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Abstract

Current frameworks for identifying trading agents using machine learning are able to simultaneously address
the characterization of both technical indicator and decision tree. Moreover, multi-agent frameworks have also
been proposed with the goal of improving the reliability and trust in the agent policy identified. Such advances
need weighing against the computational overhead of assuming such flexibility. In this work a framework for evo-
lutionary multi-agent trading is introduced and systematically benchmarked for FX currency trading; including
the impact of FX trading spread. It is demonstrated that simplifications can be made to the ‘base’ trading agent
that do not impact on the quality of solutions, but provide considerable computational speedups. The result-
ing evolutionary multi-agent architecture is demonstrated to provide significant benefits to the profitability and
improve the reliability with which profitable policies are returned.

1 Introduction

Machine learning (ML) has had a widespread impact on the automatic identification of trading agents for iden-
tifying profitable trading strategies under stock or currency markets. From the perspective of a generic process,
multiple factors should be considered. For example, technical indicators (TI) are used to provide temporal fea-
tures from which a decision tree (DT) defines the training strategy (e.g., buy-stay—sell). Although the TI might be
designed independently before a DT is constructed — much in the manner that attribute selection might be per-
formed independently of classifier construction — the quality of the resulting trading strategy will be dependent
on the quality of the initial set of TI. This sequential dependence has lead authors to adopt various strategies in
which: 1) as wide a set of TI are initially included as possible after which the DT selects the most appropriate.
For example, [3] used genetic programming (GP) to define the DT and inso doing noted that combinations of TI
lead to better currency trading strategies. Other authors report similar findings using different ML paradigms
e.g., [1]; 2) mechanisms are pursued that permit temporal feature construction at the same time as identifying a
suitable DT. For example, the coevolutionary approach suggested by [8, 7] evolves two populations simultaneously
representing TT and DT respectively.

Naturally, the design of TI has a considerable impact on how the trading data is ‘interfaced’ to the trading data.
Thus, not only the type of TI, but the parameterization of the TI need to be considered [5]. Moreover, trading data
is non-stationary, thus an agent strategy that is appropriate for one period of trading will become unprofitable
under a future period. This has lead to the adoption of various schemes for re-training or incremental evolution
eg.,[2,9 7]

Finally, we note that it has been known for a while that in the general machine learning setting, stronger models
for regression or classification result when multiple models are combined in an ‘ensemble’ e.g., [6, 10]. Indeed,
boosting has been reported for identifying multiple DT in the case of a ‘multi-level’ framework for stock trading
[1].7

It is in this last respect that this paper is focused. Caveats that make the application of ensemble methods
(cf., multi-population architectures) challenging under a trading agent scenario might include: 1) computational
overhead of constructing multiple solutions; 2) non-stationary nature of the task implies that ensemble content is
likely to (at best) go stale or (at worst) over-learn, and 3) how to recombine multiple GP solutions (say, one from
each population) into a single cohesive solution.

*Such a scheme does not naturally carry over to the currency trading scenario investigated here on account of the DT being used for
predicting the one-step-ahead return relative to a sample of S-portfolio of stocks.
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With this in mind, we assume the general framework of FXGP [8, 7] for coevolving TI and DT (Section 2) and
concentrate on assessing to what degree combining multiple DT from different populations has on the quality of
the resulting agent strategy. The computational overhead of maintaining multiple populations is addressed by
adopting an approach closer to the ‘weak learner” methodology in which we reduce the functionality in the TI
and DT, resulting in a threefold speedup in the time to evolve a single population. The non-stationary nature of
the task is addressed through the use of the behavioural criteria for triggering re-training, as in the original FXGP
framework. In the case of combining solutions from each population, an approach to voting is adopted which
enables us to avoid the need to maintain a large number of parallel populations i.e., a computational overhead for
real-time operation.

2 The FXGP Algorithm Overview

The original FXGP framework proposed a symbiotic framework in which a decision tree (DT) and technical
indicator (TI) population are symbiotically coevolved [8, 7]. Adopting such a framework enables FXGP to:

e assume a representation appropriate to each task. Specifically, in the case of this work the DT takes the
form of a sequence of conditional statements with typing constraints between first and second arguments.
A single DT may then index multiple individuals from the TI population. However, the TI takes the form of
simple linear GP expressions in which different types of TI functionality are supported.

e TI are evolved to be specific to the task as opposed to relying on prior TI definitions. In this case the
insight guiding this is that TI, as typically deployed, often represent combinations of more ‘elemental” TI
e.g., moving average, weighted moving average or specific samples of trading data.

In addition FXGP assumed an interface to the (stream) trading data in which re-training was triggered by a set
of trading criteria. That is to say, after an initial period of training, a champion individual is identified (validation)
and deployed for trading until trading criteria flag a deterioration in trading performance. At this point a new
DT-TI population is coevolved relative to data leading up to the point of failure. In the case of the FX task, such a
scheme was demonstrated to be more effective than continuously evolving against the trading data [7].

3 Multi-agent FXGP

This section describes the new version of the algorithm in which teams of FXGP individuals suggest the trading
action; hereafter FXGPT. As indicated in Section 1 we perceive several potential pathologies that could detract
from realizing the benefits of pursuing a multi-agent / ensemble approach to currency trading. Section 3.1 will
address simplifications that we introduce to reduce the computational footprint of the original FXGP framework;
hereafter simple FXGP (sFXGP). FXGPT is then defined relative to sSEXGP (Section 3.2).

3.1 simple FXGP

The original TI function contains seven instruction types [8], whereas analysis of the resulting solutions indicated
that only three functions where typically employed (Table 1). In addition, operations were removed from the
instruction set that typically resulted in intron behaviour. Thus, multiplication that produces a TI with the wrong
scale, two division functions and a square root function that frequently resulted in illegal operations (e.g. division
by zero or square root of negative value) were all dropped from the instruction set. Needless to say, this also re-
moves instruction types that have a longer (computational) latency i.e., division and square root; thus an expected
improvement to TI execution, where it is the evaluation of TI that account for the majority of CPU time.

Table 1: TI functions.
Function Definition

Addition | R[x] + R[x] + R[y]
Subtraction | R[x] < R[x] — R[y]
Division Rix| + R{x|+2

Originally three types of TI parameter were supported [8], whereas the new set of the TI parameters contains
only two (Table 2). The calculation of the Weighted Moving Average (WMA) requires more computational re-
sources compared to estimation of the Moving Average (MA). At the same time experimentation indicated that



Appears in EvoAPPS 14 (LNCS 8602) under Springer copyright 3

Table 2: TI parameters
Parameter | Description
TI type Value or Moving Average (MA)

TI scale TI that crosses o or TI that crosses price
Period n Number of hours (1) in a price history to calculate MA
Shift m Price m hours back in a history

Retrain signal is detected

Train agents (Na,) IVaIidate agents (Na,) | Trade
Z Train teams (Nt,) |
| Train agents (Na,) IVaIidate agents (Na,) Trade

Z Train teams (Nt;)

Figure 1: The Train—Validate-Train-Trade cycle. Independent populations are evolved during Training partition
Na; and a subset of sEXGP individual identified from each using the Validation partition Na,. The FXGP teams
are trained over partition Nt; (mode 1 only). The point at which retraining is invoked corresponds to three trading
criteria.

the effectiveness of the WMA failed to improve on that using TI based on MA alone, resulting in the simplified
set of TI parameters.

3.2 Constructing FXGP teams

Multiple sEXGP populations are to be evolved relative to the current historical trading data. That is to say, each
time the retraining criteria flags poor trading behaviour, all populations will be re-evolved.? The team is built in
two ways:

Mode o: Given P independent sEXGP populations, identify one champion trading agent from each using the
validation data, Na, (Figure 1).

Mode 1: As per mode o, however, all sSFEXGP individuals passing the validation criteria form the basis for a
new population, p*. This population continues evolution with respect to partition Nt; (Figure 1). Note that each
individual from p* is still treated as an independent trading agent.

Post evolution, each trading agent in the team returns one of three actions per trading interval (hourly in
this work), where actions are mapped to an integer value using the following assignment: Sell = —1; Stay = 0;
Buy = 1. The scheme adopted for combining the recommendation from each agent assumes the following form:
a =Y ;caa; where a; € {—1,0,1} corresponds to the three possible actions that each champion can assume and A
is the strongest subset of agents from p* at the last generation. The resulting number line is then re-mapped into
one of the three actions using the following rule:

IF (a > b) THEN (buy) ELSE IF (a < —b) THEN (sell) ELSE (hold) (1)

Naturally, the value for the threshold b needs to be defined by the user and remains the same throughout the
trading activity. We note that the generic form of this model has been adopted in the past for discretizing the
output of (single) neural network trading agents into long and short positions [4] and ‘risk management’ in the
case of boosted DT (v parameter in [1]).

*FXGP utilized three criteria: 1) max. single drawdown, 2) max. number of consecutive loss making trades, 2) max. number of bars without
variation [8].
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Table 3: Team specific parameters

Parameter | Value | Description

A 3 Number of trading agents in a team (number of inde-
pendent DT-TI populations)

b 2 Team’s trading signal threshold (Equ. (1))

mode oor1 | o - team is built with champion agents, 1 - team is
evolved

teams 100 | Teams’ population size (|p*|)

teamsGap 25 Number of teams to be replaced in each generation

teamsGnrts | 1000 | Max number of teams’ population generations

teamsPlt 200 | Number of generations without best score improve-
ment to stop training

testSize 500 | The data partition size to evolve teams (i.e., Nt; =
Na,)

4 Experimental setup

4.1 Source Data

The EURUSD tick-by-tick prices? were converted into one hour bars and used to define market activity during
the period from January 3, 2010 to November 30, 2012. We used the same period of time as in [7] to establish a
baseline for comparison. The distribution of floating spreads (the difference between Ask and Bid prices) of the
hour bars during trading (Open, High, Low and Close prices) are shown in the Figures 2(a) and 2(b). The results
in [7] were obtained with the assumption of a fixed spread value of 0.00002 USD based on the FxPro Group average
EURUSD spread value.#

Spread — Spread —

0.0004 —

0.015

0.0003 —
0.01 4

0.0002 —

TLAL L il

Open High Low Close Open High Low Close

(a) All spreads (o...0.02 USD) (b) Spreads within the range o...0.0005 USD

Figure 2: Spreads distributions. Internal box-plot provides quartile statistics. Violin profile characterizes the
distribution.

Both versions of the algorithm (unmodified and the version we describe in this work) allow user to specify the
limit spread value to open the trades. If the spread exceeds the limit, the algorithm will not generate buy or sell
signals to open a new trade. However, if the position was already opened, buy or sell signals to close an existing
position will be generated regardless of the spread value. In this research the spread limit was selected empirically
and set to 0.00025 USD for all cases i.e., a less conservative limit (relative to the earlier FXGP work), making the
role of policy identification more prominent.

3http:/ /www.truefx.com
4http:/ /www.fxpro.co.uk
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Table 4: Quartile performance of trading agents (pips). FXGPtwas the best previous result using the original FXGP
algorithm with prior knowledge of spread. FXGP is the same algorithm without accurate spread information.
SEXGP, FXGPT(3) and FXGPT(3e) represent the proposed single agent and two 3 agent formulations.

Algorithm | Profitable Score (pips)
runs (%) min | 1st quartile | median | 3rd quartile | max
EXGP 73 -3459.0 -63.3 996.2 1905.3 4159.5
sFEXGP 74 -3153.8 -94.8 988.5 1917.8 4054.6
FXGPT(3) 78 -2219.2 70.2 1117.3 2144.5 6291.0
FXGPT(3e) 81 -1876.6 288.5 1489.2 2462.8 4362.4
EXGPy 82 -3087.9 383.4 1522.5 2639.5 5298.6

4.2 Parameterization

Both updated versions of the algorithm (sFXGP and FXGPT) inherit the parameterization of the original FXGP
(as described in [8, 7]) with the addition of the parameters, specific for the evolution of teams (Table 3). All
runs were performed on a 2.8 GHz iMac computer with Intel Core iy CPU, 16GB RAM and Mac OS X 10.7.2.
Where indicated, use is also made of the Apple GCD enqueue application which identifies tasks for simultaneous
execution against the available CPU cores.

5 Results

The following experiments were performed within this research to distinguish between the various components
of the system:

e FXGP - original FXGP version of the algorithm as described in [8, 7] i.e., wider range of TI and DT.
o sEXGP - simple FXGP version of the algorithm i.e., limited TI and DT (Section 3.1).

e EXGPT(3) — teams formed using three sSEXGP champions under teaming mode o (Section 3.2).

e FXGPT(3e) - teams formed using three sEXGP champions under teaming mode 1 (Section 3.2)

The results of all three experiments are summarized in the Table 4 where the last line (FXGPf) repeats the
best sFEXGP result from [7] for a fixed spread of 0.00002 USD. Such a decision can only be made given suitable
priori knowledge of the market behaviour. This assumption is not made in the case of sSFXGP or FXGPT. Each
experiment includes 100 simulation runs. FXGP and sFXGP make no use of GCD style parallelization, however,
both forms of FEXGPT are able to.

Table 4 provides the overview of both the number of profitable runs and the respective quartile statistics.
Comparing FXGP to FXGPfjindicates that removing the prior knowledge regarding spread limits results in an im-
mediate significant reduction in performance. The simplifications introduced to provide sEXGP (from FXGP) have
no measurable impact on the quality of trades. Introducing the simplest form of multi-agent behaviour, FXGPT(3)
(sampling a single champion from each independently evolved population), results in a ~ 13% improvement to
the median score. Introducing evolution using teaming mode 1 (FXGPT(3e)) results in a tightening of the distribu-
tion of scores, as well as providing a 50% improvement relative to the single agent case (Table 3). This also results
in FXGPT(3e) managing to match the performance of FXGP{, where the latter makes use of prior information in
selecting an optimal spread.>

In order to characterize the computational costs of each algorithm, we report the total number of retraining
events and the cost of any single retraining event. Figure 4 summarizes the total count of retraining events over the
three year trading period. In the case of both single agent algorithms (FXGP and sFXGP), a significant reduction in
the number of retraining events occurs. Given that there was no trading benefit in assuming the (original) FXGP
framework over sFXGP, this reduction in the number of retraining intervals appears to indicate that sSEXGP agents
are more general. Conversely, there is a significant increase in the number of retraining events when teams of
trading agents are assumed (either mode of FEXGPT).

5The p-values for a Student t-test at the 95% confidence interval as applied between each pairwise test of FXGPT(3e) against FXGPT(3),
sFXGP and FXGP is 0.161, 0.047 and 0.008 respectively.
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Figure 3: Distribution of scores in pips over trading simulation period of time. Quartile information appears in
the box plot (illustrating the information from Table 4). The contours of the violin mimic the actual distribution of
the underlying data.

REIAINS oo oot

[ I I |
FXGP SFXGP FXGPT 3 FXGPT 3e

Figure 4: Distribution of number of retraining events over trading simulation period of time. Box plot define the
quartile information and violin the actual distribution.

Figure 5 summarizes the cost of performing any single retraining event. It is immediately apparent that
SFXGP is significantly faster than FXGP as originally conceived. Thus, the cost of supporting multiple types of
moving average and division operators as well as a square root operator (TI population) does not result in any
better trading performance while reducing the computational overhead by 65 — 70 % w.r.t. sEXGP. FXGPT is able to
maintain the computational overhead at ~ 40%, albeit with use of the coarse grained parallelism available through
Apple GCD.°

6GCD does not facilitate speeding up evaluation of a single population.
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Figure 5: Distribution of average training times (over a run) per population (FXGP and sFXGP) and per team of
three populations (FXGPT).

6 Conclusion

We can make following conclusions based on the obtained results:

e The use of real prices with floating spreads (Table 4, sFXGP) significantly affects the trading results and
reduces the number of profitable solutions and scores compared to trading with assumed fixed spreads as
previously reported (Table 4, FXGPt).

e Both single agent variants (FXGP and sFXGP) return a very similar number of profitable solutions and scores
(Table 4). We conclude that the simplifications introduced to sEXGP did not reduce the performance of the
algorithm and, at the same time, the training time was reduced by 65% (Figure 5). The average number of
retrains was also reduced (Figure 4).

e The use of teams of champion trading agents (Table 4, FXGPT(3)) improves the negative spread of runs
compared to that of a single trading agent (Table 4, sSEXGP). At the same time the CPU cost for maintaining
a team of champion agents is still significantly ~ 40% lower than that for the original FXGP.

e The use of evolved teams (Table 4, FXGPT(3e)) outperformed all other configurations and demonstrated
the best results in all categories: trustability (the percentage of profitable runs) and quartile scores. In-
deed, this configuration provides statistically significant improvements over the single population models
(95 percentile) and adds > 350 pips to the median performance of FXGPT(3).
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