and, post-training, applied a switching-type wrapper to the remaining functions to

obtain a comparable count of the hits.
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Quartile Normalised Hits vs. Error Function (BREAST _rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (BREAST_rel test set, pop. size 125, max. page count 24)
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Figure 4.13: Median training and test percentage hits for the BREAST classification
problem with a maximum page count of 24 and initial population size of 125.

4.3.1 Median Hits

The median training and test hits were recorded for each of the six datasets and are
shown in Figures 4.13 to 4.18. As such, better solutions are associated with a larger
hits count.

For classification problems, the distinction most apparent is that between all error
functions and the Bernoulli error formulation. This error metric is outperformed by
the majority of other functions on the BREAST dataset - the easiest of the problems.
We omitted this function in further experiments. We next notice that the hits type
metric actually performed respectably across all classification problems considered,
with the absolute error metric also returning consistently good results. All other
wrapper-metric combinations did not perform as well. On specific data sets, the
other metrics were able to return results with less variance, however, there is little
consistency to this property across different data sets.

For the regression problems, we can also ignore the Bernoulli function as its defini-
tion only holds in the case of classification problems. For both the regression datasets
(SEXTIC and TWOBOX), the most reliable results are seen in the spectrum of
Minkowski error functions between the absolute error function and the squared func-
tion. For the SEXTIC problem, we see that the absolute error function (and the

similar low end of the Minkowski spectrum of functions) produces poor performance.
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Quartile Normalised Hits vs. Error Function (C-HEART _rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (C-HEART _rel test set, pop. size 125, max. page count 24)

09 T T T T T T T T 09 T T T T T T T T

08 B 08 B
3 _ .
§ o7 4 & o7 i 4
z H ;
I j - .
3 i 3 i i
& osl u] | 4§ 06 i | 4
H ! £ |

| £ o

E H 2 : o
2 * L 1) - & ] * .
v ] g ; i
£ 05 | i 4 8§ osf H | @ Bl
§ . g ' :
g I3
I3 * . x .

04 e 04 4

03 . . . . . . . . 03 . . . . . . . .

abs  bemoulli hisbased minl2 minl4  minl6 minl8  squared abs  bemoulli hisbased minl2 minl4  minl6 minl8  squared
Error Functions Error Functions

4.14: Median training and test hits for the C-HEART classification problem
maximum page count of 24 and initial population size of 125.

Quartile Normalised Hits vs. Error Function (LIVER_rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (LIVER_rel test set, pop. size 125, max. page count 24)
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4.15: Median training and test hits for the LIVER classification problem with

a maximum page count of 24 and initial population size of 125.

Figure

Quartile Normalised Hits vs. Error Function (TS_rel training set, pop. size 125, max. page count 24) Quartle Normalised Hits vs. Error Function (TS_rel test set, pop. size 125, max. page count 24)
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4.16: Median training and test hits for the TS classification problem with a

maximum page count of 24 and initial population size of 125.
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Quartile Normalised Hits vs. Error Function (SEXTIC_rel training set, pop. size 125, max. page count 24) Quartle Normalised Hits vs. Error Function (SEXTIC_rel test set, pop. size 125, max. page count 24)
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Figure 4.17: Median training and test hits for the SEXTIC regression problem with
a maximum page count of 24 and initial population size of 125.

Quartile Normalised Hits vs. Error Function (TWOBOX_rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (TWOBOX_rel test set, pop. size 125, max. page count 24)
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Figure 4.18: Median training and test hits for the TWOBOX regression problem with
a maximum page count of 24 and initial population size of 125.
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Pruned Quartile Solution Length vs. Error Function (BREAST_pruned data set, pop. size 125, max. page count 24)
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Figure 4.19: Quartile pruned program length for the best individuals on the BREAST
classification problem with a maximum page count of 24 and initial population size
of 125.

4.3.2 Median Program Length

We collected the quartile pruned program lengths for the best-of-run programs, Fig-
ures 4.19 to 4.24. For the regression problems we considered (SEXTIC and TWOBOX),
the hits-based and squared error metrics produced programs with significantly greater
lengths (as measured at the 95% confidence interval using a standardised student T-
test). For classification problems, the hits and square error metrics again resulted in
more complex individuals, but was no longer necessarily significant at the 95% confi-
dence interval. (e.g. BREAST returned similar complexity across all metrics whereas
TS again established hits and square error as the most complex solutions.) However,
we do note that as problem difficulty increases, the hits and square error metrics tend

to result in more complex solutions relative to the other metrics considered.

4.3.3 Summary

The results in the preceding sections support the following observations:

e global error functions are mostly indistinguishable in terms of hits-based per-

formance;

e most global error functions support generalisation to the test set, but show poor

robustness in that they do so unreliably; and
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Pruned Quartile Solution Length vs. Error Function (C-HEART _pruned data set, pop. size 125, max. page count 24)
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Figure 4.20: Quartile pruned program length for the best individuals for the C-
HEART classification problem with a maximum page count of 24 and initial popula-
tion size of 125.
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Figure 4.21: Quartile pruned program length for the LIVER classification problem
with a maximum page count of 24 and initial population size of 125.
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Figure 4.22: Quartile pruned program length for the TS classification problem with
a maximum page count of 24 and initial population size of 125.
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Pruned Quartile Solution Length vs. Error Function (SEXTIC_pruned data set, pop. size 125, max. page count 24)
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Figure 4.23: Quartile pruned program length for the SEXTIC regression problem
with a maximum page count of 24 and initial population size of 125.
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Figure 4.24: Quartile pruned program length for the TWOBOX regression problem
with a maximum page count of 24 and initial population size of 125.
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e in terms of program length, the hits-based and sum squared error metrics pro-

duce the most complex individuals.

In this result, we observe that, while global error functions demonstrate potential for
high performance across many initialisations, high performance repeats only inter-
mittently in the sample. In the next experiment, we examined localised methods in

an effort to promote more reliable discovery of solutions.

4.4 Clustering and Local Wrapper for GP Evaluation Metrics

In this section, we introduce the proposed class separation distance metric and a local
wrapper error metric. We used the hits-based and square error metrics as a baseline.

To produce comparable hits totals for the latter three methods, we had to express
each metric’s output in terms of hits (post training) through unique methods. For
the squared error metric, we used the switching-type wrapper post-training, as in
previous examples.

For the class separation distance metric, during the test phase, we determined class
membership using a nearest neighbour strategy. For each exemplar, we determined
raw GP output, then found the nearest neighbouring class mean (on the GP output
axis) and assigned this exemplar to the class corresponding to that mean. The class
means are obtained during the training phase.

For the local wrapper case, we establish the mean and variance for both classes
during training and use these during testing to select class membership according to
a maximum membership strategy. That is, unseen exemplars are classified according
to the Gaussian function which maximises their membership, where the Gaussian
in question is generated from the mean and variance associated with each respective

class during the training phase. This is the assignment rule described in Section 3.2.2.
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Quartile Normalised Hits vs. Error Function (BREAST _rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (BREAST_rel test set, pop. size 125, max. page count 24)
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Figure 4.25: Quartile training and test hits for the BREAST dataset with global and
local wrapper functions

4.4.1 Raw Hits for the Local Wrapper Method on Raw GP Output

In examining the quartile hits on the classification datasets, shown in Figures 4.25
through 4.28, we observe that the variance in the case of classifiers trained using a
hits metric and squared error metric is significantly higher than that for the cluster
separation error function. We also see that the consistency of performance across
all four classification datasets for the class separation distance metric is particularly
good, whereas the local wrapper metric appears to overspecialise on training data on
specific datasets. That is to say, the variance on training data is very low whereas
that on test data is significantly higher. With respect to the squared error metric,
a lower variance in classifier performance was established relative to the hits based
metric, indicating that the additional feedback provided by this metric was useful,
although not necessarily sufficient to provide better median performance. The hits
based wrapper tends to return the most variation in classifier behaviour, a charac-
teristic that frequently provides the best single classifier over a set of initialisations
(encourages a lot of exploration during training) but at the expense of repeatability
in the search process. Conversely, the cluster separation wrapper appears to provide
the most consistent classifier behaviour, as indicated by the high median and tight

error bars, irrespective of dataset.
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Quartile Normalised Hits vs. Error Function (C-HEART _rel raining sef, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (C-HEART _rel test set, pop. size 125, max. page count 24)
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Figure 4.26: Quartile training and test hits for the C-HEART dataset with global
and local error wrapper functions
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Figure 4.27: Quartile training and test hits for the LIVER dataset with global and
local error wrapper functions

Quartile Normalised Hits vs. Error Function (TS_rel training set, pop. size 125, max. page count 24) Quartile Normalised Hits vs. Error Function (TS_rel test set, pop. size 125, max. page count 24)
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Figure 4.28: Quartile training and test hits for the TS dataset with global and local
error wrapper functions
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Pruned Quartile Solution Length vs. Error Function (BREAST_pruned data set, pop. size 125, max. page count 24)
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Figure 4.29: Quartile pruned program lengths for the BREAST dataset with four
classification metrics based on raw GP output
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Figure 4.30: Quartile pruned program lengths for the C-HEART dataset with four
classification metrics based on raw GP output

4.4.2 Pruned Program Lengths for Raw GP Methods

Figures 4.29 through 4.32 summarise quartile pruned program length, following the
removal of useless (ie intron) instructions. On the simpler problems of BREAST and
C-HEART, similar solution complexities are returned. In the case of the more chal-
lenging problems (Liver and Two Spirals), the cluster separation and local wrapper
metrics returned significantly shorter programs, where Figure 4.27 indicates that no

penalty has come to the classification performance.

4.4.3 Consequences

The results in the preceding sections support the following observations:

e the hits-based wrapper generalises to the test set but cannot be called a robust
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Pruned Quartile Solution Length vs. Error Function (LIVER_pruned data set, pop. size 125, max. page count 24)
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Figure 4.31: Quartile pruned program lengths for the LIVER dataset with four clas-
sification metrics based on raw GP output
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Figure 4.32: Quartile pruned program lengths for the TS dataset with four classifica-
tion metrics based on raw GP output
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solution, in that it appears to suffer from poor repeatability (that is, it is de-

pendent on the initialisation and suffers wide variance in quartile performance);

e the local wrapper method repeatably produces good individuals on the training
set but only partially generalises to the test set (nevertheless, the upper quartile

and median nearly overlap);

e the class separation distance metric combines both good generalisation and

robust (repeatable) performance.

Although the local wrapper method failed to produce clearly robust solutions for the
problems we considered, the class separation distance metric provided both general

and robust behaviour consistently across all data sets.



Chapter 5

Conclusion

Within a (linear) genetic programming framework, we examined the influence of initial
population parameters on the outcome of genetic programming models on selected

datasets representing classification and regression problems.

Our results indicate that initial parameters do not significantly influence the fitness
of resulting solutions within the context of a fixed length representation. Population
size does appear to be correlated with solution complexity. This result encourages
investigation of the effects of functional parameters, motivating our study of error
functions in genetic programming. That is to say, a better method for influencing
solution quality is through the definition of the fitness function than selection of

population parameters.

We examined the role of wrapper-based error functions in GP fitness. In this case,
we observed that the hits-based metric performed most consistently across classifi-
cation problems, followed by the absolute error metric. For regression problems, we
found that the Minkowski series of error functions provided consistent performance in
comparison with other functions. We question whether the switching-type wrapper
function obscured information content for more complex functions including absolute
error and squared error.

Our next trials investigated the properties of error metrics explicitly designed
to encourage a robust mapping on the raw GP output axis, specifically a cluster
separation metric and a local wrapper function was introduced. Our class separation

metric was intended to emphasise the difference between two clusters in the raw GP

45
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output. We found that this metric returned the most consistent results across the set
of classification problems evaluated.

In terms of future work, we believe that the reformulation of the classification
problem as a clustering problem will provide the basis for one class classifiers and
the use of multi-objective optimisation techniques for problem decomposition. In
essence, by focusing on the behaviour of the raw GP output values, the classification
problem takes the form of a clustering problem. When this is the case, methods from
multiobjective optimisation are applicable, thus providing for problem decomposition
and multi-model solutions [16].

Moreover, one class classification may now be appropriate as the task is now de-
fined in terms of establishing a mapping from input to output spaces (over exemplars
from one class) in which the objective is expressed in terms of establishing raw GP
output values with a specific local distribution. (e.g. a Gaussian distribution).

Finally, we note that the local wrapper approach may lead to a Bayes model
formulation of the classification problem. Such a scheme is not applicable to the
current local wrapper model (e.g. as implemented using a post-processing technique)

as the underlying assumptions for the two models are inherently different.
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Fitness vs. Tourament Number (Maximum Page Count 24)
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Figure A.1: Median bezier smoothed minimum, median average and median maxi-
mum fitness at each tournament for the BREAST classification problem
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Figure A.2: Median minimum, median average and median maximum fitness at each
tournament for the C-HEART classification problem
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Figure A.3: Median minimum, median average and median maximum fitness at each
tournament for the LIVER classification problem
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Figure A.4: Median minimum, median average and median maximum fitness at each
tournament for the TS classification problem
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Figure A.5: Median minimum, median average and median maximum fitness at each
tournament for the SEXTIC regression problem
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Figure A.6: Median minimum, median average and median maximum fitness at each
tournament for the TWOBOX regression problem
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