Benchmarking Pareto Archiving heuristics in the presence of
concept drift: Diversity versus Age

Aaron Atwater’ and Malcolm I. Heywood"

*Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada

Article originally appears at GECCO under ACM copyright 2013
http://dl.acm.org/citation.cfm?doid=2463372.2463489

Abstract

A framework for coevolving genetic programming teams with Pareto archiving is benchmarked under two rep-
resentative tasks for non-stationary streaming environments. The specific interest lies in determining the relative
contribution of diversity and aging heuristics to the maintenance of the Pareto archive. Pareto archiving, in turn,
is responsible for targeting data (and therefore champion individuals) as appropriate for retention beyond the lim-
iting scope of the sliding window interface to the data stream. Fitness sharing alone is considered most effective
under a non-stationary stream characterized by continuous (incremental) changes. Fitness sharing with an aging
heuristic acts as the preferred heuristic when the stream is characterized by non-stationary stepwise changes.

1 Introduction

Streaming data applications represent a requirement for online as opposed to offline evolution. Taken from the
perspective of a classification or regression task this implies that it is not possible to assume that the data can be
divided into independent training, validation and test partitions i.e., the underlying process (describing the data)
is non-stationary. This means that evolution should be conducted as a continuous process. The principle interest
is therefore with respect to how well a machine learning algorithm — genetic programming (GP) in this case — is
capable of tracking / reacting to such changes.

Streaming applications appear frequently in financial environments (e.g., [7]), computer network applications
(e.g., [27]) or ‘big data” applications (e.g., [2]). The interface between data stream and evolutionary algorithm
typically takes the form of a sliding window. At each training epoch (generation) only data within the window
can be accessed and used for fitness evaluation. In this work, evolution under a Pareto archiving model is assumed
(Section 3). The implication of this is that a formal framework exists for identifying and retaining the (hopefully)
few instances from the stream that are most useful in promoting the identification of the fittest learners.

The explicit interest of this research is to characterize the suitability of heuristics used to maintain finite archiv-
ing constraints necessary to minimize computational overheads associated with Pareto archiving. Such heuristics
have a direct impact on the capability of the system to operate within non-stationary environments. In particular,
we are interested in quantifying the importance attributed to heuristics for diversity versus age. With this in mind,
two artificial data generators will be employed to create multi-class classification benchmarks with stepped ver-
sus continuous variation of the underlying data generating process (Section 4). Section 2 will summarize related
research in dynamic environments whereas Section 3 summarizes the approach to Pareto archiving and team
based task decomposition in GP. The paper concludes with a discussion and an identification of future research in
Section 5.

2 Related work

Unlike static tasks, dynamic or non-stationary tasks require convergence to be pursued only up to a point. Specif-
ically, when the underlying task is dynamic, convergence potentially compromises the ability to react to change.
It has been proposed that previous approaches investigated for applying evolutionary computation to dynamic
environments fall into one of five forms [7]: memory, diversity, multi-populations, problem decomposition and

Appears in GECCO’13 under ACM copyright 2

evolvability. The following provides a short review of the contributions made and where necessary their relation
to this work.

Memory: as reflected in the capability to return to a previously evolved solution. This implicitly assumes
that the task is in some way periodic. Moreover, there is always a tradeoff in terms of the amount of resources
made available for memory and the amount made available for supporting other properties, such as diversity. In
this work we are interested in the utility of Pareto archiving as a candidate memory mechanism under explicit
enforcement of finite archive sizes. Pareto archiving provides a much more formal basis for retaining both learners
(GP individuals) and points (data ‘distinguishing” between non-dominated learners). A previous article looked at
the simplified case of Pareto archiving applied under a streaming data context, but with respect to an environment
with a underlying dynamic that was stationary [2]. As such the earlier work was not able to draw any conclusions
regarding the appropriateness of Pareto archiving to non-stationary environments.

Diversity: as in mechanisms for supporting multiple species within a population. The most typically assumed
mechanism is to vary the rate of mutation or introduce a fixed number of entirely new individuals at each gen-
eration [13]. Niching (speciation) has been considered to resist favouring the same individuals [5]. Likewise,
solution age has been proposed to bias the retention of the ‘middle aged’ as opposed to the old or new [12]. [20]
introduced ‘sentinel” individuals as those which are uniformly distributed through the representation space. Such
individuals act as a diverse source of genotypic information for seeding the population on a continuous basis. The
later benchmarking study conducted here will revisit and compare the advantages and disadvantages of assuming
speciation and age heuristics in conjunction with Pareto archiving.

Multi-populations: associate different populations with different aspects of the search space. The basic as-
sumption in this case is that genetic drift associated with the smaller subpopulations will encourage the investi-
gation of new areas of the search space. Finding a suitable heuristic for controlling the exploration—exploitation
tradeoff controlling the interaction between the multiple populations remains an ongoing research issue.

Problem decomposition: is taken to have been articulated first by Simon’s watchmaker parable in which the
capacity to configure quickly is attributed to having appropriate ‘modules’” available [26]. From the perspective of
GPD, task decomposition might be most synonymous with support for modularity, run—time libraries and teaming.
Studies have shown the utility of each relative to static task domains—e.g., in the case of the teaming metaphor
adopted here, see [18].

Evolvability: implies that a representation is assumed that supports the identification of fitter parents in
changing environments. Geno- to phenotypic mappings have been proposed in this respect e.g., [24]. In this
work we equate evolvability with the degree to which modularity is supported, and a symbiotic coevolutionary
framework for teaming in GP specifically [18].

3 Pareto archiving in GP

An noted in Sections 1 and 2, Pareto archiving will be assumed as the ‘memory mechanism’ by which the unique-
ness of GP individuals (learners) is formally established. Potentially, Pareto archiving provides a scheme for
identifying a subset of learners as being non-dominated relative to the rest of the population. To do so, training
exemplars represent ‘objectives’ and are rewarded for distinguishing between the capability of different learners.
Such a model is of interest in a streaming context as a basis is then provided for identifying a small number of data
instances for retention beyond the immediate content of the sliding window i.e., interface to the stream (Section
3.1). Hereafter, the specific form assumed for GP will be the Symbiotic bid-based (SBB) framework for cooper-
atively evolving GP teams [17, 8]. Such a framework supports task decomposition and multi-class classification
from a single evolutionary cycle and is therefore potentially capable of supporting multiple factors significant to
dynamic environments (as reviewed in Section 2). In the following we first develop the Pareto archiving method-
ology independent of GP (Section 3.2) and then summarize SBB (Section 3.3).

3.1 Streaming data and concept drift

The streaming data assumption used in this work is the same sliding window implementation used in previous
work such as [2]. This implies that at any given generation f only a subset of the total training instances are
available to be sampled from, and at generation f + 1 some number of instances will have left the window and
will never be accessible again, while simultaneously some previously inaccessible instances will also be added to
the window and thus available for selection. As in previous cases, the GP system is provided time equivalent to
10% of the maximum number of generations, t,,,x, with access to the first 10% of the stream, in order to train an
initial population of GP individuals.

Appears in GECCO’13 under ACM copyright 3

Concept drift is introduced in the data sets used herein, in the incarnation of multiple distinct rulesets which
partition the attribute space into separate classes being employed at different time points throughout the stream.
Two distinct rulesets may or may not be conceptually related, and data representing both these cases is presented
in Section 4.2. The challenge posed to an online learning system in such an environment is to not only correctly
determine the correct class label for exemplars in the current environment, but also to quickly adapt to changes in
the underlying concepts — something that cannot be explicitly trained upon in the sense of traditional supervised
learning tasks.

3.2 Pareto archiving and fitness sharing

A two stage process is assumed consisting of Pareto dominance ranking and fitness sharing,* the latter represent-
ing a heuristic for promoting diversity when enforcing finite archiving constraints.

Pareto dominance ranking: The members of the point population, p; are taken to represent ‘objectives’. Fitness
is only ever evaluated against the content of the point population. This decouples fitness evaluation from the
cardinality of a data set. From a streaming data perspective Pg,, points are replaced at each generation with a
sample of new points taken from the current sliding window location [2]. Such objectives / points are used to
distinguish between the capability of different GP learners under a pairwise test for Pareto dominance, or

Vpr € P G(li, Pk) > G<lj/ Pk) (1)
AND 3py € P: G(l;, pi) > G(I;, px)

where P is the point population; /; and [; are two individuals (cf., learners) from the GP population currently
under evaluation, and; G(-,-) is the task specific reward function returning o on an incorrect classification and 1
on a correct classification (see Eqn (4) later).

Eqn (1) implies that learner I; dominates learner [; iff it performs as well on every point and better on at least
one point. For a total of |L| learners there are a total of |L|?> — |L| learner comparisons [6].2 Moreover, for point py
a comparison between learner /; and /; has the form of a distinction vector:

dlL-i+]] = { 0 otherwise (2)

Thus, when Eqn (2) returns a value of 1 then a distinction is said to have been made [10]. Points are penalized
for defeating all learners or when it is defeated by all learners i.e., no distinctions result. Such points would
therefore tend to be prioritized for removing from the point population. The fittest learners / GP individuals are
naturally those promoted by the Pareto dominance expression — Eqn (1). One drawback of the Pareto approach is
that as the number of objectives (points) increases, then comparatively weak overlapping behaviours may satisfy
the Pareto archiving criteria [10, 21, 19]. SBB therefore adopts the following fitness sharing heuristic with the
motivation of maintaining diversity in the points learners solve. This point will be revisited in Section 4 when we
consider alternative heuristics that might be more appropriate to a data streaming context.

Fitness sharing: The reward function G(I;, px) establishes a vector of distinctions (Eqn. (2)) for each point. The
point population can now be divided into two sets: those in the non-dominated front (the archive), 7 (P?), versus
those that are not, D(P!). Naturally, the decision to limit the number of archives to two is motivated by a desire
to balance the computational cost of archive construction against maintaining monotonic progress to an ‘ideal’
training trajectory [6].

Up to Pgqp points are replaced at each generation from the current stream window using the process of Section
3.1 [2]. Points are targeted for replacement under two basic conditions [17, 8]:

o If | F(P")| < |P| — Pgap THEN: stochastically select points for replacement from D(P') alone.

o If |[F(P")| > |P| — Pgsp THEN: all the dominated points are replaced, plus some subset Pyap — |D(P')| of the
Pareto archive. A fitness sharing heuristic is assumed for weighting members of the Pareto archive such that
the more unique the distinction the greater the weight. Thus, relative to distinction vector, dy, of point py
fitness sharing is defined as:

dii]
;1+M (3

*For a tutorial on Pareto archiving as applied to GP see [15].
2This is distinct from the number of fitness evaluations per generation, with fitness evaluation being a more costly process than establishing
the comparison vector.

Appears in GECCO’13 under ACM copyright 4

where i indexes all distinction vector entries (Eqn (2)), and N; counts the number of points in F(P?) that
make the same distinction.

3.3 Symbiotic bid-based GP

Symbiotic bid-based GP as applied to classification — hereafter SBB — utilizes two populations: program and
team (or symbiont and host); which are coevolved through symbiosis [17, 8]. The program (symbiont) population
utilizes a bid-based GP representation [16], itself defining each individual in terms of a tuple (c, b). Here ¢ declares
a scalar class label selected from the set of labels associated with the task domain (c € C); whereas b is the program
that evolves a context for deploying its class label. The team (host) population identifies combinations of symbionts
that attempt to coexist in a coevolutionary relationship. Members of the team population assume a variable length
representation, wherein the number of symbionts per team are adapted as part of the evolutionary cycle. Indeed,
[2] noted that hosts were first composed from symbionts representing the most frequent classes and only later
were symbionts added representing the less frequent classes. Fitness evaluation is only ever performed at the
‘level” of the hosts; thus, hosts represent the ‘learner” in the above discussion of Pareto dominance (Section 3.2).
Evaluation of a host, [; € L, is repeated for each training instance as identified by the point population at
generation t, p; € P'. For all symbionts a member of the host, sj € l;, execute their programs w.r.t. point py.
The host identifies the symbiont with maximum output (the winning bid) or s* = argsjelimax[s]-.b]. The winning

symbiont gains the right to suggest the class label for the current point, or

1 if IFs*.c = py.t
0 otherwise

G(li, px) = {

where py.t is the target label for point pg. Naturally, G(I;, p) is the reward function referred to in Section 3.2.

Algorithm 1 summarizes the breeder model of evolution defining the stepwise application of SBB to a data
stream [2]. Initialization provides initial sliding window content, St from the data stream, T, and then samples
from S' until P — Py, points have been selected (Section 3.1). Initialization of the host and symbiont population
follows the original SBB algorithm [17, 8]. On entering the main loop the remaining Pg,, and Lg,, points and
teams are initialized. The point population assumes the same stochastic sampled process as used during the
initialization step. Additional Lg,, hosts are added through application of the SBB variation operators. Variation
operators include crossover between hosts and symbiont mutation. The latter implies symbionts are first cloned,
with the content varied through appropriate GP mutation operators [17, 8].

The ‘Evaluate’ function (line 11) resolves values for G(I;, px). Once all hosts have been evaluated on all points
then the location of the sliding window is incremented relative to the data stream S’ (line 14). Point replacement is
performed under the Pareto archiving—fitness sharing heuristic of Section 3.2 (line 15). Likewise, a fixed number
of hosts, Lgap, are removed at each generation (line 16) resulting in members of the host population being either
non-dominated (Pareto archive), 7 (L!), or dominated, D(L'). Thus, hosts are identified for replacement. Should
symbionts no longer receive any host indexes then this is taken to imply that they were only associated with the
worst Lg,p hosts and they therefore “die’. The symbiont population size is therefore free to float.

Finally, the role of function ‘Best’ (line 19) is to return the champion host for evaluation against the test
partition. Given the streaming context — or continuous evolution against the stream — all hosts currently in the
Pareto archive are evaluated against the current content of the point population. The assumption being that if
the Pareto archiving strategy is effective, then the points remaining in the point population should be the most
appropriate for prioritizing the champion host. The metric assumed for champion identification is the average
class-wise detection rate or:

(4)

1
avg.DR = — Y DR.(l)) (5)
’C’ ceC

where C is the set of class labels associated with this task and DR.(I;) is the detection rate of host I; relative to
class c. Readers are referred to [17, 8] for additional SBB details e.g., instruction set and variation operators.

4 Evaluation

4.1 Diversity versus aging heuristics

Relative to the Pareto archiving framework of Section 3.2, we note that at present a fitness sharing heuristic is
used to promote the maintenance of diversity once the number of non-dominated points encounters the constraint

Appears in GECCO’13 under ACM copyright 5

Algorithm 1 Overview of the SBB training algorithm as applied to streaming data 7. S' denotes the set of training
instances associated with the sliding window at generation f; T denotes the streaming data; |P| and P! are the
size and content of the point population respectively; |L| and L! are the size and content of the host population
respectively;.

1: procedure TRAIN

2: t=0 > Initialization.
3 S' = INITSTREAM(T(1))

4 P! =InrrPoinTs(P, S)

5. (LY, L") = IntitTeams (M)

6: while t < t,,,, do

7: P! = GenPoints (P!, St) > Add ‘gap’ size points
8: (L") = GenTeams (L) > ... and hosts
o: forall ; € L! do

10: for all p; € P' do

11 EvaLuaTE(l;, px) > Evaluate fitness
12: end for

13: end for

14: S*1 = SHIFTSTREAM(T(t + 1)) > Resample
15: Pt*! = SeLPoINTs(P!)

16: (M!*1) = SeLTeams(L!)

17: t=t+1

18: end while

19: return Best(L!, P')

20: end procedure

imposed by a finite archive. Given that streaming applications are often of a real time nature, letting archive
size increase to include all non-dominated points is not a desirable option [2]. Moreover, once a point provides
a distinction it could potentially lie in the point population indefinitely i.e., the case of an outlier or mislabelled
data. Under streaming applications this is also deemed to be undesirable as the underlying process determining
stream content are frequently non-stationary. With this in mind, the fitness sharing heuristic of Equation 3 will be
adjusted with the goal of evaluating its role in allowing the GP populations to interact more effectively with the
current contents of the stream. To that end, the following three configurations will be explored:

1. Fitness sharing in its original, unmodified format. This case will serve as the base case for attempted
optimizations to the fitness sharing heuristic. Hereafter this case is denoted org.

2. Fitness sharing scores multiplied by the normalized inverse of point archive ages; that is, score = score x
(1 — age/agemax). Naturally, this heuristic introduces an age bias, with the motivation being to make older
points more likely to be replaced. Hereafter this case is denoted age.

3. Points with a fitness sharing score of o are considered to be ranked highest; after this, points are taken in the
order of highest score first. This case is intended to address the issue of new points which no GP individuals
are able to correctly classify being unable to enter the point archive. This prevents material that is currently
entirely unclassifiable from being presented to the team population as a desirable problem to be solved.
Hereafter this case is denoted zero.

Since online learning applications require an answer in the “here and now” of a data stream and not in a separately
partitioned external environment, testing is performed at periodic intervals during training by extracting the
current front-running GP individual and evaluating it separately across the previous interval, and the next (as-yet-
unseen) interval. The evaluation metrics used will be the accuracy (total number correct versus the total number
of exemplars in the interval) and average detection rate (Eqn (5)) as calculated across the interval. The relative
variation between accuracy and average detection rate provide a characterization for how sensitive the resulting
classifier is to class imbalance.

4.2 Datasets

Two methods of generating synthetic data for benchmarking streaming classification algorithms are employed:

Appears in GECCO’13 under ACM copyright 6

Table 1: Characterization of benchmarking datasets. Attribute counts appear next to the respective dataset names.
| Class | datgen (11) | planar (7) |

1 2,615,747 14,055
2 1,801,055 120,167
3 1,643,327 15,778
4 635,629 -
5 304,242 -

1. Dataset Generator3, a tool for generating benchmark data for data mining applications, is used to generate
exemplars representing three separate concepts, C1, C2, and C3. These concepts are then mixed as in [30]:
a stream of 7,000,000 total exemplars is divided into “chunks” containing 500,000 exemplars each, and
containing representation from each of the three concepts in a tuple written in the form (%C1, %C2, %C3).
The entire stream can then be written as fourteen chunks expressed, in order, as follows: (100,0,0) (100, 0,0)
(100,0,0) (90,10,0) (80,10,0) ... (10,90,0) (0,100,0) (0,0,100). The resulting data set will be denoted datgen.

The data is generated using the parameterization set forth in [30]. Five real-valued attributes are specified
that are relevant to the class attribute, and a sixth attribute that is irrelevant. Datgen then creates a decision
tree-style list of rules that partitions the attribute space into 5 classes based on randomly generated threshold
values, and assigns a class label to each of the tree branches. Exemplars are then created by randomly
determining attribute values and evaluating them against the generated decision tree in order to assign a
class label to the instance.

2. Two hyperplanes of the form Zleaixi = ap are generated, as in [9], where the values of a; represents
the current state of the stream (initialized randomly), the values of x; represent the attribute values of
a given exemplar, and d = 10 represents the chosen dimensionality for the task domain. A stream of
150,000 exemplars is created, and concept drift is parameterized and simulated as follows: Every N = 1,000
exemplars, each entry in a vector s = {—1,+1}4 (also initialized randomly) is given a 20% chance of inverting
its value. The first 5 of 10 non-class attributes in a are then moved at a rate of { = 10% over the course of the
next N exemplars, compounded every generation. This function is summarized in Equation 6 :

a; = a;+s; - % (6)
Exemplars are created by generating uniform random values for all non-class attributes. To determine the
class label, the values ag for each hyperplane are first normalized by summing the rest of the entries in
the vector and multiplying by a factor of 1/3 and 2/3 respectively, in order to keep the class distribution
from becoming entirely one-sided. The class label is then equal to the number of hyperplanes for which
Z?zlaixi < ag. The resulting dataset will be denoted planar.

This provides two basic scenarios for comparing the performance of the heuristics under different styles of
concept drift. The first is a discrete case in which two different concepts cannot be interpolated between, and
instead only the frequency of their appearance in the surrounding stream changes over time. The second is a
continuous case in which two different concepts are related to each other by some randomly drifting function, and
a given exemplar may exist on some fuzzy boundary between the two as the stream’s make-up slowly drifts from
being composed of one concept to another.

In keeping with established practice in generating synthetic data sets for classification, new exemplars are
created by randomly choosing values for each attribute and then applying the generated ruleset to determine the
exemplar’s class attribute. This tends to lead to a natural class imbalance dependent on how much of the attribute
space falls under the jurisdiction of each generated rule. The datasets are summarized in Table 1.

4.3 Parameterization

There are two parameters specific to the interface between SBB and the sliding window:

Maximum number of generations, f,,;,: This defines the number of generations conducted while making a single
pass through the data set (Section 4.1), and is held constant across all datasets. The impact of this is that new

3Gabor Melli. The datgen Dataset Generator. http://www.datasetgenerator.com/

Appears in GECCO’13 under ACM copyright 7

Table 2: SBB parameterization.

] || Description | Value |
P;i,, || Point population size. 120
Msize || Team population size. 120
tmax || Number of generations. 30 000

Pd Probability of learner deletion. 0.7
Pa Probability of learner addition. 0.7
Ua Probability of action mutation. 0.1
w Maximum team size. 20
Peap || Point generation gap. 20
Mqqp || Team generation gap. 60

training instances become eligible at the rate of ~ 233 per generation under datgen and ~ 5 per generation
under planar (i.e., total training instance count = #;4y).

Window size, w, for the sliding window: This is set at 5% of the total dataset size, or 350,000 records for datgen
and 7,500 for planar. A larger window size allows more data to be sampled for possible inclusion in the
archive at a time (and thus more representation of the current concept distribution of the stream), at the cost
of increased storage costs.

SBB parameters: are the same as the original study on Pareto archiving [2], and shown for convenience in Table
2).

In each case a total of 50 runs are performed per experiment.

4.4 Results

As outlined in Section 4.1, a total of three scenarios are considered across the datgen and planar data sets:
1) Unmodified fitness sharing scores or the org configuration. 2) Fitness sharing scores multiplied by inverse
normalized exemplar age, or the age configuration. 3) Fitness sharing scores left unmodified, except scores of o
are changed to oo, or the zero configuration.

The average detection rate metrics, as calculated across periodic intervals in the stream, are shown in Figure 1
for the datgen data set, and in Figure 2 for the planar dataset.

In the base case org for the datgen stream, performance hovers near unity for the first two intervals while the
underlying concept C1 does not change, then begins to steadily decline as data points from the second concept C2
are gradually introduced. The decline in performance continues until the tenth chunk, at which point more than
two-thirds of the stream is composed of representatives of C2, and only then does the algorithm begin adapting
to the change in the underlying environment. Interestingly, the next-to-last chunk of data composed entirely of
C2 exemplars caused the performance of the algorithm to drop the lowest, but the team population is able to
easily adjust to a brand new concept C3 when it abruptly takes over the stream (last chunk of the sequence).
Such behaviour would seem to imply a weakness in the current GP model for adapting to change spread out over
a significant period of time, at least in the case of discrete concept representation. Conversely, sudden change
appears to result in a more effective retraining and replacement of GP classifiers.

The other experiments age and zero in the datgen environment exhibit similar behaviour but appear to be able
to start compensating for the gradual change in concept earlier in the stream. Thus, the quartile statistic is better
at remaining above an average detection rate of 70% than under org. Of the three, the age case appears to adapt
the quickest. This configuration, as described in Section 4.1, was intended to punish points that have spent more
time in the archive — to the extent that the oldest point is deterministically removed at each generation.

In all cases for the planar stream, performance in terms of average detection rate appears to suffer initially
from a pathological case of class imbalance. This is corroborated by the high accuracy metrics reported for that
portion of the stream (Figure 3), and can be verified by looking at the class distribution of the point archive from
an example run (not shown). In this case, the original diversity based heuristic appears to resist the incremental
variation in the stream content better than either the explicitly age or ‘disengaged point” biases or age and zero
respectively. This is particularly true under the balanced detection rate metric of Figure 2. Note the different

Appears in GECCO’13 under ACM copyright 8

datgen-org-back datgen-age-back datgen-zero-back

P Tl

1.0

9

)
0
L1
C T3
(L]
1T
11
13
(1]
]
;

AverageDR
AverageDR

0.6
L
[
s
0.

I

v | 4 o 4

T ST T T T T T T T T T T T T T
2142 6426 10710 14994 19278 23562 27846 2142 6426 10710 14994 19278 23562 27846 2142 6426 10710 14994 19278 23562 27846

Generation Generation Generation

(a) org (b) age (c) zero
Figure 1: Average Detection Rate across previous chunks during training on the stream, using the datgen data set.

planar-org-back planar-age-back planar-zero-back

AverageDR

AverageDR
6

AverageDR

TTT I T T T T T TToTT TTTT TrTTT TTTT TrrTTT
750 3750 6750 9750 13500 17250 21000 24750 28500 750 3750 6750 9750 13500 17250 21000 24750 28500 750 3750 6750 9750 13500 17250 21000 24750 28500

Generation Generation Generation

(a) org (b) age (c) zero

Figure 2: Average Detection Rate across previous chunks during training on the stream, using the planar data set.

scales under the accuracy metric in Figure 3. In this case there is much more variation in the spread of the original
heuristic (e.g., 1st quartile extends down to 50%) whereas the age and zero heuristics demonstrate less variance.
However, in either metric, median performance never descends below 70% under org whereas both the alternative
heuristics fail to do so.

The magnitude of the effect of the different fitness sharing heuristics on the archive policy’s age bias can be
clearly seen in Figure 4. The org heuristic constantly churns the contents of the point archive, whereas both age
and zero provide an additional level of granularity to the score values that allow the archive to distinguish between
points enough to single some out for more long-term archiving.

5 Conclusion

Pareto archiving and the development of GP teams through symbiosis are proposed as a general framework for
supporting the multiple factors deemed to be of significance to continuous evolution in non-stationary environ-
ments. Specifically, the SBB algorithm supports task decomposition through speciation and bidding, whereas
evolvability is addressed through the use of independent representations and variation operators for teams and
programs. Pareto archiving provides a formal framework for retaining specific learners (GP teams) and the corre-
sponding data points, or a memory mechanism. This study introduces two multi-class benchmarks of importance
to streaming under non-stationary tasks. Specifically, the ‘datagen’ task assumes stepped changes to the underly-
ing process whereas ‘planar’ adopts a continuously varying process. The resulting benchmark study indicates that
diversity is more effective under the continuously varying process. Conversely, introducing an additional age bias
that deterministically retires the oldest non-dominated learners / points is more effective in the non-stationary
task with stepped changes.

Appears in GECCO’13 under ACM copyright 9

planar-org-back planar-age-back planar-zero-back

> > >
g o | g ~ 8
5 © 5 © 5 =~
g g g s
g g £
w
g
© |
g e |
g
< |
2
m
1 s
g o ° ° w | °
IR e I ° I
750 3750 6750 9750 13500 17250 21000 24750 28500 750 3750 6750 9750 13500 17250 21000 24750 28500 750 3750 6750 9750 13500 17250 21000 24750 28500
Generation Generation Generation
(a) org (b) age (c) zero

Figure 3: Accuracy across previous chunks during training on the stream, using the planar data set.

planar-* PPA ages

o
=]
S -
=]
=
=]
S |
=]

w @

c

k=l

<

2 o

s 9

° 3

£

[}

=)

<

v o

o o |

8 9

gv

<
Q
(=g
=1
N
o -

T T T T T T T
0 5000 10000 15000 20000 25000 30000

Generation

Figure 4: Average age of individuals in the point archive from single runs of experiments in the planar environment.

Appears in GECCO’13 under ACM copyright 10

In the case of future research we note that GP individuals are currently only evaluated with respect to a single
exemplar. Conversely, data structures such as tapped delay lines [27] and evolved sliding window parameter-
izations [28] would further enhance the capability of GP individuals to characterize the time varying nature of
the underlying task, and possibly introduce a method of dealing with cyclical concept drift behaviour which has
not been examined here. We are also interested in the use of GP within active learning environments to perform
change detection without the use of labeled data. This would imply that only when changes are detected would
labels be requested.

6 Acknowledgements

A. Atwater was supported in part by an NSERC CGS-M scholarship.

References

[1] H. Abdulsalam, D. B. Skillicorn, and P. Martin. Classification using streaming random forests. IEEE Transac-
tions on Knowledge and Data Engineering, 23(1):22—36, 2011.

[2] A. Atwater, M. 1. Heywood, and A. N. Zincir-Heywood. Gp under streaming data constraints: A case for
Pareto archiving? In ACM Genetic and Evolutionary Computation Conference, pages 703—710, 2012.

[3] P. Bruneau, F. Picarougne, and M. Gelgon. Incremental semi-supervised clustering in a data stream with a
flock of agents. In IEEE Congress on Evolutionary Computation, pages 3067-3074, 2009.

[4] J. Cartlidge and D. Ait-Boudaoud. Autonomous virulence adaptation improves coevolutionary optimization.
IEEE Transactions on Evolutionary Computation, 15(2):215—-229, 2011.

[5] W. Cedeno and V. R. Vemuri. On the use of niching for dynamic landscapes. In IEEE Congress on Evolutionary
Computation, pages 361-366, 1997.

[6] E. D. de Jong. A monolithic archive for pareto-coevolution. Evolutionary Computation, 15(1):61-93, 2007.

[7] I. Dempsey, M. O’'Neill, and Brabazon A. Foundations in Grammatical Evolution for Dynamic Environments,
volume 194 of Studies in Computational Intelligence. Springer, 2009.

[8] J. A. Doucette, A. R. Mclntyre, P. Lichodzijewski, and M. I. Heywood. Symbolic coevolutionary genetic pro-
gramming: A benchmarking study under large attribute spaces. Genetic Programming and Evolvable Machines,
13:to appear, 2012.

[o] W. Fan, Y. Huang, H. Wang, and P. S. Yu. Active mining of data streams. In Proceedings of the Fourth SIAM
International Conference on Data Mining, pages 457-461, 2004.

[10] S. G. Ficici and J. Pollack. Pareto optimality in coevolutionary learning. In European Conference on Advances in
Artificial Life, pages 316-325, 2001.

[11] C. Gathercole and P. Ross. Dynamic training subset selection for supervised learning in genetic programming.
In Parallel Problem Solving from Nature, pages 312—321, 1994.

[12] A. Ghosh, S. Tstutsui, and H. Tanaka. Function optimization in non-stationary environment using steady state
p y g y
genetic algorithms with aging of individuals. In IEEE Congress on Evolutionary Computation, pages 666-671,

1998.

[13] J.]J. Greffenstette. Genetic algorithms for changing environments. In Proceedings of Parallel Problem Solving
from Nature, pages 137-144, 1992.

[14] M. Kotanchek, G. Smits, and E. Vladislavleva. Exploiting trustable models via pareto GP for targeted data
collection. In Genetic Programming Theory and Practice VI, pages 145-162. Springer, 2009.

[15] M. Lemczyk. Pareto-cevolutionary genetic programming classifier. Master’s thesis, Faculty of Computer
Science, Dalhousie University, 2006. http://web.cs.dal.ca/"mheywood/Thesis/MCS.html.

Appears in GECCO’13 under ACM copyright 11

[16] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary genetic programming for problem decompo-
sition in multi-class classification. In ACM Genetic and Evolutionary Computation Conference, pages 464—471,
2007.

[17] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving with symbiotic bid-based
genetic programming. In ACM Genetic and Evolutionary Computation Conference, pages 363—370, 2008.

[18] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity under gp. In ACM Genetic
and Evolutionary Computation Conference, pages 853-860, 2010.

[19] A. R. McIntyre and M. 1. Heywood. Cooperative problem decomposition in pareto competitive classifier
models of coevolution. In European Conference on Genetic Programming, pages 289-300, 2008.

[20] R. W. Morrison. Designing evolutionary algorithms for dynamic environments. Springer, 2004.

[21] J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved opponents in a game
as dimensions for pareto selection. In ACM Genetic and Evolutionary Computation Conference, pages 493-500,
2001.

[22] A. Orriols-Puig,]. Casillas, and E. Bernado-Mansilla. First approach toward on-line evolution of association
rules with learning classifier systems. In ACM Genetic and Evolutionary Computation Conference, pages 2031—
2038, 2008.

[23] V. Ramos and A. Abraham. Swarms on continuous data. In IEEE Congress on Evolutionary Computation, pages
1370-1375, 2003.

[24]]. Reisinger, K. O. Stanley, and R. Miikkulainen. Towards and empirical measure of evolvability. In ACM
Genetic and Evolutionary Computation Conference, pages 257—264, 2005.

[25] D. Saad, editor. On-line learning in neural networks. Cambridge University Press, 1998.
[26] H. A. Simon. The sciences of the artificial. MIT Press, 2nd edition, 1996.

[27] S. Song, M. 1. Heywood, and A. N. Zincir-Heywood. Training genetic programming on half a million patters:
An example from anomaly detection. IEEE Transactions on Evolutionary Computation, 9(3):225-239, 2005.

[28] N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series forecasting for dynamic environ-
ments: The DyFor genetic program model. IEEE Transactions on Evolutionary Computation, 11(4):433—452, 2007.

[29] S. X. Wu and W. Banzhaf. Rethinking multilevel selection in genetic programming. In ACM Genetic and
Evolutionary Computation Conference, pages 1403—1410, 2011.

[30] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using optimal weight classifier
ensemble. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 40(6):1607-1621, 2010.

