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Abstract— Botnets are one of the most destructive threats 
against the cyber security. Recently, HTTP protocol is frequently 
utilized by botnets as the Command and Communication (C&C) 
protocol. In this work, we aim to detect HTTP based botnet 
activity based on botnet behaviour analysis via machine learning 
approach. To achieve this, we employ flow-based network traffic 
utilizing NetFlow (via Softflowd). The proposed botnet analysis 
system is implemented by employing two different machine 
learning algorithms, C4.5 and Naive Bayes. Our results show that 
C4.5 learning algorithm based classifier obtained very promising 
performance on detecting HTTP based botnet activity. 

Keywords— botnet detection; traffic IP- flow analysis; machine 
learning based analysis 

I. INTRODUCTION 
With the high reported infection rates, the vast range of 

illegal activities and powerful comebacks, botnets are one of 
the main threats against the cyber security [1][2]. A botnet is a 
set of compromised hosts (bots) that are under the remote 
control of a botmaster. Botnets are mainly used for spreading 
spams, Distributed Denial of Service (DDoS) attacks, identity 
thefts or just making use of the victim's computational 
resources. 

Researchers have proposed various detection mechanisms 
against botnets. However, botmasters have started to employ 
several protocols with decentralized topologies and fluxing 
techniques to avoid detection. In this regard, they evolved their 
communication methodology from utilizing Internet Relay 
Chat (IRC) to taking advantage of more ubiquitous protocols 
and decentralized topologies such as Hypertext Transfer 
Protocol (HTTP) and Peer-to-Peer (P2P). Therefore, it is 
anticipated that a botnet detection mechanism, which could 
potentially learn the new patterns by analyzing the traffic, 
could adapt to the changes in the botnet evolution. 

Many existing botnet detection approaches rely on 
analyzing the network traffic. Some focus on specific types of 
botnets while others attempt to build a general model for a few 
types of botnets. Before 2009, most of the proposed systems 
were specifically designed for IRC botnets (e.g. [3], [4]) but 
recently researches are more focused on P2P-based and HTTP-
based botnets (e.g. [6], [9]). They employ machine learning 
(ML) techniques (i.e classification and clustering) to 
automatically generate botnet detection models. In such 
systems, the first step is to collect the required information 

from the network traffic (feature extraction) which has always 
been a challenge. To this end, some only use network packet 
headers (i.e. [4], [6]), while others use packet payloads or a 
combination of the two (i.e. [5], [8]). As a response, botnets 
employ encryption techniques to avoid the detection systems 
that analyze the communication information embedded in the 
packet payload. Therefore, in this work, we investigate a ML 
based botnet detection mechanism that does not use packet 
payload information, which is opaque when encrypted. Instead, 
to summarize the network traffic and extract the required 
features, we employ a flow exporting tool utilizing network 
packet headers. Exporter tools are used to aggregate packets 
into flows and then represent them with features. NetFlow, 
which is introduced by Cisco Systems and is the de-facto 
standard in IP-flow collection, is employed in this work using 
an open source flow exporter called Softflowd [19]. We 
evaluated the performance of our proposed system on two 
HTTP based botnets both with and without a HTTP traffic 
filter. 

The rest of the paper is structured as follows: Section II 
summarizes the related work on botnet detection. Our 
methodology and the proposed system are presented in Section 
III. Results are discussed in Section IV. Finally, conclusions 
are drawn and the future work is discussed in Section V. 

II. RELATED WORK 
Different detection mechanisms have been proposed 

focusing on different aspects of botnets. Strayer et al. 
developed an IRC botnet detection framework that makes use 
of machine learning techniques [4]. First, they used a 
classification technique to filter the chat traffic and then a 
clustering technique was utilized to identify different activities. 
Finally, a topology analyzer is applied to the clusters to detect 
the botnets. In this three layer approach, flow-based features 
such as the number of packets and variance of packet intervals 
were utilized. Zeidanloo et al. proposed a detection system 
focusing on P2P and IRC based botnets [5]. Using filtering, 
classification and clustering methods, they differentiate the 
group behaviour of botnets from the legitimate traffic. Gu et al. 
developed BotMiner based on group behaviour analysis for 
IRC and P2P [7]. This detection system first uses a clustering 
approach to find similar communication (for the C&C 
communication traffic) then employs an activity clustering (via 
Snort) to find the type of activity. Wurzinger et al. proposed to 
detect botnets based on the correlation of commands and 
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responses of the monitored network [8]. By first identifying the 
responses, they aim to locate the corresponding commands in 
the traffic. In this process, packet payload information was 
utilized. Then, using these command and response pairs, the 
detection model (based on behaviour similarity) is built and put 
up for botnet detection purposes. They evaluated their system 
on IRC and P2P bot binaries and show that their system gives 
88% accuracy on the bots they employed. Kirubavathi et al. 
designed specifically an HTTP based botnet detection system 
using a multilayer Feed-Forward Neural network [9]. Based on 
the fact that web-based botnets do not maintain a connection 
with the C&C server but periodically make a web request from 
the C&C web server to download the instructions, they 
extracted features related to TCP connections in specific time 
intervals and used them for the detection purposes. Their 
results on simulated HTTP based botnets showed promising 
accuracy. Haddadi et al. proposed a co-evolutionary system, 
called Stateful-SBB, to detect automatically generated 
malicious (botnet) domain names [10]. Authors showed that, 
Stateful-SBB could differentiate botnet C&C domain names, 
which are located in the network packet payload. Francois et 
al. proposed a NetFlow monitoring framework that leveraged a 
simple host dependency model to track communication 
patterns and employed linkage analysis and clustering 
techniques to identify similar botnet behavioral patterns [11]. 
Zhao et al. investigated a botnet detection system based on 
flow intervals [6]. Flow features extracted from packet headers 
were utilized with Bayesian networks and decision tree 
classifiers to detect the botnets. 

In this work, we employ a NetFlow exporter, called 
Softflows, to extract the traffic features and two machine 
learning techniques utilizing the extracted features to detect 
botnet behaviour. Give that we only use flow based features, 
our approach can be employed for encrypted botnet traffic 
classification, too. Moreover, we employ all the possible 
extracted flow features in order to enable the ML technique in 
use to select the most appropriate features. This in return 
enables us to analyze the different botnet behaviours without a 
priori information. 

III. METHODOLOGY 
As discussed earlier, in this work, we aim to detect botnets 

via machine learning classifiers assuming that they employ 
different types and levels of encryption in their 
communication. Therefore, we do not have access to the packet 
payload. Thus, we explore the possibility of detecting botnets 
by aggregating the network traces into flows using network 
flow exporters which only utilize the information in the packet 
headers. Furthermore, we study the potential features chosen 
by the classifier from a given set. To achieve this, we built the 
following modules for our proposed system: (a) Traffic 
Generation module, (b) Feature Extraction module, and (c) 
Traffic Classification module. 

A. Traffic Generation 
Since botnets employ fluxing techniques as their strength 

point for their new versions [12], our main focus in this work is 
to detect botnet behaviour, which uses domain fluxing 
techniques.  Although  these  types of botnets are the most seen 

ones in the field recently, there is no such traffic publically 
available. Thus, we employed publically available lists of C&C 
domain names and legitimate web site domain names to 
generate such representative traffic.  

1) Alexa: Alexa Internet Inc. ranks and publishes the list of 
the most popular websites according to the number of unique 
site users and page views [13]. In this work, we employed this 
list to generate representative normal traffic.  

2) Zeus: Zeus botnet stole more than 100 million dollars 
over the years. Serious actions took place to take down Zeus 
botnets by Microsoft and its collaborators in March 2012. 
However, there are security reports in 2013 indicating that 
Zeus botnet is back with a new variant [14]. This makes the 
Zeus botnet one of the most destructive botnets in the recent 
history. ZeusTracker initiative actively monitors the Zeus 
botnet. In this work, we downloaded the C&C domain name 
list that we used from the ZeusTracker and DNS-BH web 
pages [15][16]. 

3) Citadel: Citadel botnet entered the Internet realm after 
the Zeus botnet leaked in 2011. Since then, this botnet has 
stolen more than 500 million dollars and infected more than 5 
million PCs in different countries [1][17]. In this work, we 
obtained the lists of Citadel botnet C&C domain names from 
the Citadel botnet section of the ZeusTracker and DNS-BH 
[15][16]. 

Both the Citadel and Zeus botnets use the HTTP protocol 
for their C&C communications. Alexa domain names are the 
high ranked web pages that can be accessed through the HTTP 
protocol, too. So, we coded a script to initiate HTTP 
connections with the domain names from the aforementioned 
lists to generate the representative traffic. In the process, all 
the generated traffic was captured and no sampling was 
applied. 

B. Flow Generation 
Flow generation tools summarize traffic utilizing the 

network packet headers. These tools collect packets 
information with common characteristics such as IP addresses 
and port numbers, aggregate them into flows and then calculate 
some statistics such as the number of packets per flow etc. 
Cisco NetFlow V.9, i.e. RFC 3954, defines the flow as "a 
unidirectional sequence of packets with some common 
properties that pass through a network device" [18][19]. The 
most common way to identify an IP flow is using a 
combination of five properties, i.e. 5-tuple: Source / 
Destination IP addresses, Source / Destination Port Numbers, 
and Protocol.  

Cisco Systems introduced NetFlow to collect and aggregate 
IP traffic information. Given that Cisco is the leader of IP flow 
technology, soon NetFlow became an industry standard. To 
collect and analyze NetFlow traffic data, three components 
should work together: (i) NetFlow exporter, which generates 
the NetFlow data, (ii) NetFlow collector, which collects the 
NetFlow data from the exporter, and (iii) NetFlow analyzer 
which analyzes the collected data, Fig. 1. 
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Fig. 1. NetFlow traffic analysis 

1 http://web.cs.dal.ca/~haddadi/alexa-list.pdf 

In this work, we employ Softflowd [20], which is an open 
source tool, as the Netflow exporter. Softflowd can export uni-
directional NetFlow data using the traffic on a simple device 
interface or from a pre-captured traffic trace. The exported data 
by SoftFlowd is then collected and analyzed. We chose 
NfDump [21] as the collector because it is an open source, easy 
to use tool which supports different versions of NetFlow. 
Finally, for the analyzer, we employed our proposed machine 
learning based classifiers and visual analysis to study the 
traffic. 

C. Classifiers 
In this work, two well-known machine learning based 

classifiers are used: C4.5 and Naïve Bayes.  

a) C4.5: C4.5 is a decision tree algorithm, which is a 
non-parametric supervised learning method, that is an 
extention to ID3 decision tree algorithm. In this case, the 
decision tree aims to find the small trees by pruning, then 
converts the trained tree into an if-then rule set. 

C4.5 constructs decision trees based on a training data set, 
where each exemplar is a set of already classified features by 
applying the Information Entropy concept. The algorithm 
employs a normalized information gain criterion to select 
features from a given set to determine the splitting point. In 
other words, the feature with the highest information gain 
value is selected as the splitting point, Eq. 1. 

Let Pi be the probability of an arbitrary sample in data set D 
belonging to class Ci: 

     (1) 

Then, the amount of information that is required to classify 
an instance in D, where m is the number of unique instances of 
the data set, is given by Eq. 2: 

  (2) 

Expected information needed to classify the objects of the 
data set D in all v sub-trees after using the feature A to split D 
into v partitions is given by Eq. 3: 

      (3) 

Finally, the information that is gained by branching on the 
feature A is given by Eq. 4: 

           (4) 

After finding the splitting node with the highest 
information gain, a decision node is generated based on this 
selected point. The training process then recursively continues 
on the corresponding sub-lists that are obtained until all of the 
data samples associated to the leaf nodes are of the same class 
or the classifier runs out of training samples. More detailed 
information on C4.5 learning algorithm can be found in [22]. 

b) Naïve Bayes: A Naïve-Bayes classifier is a simple 
probabilistic classifier based on the Bayes theorem, which 
assumes that the presence of a feature in a given class is 
independent of other features. The classifier uses the method 
of maximum likelihood (probability) for parameter estimation. 
Given a training set (X, Y ) where for each sample (x, y), x is 
an n-dimensional vector and y is the class label out of k 
number of classes, C1,C2...Ck , the classifier predicts that the 
sample belongs to the class Ci having the highest posteriori, 
conditioned on x: 

  (5) 

where: 

   (6) 

which equals to: 

   (7) 

All classifier parameters (i.e. class priori) can be calculated 
using different assumptions (i.e. priories = 1/k where k is the 
number of classes). A more detailed explanation of the 
algorithm can be found in [22]. 

IV. EVALUATIONS 
As discussed earlier, the proposed system is evaluated on 

two botnets (Citadel and Zeus) employing two machine 
learning classifiers (C4.5 and Naïve Bayes) using traffic flows 
generated by Softflowd. Moreover, the performance of the 
proposed system is also evaluated both with and without a 
HTTP filter.  

A. Data sets 
Given that even Alexa lists might have malicious domain 

names [23], we manually extracted 500 benign domain names 
from Alexa lists for the data sets employed in this work1. For 
Zeus botnet, we employed the list from ZeusTracker and DNS-
BH blocklist [15][16]. For Citadel botnet, we employed the 
ZeusTracker and DNS-BH Citadel list [15][16]. Table I 
presents the number of domain names with which we 
communicated and captured the traffic.  

Once, we communicated with the C&C domain names over 
the HTTP and captured the traffic, Softflowd flow exporter 
tool is employed on the captured traffic. Table II presents the 
number of extracted flows by Softflowd on all traffic and Table 
III presents the number of flows extracted by Softflowd once 
the HTTP filter is in effect. 

It should be noted here that  Softflowd provides 41 features 
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TABLE I.  NUMBER OF DOMAIN NAMES AND NUMBER OF 
GENERATED PACKETS  

Data Sets # of Domain Names # of Packets 
Alexa 500 21210 
Zeus 684 108947 
Citadel 42 79516 

TABLE II.  NUMBER OF ALL FLOWS EXPORTED BY SOFTFLOWD 

Data Sets # of All Flows 
Alexa 7473 
Zeus 14884 
Citadel 5772 

TABLE III.  NUMBER OF HTTP FLOWS EXPORTED BY SOFTFLOWD 

Data Sets # of HTTP Flows 
Alexa 2899 
Zeus 5237 
Citadel 1921 

TABLE IV.   SOFTFLOWD FEATURES 

Feature set 
Flow duration Type of Service (ToS) 
Source AS number Source ToS 
Destination AS number Destination ToS 
Input Interface Source mask 
Output Interface Destination mask 
Total number of packets Forwarding status 
Forward number of packets Source Vlan label 
Backward number of packets Destination Vlan label 
Total number of bytes Bits per second 
Forward number of bytes  Packets per second 
Backward number of bytes Bytes per packet Number of aggregated flows 

 
Fig. 2. Alexa- Frequency of flow Duration (Buckets of 50 sec) 

 
Fig. 3. Citadel- Frequency of flow Duration (Buckets of 50 sec) 

 
Fig. 4. Alexa- Frequency of  number of packets per flow (Buckets of 

10 sec) 

 
Fig. 5. Citadel- Frequency of number of packets per flow (Buckets of 

10 sec) 

in total. Detailed definition of these features can be found in 
NfDump and Softflowd project web sites [20][21]. We 
employed 23 of these features as inputs to our proposed 
system, Table IV. The ones that we omit are: IP addresses, port 
numbers and any non-numeric features. The reasons behind 
this are: IP addresses can be spoofed whereas port numbers can 
be assigned dynamically. Thus, employing such features may 
decrease the generalization abilities of a classifier for unseen 
behaviours. On the other hand, the presentation of non-numeric 
features may introduce other biases to the detection system so 
it is left to future work to include the non-numeric features.  

B. A High Level Look at the Flow Data sets  
As discussed in Section III-B, traffic is analyzed by a flow 

analyzer (3rd component) after being exported (1st component) 
and collected (2nd component). Although analyzers employ 
complex analysis techniques and different views to illustrate 
the flows in a more understandable way for the analyst (aka 
security expert or network administrator/manager), we thought 
it might be more beneficial to analyze the data set on some of 
the most important features of the flow (used by other 
researchers [4][6][8]) to understand whether there is any kind 
of data set bias or anomaly.  

Because of the page limitation, it is not possible to illustrate 
all of our observations in this context. So, we just present the 

most illustrative ones on only the HTTP flows of Softflowd. 
The analysis of these flows shows that: 

• 95% of the flows' durations are between 0 to 50 
seconds in Alexa-HTTP. These represent the normal 
behaviour, Fig 2. In Zeus-HTTP, 95% of flows' durations are 
also in this range. However, in Citadel- HTTP only 72% of the 
flows are in this range. This indicates that 23% of Citadel-
HTTP connections are longer than Alexa-HTTP (normal 
behaviour), Fig 3.  

• In Alexa-HTTP, almost all of the flows include less 
than 30 packets, Fig. 4. Zeus-HTTP flows also include about 
30 packets or less, Fig. 5. On the other hand, in Citadel-HTTP, 
62% of the flows are in the same range as Alexa-HTTP flows. 
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TABLE V.  CLASSIFICATION RESULTS--  WITHOUT THE HTTP FILTER 

 Data set DR Botnet Legitimate Time Complexity (sec) TPR FPR TPR FPR 

C4.5 Citadel 88% 88% 12% 88% 12% 0.61 
Zeus 86% 87% 16% 84% 13% 0.74 

Naïve Bayes Citadel 78% 7% 1% 99% 93% 0.06 
Zeus 54% 10% 1% 99% 90% 0.09 

TABLE VI.  CLASSIFICATION RESULTS-- WITH THE HTTP FILTER 

 Data set DR Botnet Legitimate Solution 
Complexity 

Time Complexity 
(sec) 

Feature 
Complexity TPR FPR TPR FPR 

C4.5 Citadel 97% 97% 3% 97% 3% 83 0.11 6 
Zeus 86% 86% 15% 85% 14% 223 0.16 8 

 

Our high level look to the data sets indicates that 
differentiating Zeus-HTTP botnet and Citadel-HTTP botnet 
flows from Alexa-HTTP flows will not be as easy as one might 
expect. As can be seen in Fig. 2 -5, specially Zeus botnet seems 
to be very similar to Alexa normal behaviour in terms of high-
level statistics. This may result in high false alarm rates or high 
solution complexities for the classifiers when they aim to 
differentiate Zeus botnet behaviour from normal behaviour. 

C. Performance Metric for the Proposed System  
In this work, we used the following metric in our 

evaluations: 

1) Detection Rate (DR): DR is the fraction of all the 
correctly labeled instances.  

2) False Positive (FP) and True Positive (TP) Rates: In 
general, positive means "identified" and negative means 
"rejected". Therefore, FP means incorrectly identified and TP 
means correctly identified. Thus, FP Rate (FPR) means the 
ratio of incorrectly identified samples and TP Rate (TPR) 
means the ratio of correctly classified samples of each class. 

3) Complexity: The definition of complexity often 
depends on the concept of the "system". Speaking of 
classifiers, complexity can be measured on different criteria 
such as memory consumption, time or solution. In this work, 
three complexity criteria are utilized. Firstly, computation 
time, which is a typical scale for learning  algorithms during 
training procedure denoted as training time. After a classifier 
is trained, the trained  model is  presented  as the  solution to 
be used for testing purposes on unseen data. Given that 
presenting a better solution to a problem is important, we 
define the solution complexity as our second criteria. This is 
the tree  size for the C4.5 based classifier. Given that solutions 
which employ less number of features might be beneficiary in 
the case of summarizing the data set, we finally define  our 
last complexity parameter, called feature complexity, as the 
number of distinct features that are used as part of a solution. 

D. Results  
We implemented C4.5 and Naïve Bayes learning 

algorithms via an open source tool called Weka [24]. We 
compare these two learning classifiers because they represent 
two well-known categories of ML. While C4.5 represents a 
decision tree that generates a solution in the form of rules, 
which are more understandable by the human expert, Naïve 

Bayes presents more of a black box solution. Moreover, while 
C4.5 has the ability of choosing the most appropriate features 
from all the features given to it, Naïve Bayes does not have this 
ability. Such an ability of C4.5 enables any analysis that can be 
done post classification. To evaluate these classifiers on our 
data sets, first an equal number of flows were randomly 
selected (using the uniform random selection algorithm in 
Weka) from the non-malicious data set (Alexa) as well as from 
each of the malicious data sets (Zeus and Citadel). Classifiers 
were then run on these balanced data sets using 10-fold cross-
validation to further avoid any data set biases that might affect 
the results. 

Table V shows the classification results on these traffic 
flows without using a HTTP filter. These results clearly 
demonstrate that C4.5 is a better choice for our classification 
purposes even though it takes longer to run. Although C4.5 
DRs in these evaluations are good, however the FPRs are for 
higher than desired. Thus, as the next step, we employed a 
HTTP filter on the data sets to analyze whether it would have 
any effect on the DR and/or FPR. 

1) HTTP Filtering: Given the wide range of the HTTP 
usage on the Internet, most recent botnets employ HTTP 
protocol to hide their malicious activities among the normal 
web traffic, Fig. 2 - 5. Citadel and Zeus fall under this 
category, too. Their C&C channels utilize HTTP protocol to 
communicate with their bots. Therefore, to investigate the 
effect of protocol filtering on botnet detection, specifically on 
false alarm rates, we employed a HTTP filter to select only 
HTTP related traffic. Then we repeat our previous approach to 
train our detection model and evaluate it again.  

Table VI shows the classification results for Citadel, and 
Zeus botnets when the HTTP filter is employed on the traffic. 
The results indicate that: (i) Filtering the HTTP traffic, in other 
words classifying the traffic first based on the application 
protocol suspected that a botnet uses seems to be effective, 
specifically in terms of FPR and time complexity metrics. (ii) 
Higher than desired FPR in Zeus classification shows that 
differentiating Zeus traffic form Alexa normal traffic is a 
challenging task. This was also seen in the analysis we 
discussed in Section IV-B. Probably a different way of traffic 
representation is necessary for Zeus botnet, given that 
Softflowd traffic representation with traffic filtering can 
achieve up to 97% detection rate and 3% false alarm rate for 
the Citadel botnet but much less for the Zeus botnet. This 
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means that there is a suitable feature set in Softflowd that can 
very well represent Citadel botnet behaviour and help to 
differentiate it from Alexa normal behaviour, but the same set 
of features are not effective for Zeus botnet. (iii) Based on our 
post-classification analysis, only six features of Softflowd were 
common in C4.5 solutions. These six features are: Flow 
duration, Total number of packets, Total number of bytes, 
Number of bits per seconds, Number of packets per seconds 
and finally Number of bytes per packet. This may indicate that 
these six features represent the similar behaviours between the 
two botnets but additional features are used to represent each 
one’s unique behaviours.  

 In summary, we think that these are very promising results. 
Our proposed system detects not only the botnet behaviour 
without using IP addresses, port numbers and payload 
information but it can also provide a platform to determine the 
most appropriate features indicating the botnet behaviour that 
is under analysis. Although, our proposed system is only 
evaluated on Zeus and Citadel botnets (recent aggressive 
botnets), since we employ no a priori information, it can be 
applied easily to other types of botnets with or without 
encrypted traffic. 

V. CONCLUSION 

 Due to the high reported botnet infection rate and its wide 
range of illegal activities, botnets are one of the main threats 
against the cyber security. In this scope, Citadel and Zeus are 
the two most powerful botnets that have affected the legitimate 
Internet realm the most in the past few years. In this work, two 
well-known machine learning techniques are investigated on 
these two well-known botnets for the purpose of botnet 
detection in traffic flows without using IP addresses, port 
numbers or any payload information. Since ML classifiers 
cannot be applied on network traffic directly, Softflowd, which 
is an open source tool to generate NetFlow based traffic, is 
employed on the captured packets to convert them into network 
flows and extract their features. Then, two approaches are 
employed: (i) Employing all the flows (without any HTTP 
filter); and (ii) Employing just the HTTP flows (with a HTTP 
filter). 

Given that Citadel and Zeus botnets are HTTP-based 
botnets and Alexa traffic is also a representation of HTTP 
normal traffic, the effect of a HTTP filter was investigated. 
Indeed, the use of a HTTP filter keeps the core of the 
botnet/Alexa communication and discards the rest. Therefore, 
the results of the second approach resulted in better 
performance for detecting both of the botnets and thereby show 
the importance and the effect of the HTTP filtering. In short, 
our results indicate how a machine learning based system and 
the choice of features can affect the results of botnet 
identification in traffic flows. Moreover, these results also 
indicate the importance of traffic classification/filtering for 
determining malicious behaviour. 

Future work will follow studying different flow exporter 
and feature extraction techniques as well as a more in depth 
study of protocol (application) filtering. 
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