
Botnet Behaviour Analysis using IP Flows
With HTTP filters using classifiers

Fariba Haddadi, Jillian Morgan, Eduardo Gomes Filho, A. Nur Zincir-Heywood
Computer Science, Dalhousie University

Halifax, NS, Canada
{haddadi, jmorgan, filho, zincir@cs.dal.ca}

Abstract— Botnets are one of the most destructive threats
against the cyber security. Recently, HTTP protocol is frequently
utilized by botnets as the Command and Communication (C&C)
protocol. In this work, we aim to detect HTTP based botnet
activity based on botnet behaviour analysis via machine learning
approach. To achieve this, we employ flow-based network traffic
utilizing NetFlow (via Softflowd). The proposed botnet analysis
system is implemented by employing two different machine
learning algorithms, C4.5 and Naive Bayes. Our results show that
C4.5 learning algorithm based classifier obtained very promising
performance on detecting HTTP based botnet activity.

Keywords— botnet detection; traffic IP- flow analysis; machine
learning based analysis

I. INTRODUCTION
With the high reported infection rates, the vast range of

illegal activities and powerful comebacks, botnets are one of
the main threats against the cyber security [1][2]. A botnet is a
set of compromised hosts (bots) that are under the remote
control of a botmaster. Botnets are mainly used for spreading
spams, Distributed Denial of Service (DDoS) attacks, identity
thefts or just making use of the victim's computational
resources.

Researchers have proposed various detection mechanisms
against botnets. However, botmasters have started to employ
several protocols with decentralized topologies and fluxing
techniques to avoid detection. In this regard, they evolved their
communication methodology from utilizing Internet Relay
Chat (IRC) to taking advantage of more ubiquitous protocols
and decentralized topologies such as Hypertext Transfer
Protocol (HTTP) and Peer-to-Peer (P2P). Therefore, it is
anticipated that a botnet detection mechanism, which could
potentially learn the new patterns by analyzing the traffic,
could adapt to the changes in the botnet evolution.

Many existing botnet detection approaches rely on
analyzing the network traffic. Some focus on specific types of
botnets while others attempt to build a general model for a few
types of botnets. Before 2009, most of the proposed systems
were specifically designed for IRC botnets (e.g. [3], [4]) but
recently researches are more focused on P2P-based and HTTP-
based botnets (e.g. [6], [9]). They employ machine learning
(ML) techniques (i.e classification and clustering) to
automatically generate botnet detection models. In such
systems, the first step is to collect the required information

from the network traffic (feature extraction) which has always
been a challenge. To this end, some only use network packet
headers (i.e. [4], [6]), while others use packet payloads or a
combination of the two (i.e. [5], [8]). As a response, botnets
employ encryption techniques to avoid the detection systems
that analyze the communication information embedded in the
packet payload. Therefore, in this work, we investigate a ML
based botnet detection mechanism that does not use packet
payload information, which is opaque when encrypted. Instead,
to summarize the network traffic and extract the required
features, we employ a flow exporting tool utilizing network
packet headers. Exporter tools are used to aggregate packets
into flows and then represent them with features. NetFlow,
which is introduced by Cisco Systems and is the de-facto
standard in IP-flow collection, is employed in this work using
an open source flow exporter called Softflowd [19]. We
evaluated the performance of our proposed system on two
HTTP based botnets both with and without a HTTP traffic
filter.

The rest of the paper is structured as follows: Section II
summarizes the related work on botnet detection. Our
methodology and the proposed system are presented in Section
III. Results are discussed in Section IV. Finally, conclusions
are drawn and the future work is discussed in Section V.

II. RELATED WORK
Different detection mechanisms have been proposed

focusing on different aspects of botnets. Strayer et al.
developed an IRC botnet detection framework that makes use
of machine learning techniques [4]. First, they used a
classification technique to filter the chat traffic and then a
clustering technique was utilized to identify different activities.
Finally, a topology analyzer is applied to the clusters to detect
the botnets. In this three layer approach, flow-based features
such as the number of packets and variance of packet intervals
were utilized. Zeidanloo et al. proposed a detection system
focusing on P2P and IRC based botnets [5]. Using filtering,
classification and clustering methods, they differentiate the
group behaviour of botnets from the legitimate traffic. Gu et al.
developed BotMiner based on group behaviour analysis for
IRC and P2P [7]. This detection system first uses a clustering
approach to find similar communication (for the C&C
communication traffic) then employs an activity clustering (via
Snort) to find the type of activity. Wurzinger et al. proposed to
detect botnets based on the correlation of commands and

2014 28th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-2652-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WAINA.2014.19

7

2014 28th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-2652-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WAINA.2014.19

7

responses of the monitored network [8]. By first identifying the
responses, they aim to locate the corresponding commands in
the traffic. In this process, packet payload information was
utilized. Then, using these command and response pairs, the
detection model (based on behaviour similarity) is built and put
up for botnet detection purposes. They evaluated their system
on IRC and P2P bot binaries and show that their system gives
88% accuracy on the bots they employed. Kirubavathi et al.
designed specifically an HTTP based botnet detection system
using a multilayer Feed-Forward Neural network [9]. Based on
the fact that web-based botnets do not maintain a connection
with the C&C server but periodically make a web request from
the C&C web server to download the instructions, they
extracted features related to TCP connections in specific time
intervals and used them for the detection purposes. Their
results on simulated HTTP based botnets showed promising
accuracy. Haddadi et al. proposed a co-evolutionary system,
called Stateful-SBB, to detect automatically generated
malicious (botnet) domain names [10]. Authors showed that,
Stateful-SBB could differentiate botnet C&C domain names,
which are located in the network packet payload. Francois et
al. proposed a NetFlow monitoring framework that leveraged a
simple host dependency model to track communication
patterns and employed linkage analysis and clustering
techniques to identify similar botnet behavioral patterns [11].
Zhao et al. investigated a botnet detection system based on
flow intervals [6]. Flow features extracted from packet headers
were utilized with Bayesian networks and decision tree
classifiers to detect the botnets.

In this work, we employ a NetFlow exporter, called
Softflows, to extract the traffic features and two machine
learning techniques utilizing the extracted features to detect
botnet behaviour. Give that we only use flow based features,
our approach can be employed for encrypted botnet traffic
classification, too. Moreover, we employ all the possible
extracted flow features in order to enable the ML technique in
use to select the most appropriate features. This in return
enables us to analyze the different botnet behaviours without a
priori information.

III. METHODOLOGY
As discussed earlier, in this work, we aim to detect botnets

via machine learning classifiers assuming that they employ
different types and levels of encryption in their
communication. Therefore, we do not have access to the packet
payload. Thus, we explore the possibility of detecting botnets
by aggregating the network traces into flows using network
flow exporters which only utilize the information in the packet
headers. Furthermore, we study the potential features chosen
by the classifier from a given set. To achieve this, we built the
following modules for our proposed system: (a) Traffic
Generation module, (b) Feature Extraction module, and (c)
Traffic Classification module.

A. Traffic Generation
Since botnets employ fluxing techniques as their strength

point for their new versions [12], our main focus in this work is
to detect botnet behaviour, which uses domain fluxing
techniques. Although these types of botnets are the most seen

ones in the field recently, there is no such traffic publically
available. Thus, we employed publically available lists of C&C
domain names and legitimate web site domain names to
generate such representative traffic.

1) Alexa: Alexa Internet Inc. ranks and publishes the list of
the most popular websites according to the number of unique
site users and page views [13]. In this work, we employed this
list to generate representative normal traffic.

2) Zeus: Zeus botnet stole more than 100 million dollars
over the years. Serious actions took place to take down Zeus
botnets by Microsoft and its collaborators in March 2012.
However, there are security reports in 2013 indicating that
Zeus botnet is back with a new variant [14]. This makes the
Zeus botnet one of the most destructive botnets in the recent
history. ZeusTracker initiative actively monitors the Zeus
botnet. In this work, we downloaded the C&C domain name
list that we used from the ZeusTracker and DNS-BH web
pages [15][16].

3) Citadel: Citadel botnet entered the Internet realm after
the Zeus botnet leaked in 2011. Since then, this botnet has
stolen more than 500 million dollars and infected more than 5
million PCs in different countries [1][17]. In this work, we
obtained the lists of Citadel botnet C&C domain names from
the Citadel botnet section of the ZeusTracker and DNS-BH
[15][16].

Both the Citadel and Zeus botnets use the HTTP protocol
for their C&C communications. Alexa domain names are the
high ranked web pages that can be accessed through the HTTP
protocol, too. So, we coded a script to initiate HTTP
connections with the domain names from the aforementioned
lists to generate the representative traffic. In the process, all
the generated traffic was captured and no sampling was
applied.

B. Flow Generation
Flow generation tools summarize traffic utilizing the

network packet headers. These tools collect packets
information with common characteristics such as IP addresses
and port numbers, aggregate them into flows and then calculate
some statistics such as the number of packets per flow etc.
Cisco NetFlow V.9, i.e. RFC 3954, defines the flow as "a
unidirectional sequence of packets with some common
properties that pass through a network device" [18][19]. The
most common way to identify an IP flow is using a
combination of five properties, i.e. 5-tuple: Source /
Destination IP addresses, Source / Destination Port Numbers,
and Protocol.

Cisco Systems introduced NetFlow to collect and aggregate
IP traffic information. Given that Cisco is the leader of IP flow
technology, soon NetFlow became an industry standard. To
collect and analyze NetFlow traffic data, three components
should work together: (i) NetFlow exporter, which generates
the NetFlow data, (ii) NetFlow collector, which collects the
NetFlow data from the exporter, and (iii) NetFlow analyzer
which analyzes the collected data, Fig. 1.

88

Fig. 1. NetFlow traffic analysis

1 http://web.cs.dal.ca/~haddadi/alexa-list.pdf

In this work, we employ Softflowd [20], which is an open
source tool, as the Netflow exporter. Softflowd can export uni-
directional NetFlow data using the traffic on a simple device
interface or from a pre-captured traffic trace. The exported data
by SoftFlowd is then collected and analyzed. We chose
NfDump [21] as the collector because it is an open source, easy
to use tool which supports different versions of NetFlow.
Finally, for the analyzer, we employed our proposed machine
learning based classifiers and visual analysis to study the
traffic.

C. Classifiers
In this work, two well-known machine learning based

classifiers are used: C4.5 and Naïve Bayes.

a) C4.5: C4.5 is a decision tree algorithm, which is a
non-parametric supervised learning method, that is an
extention to ID3 decision tree algorithm. In this case, the
decision tree aims to find the small trees by pruning, then
converts the trained tree into an if-then rule set.

C4.5 constructs decision trees based on a training data set,
where each exemplar is a set of already classified features by
applying the Information Entropy concept. The algorithm
employs a normalized information gain criterion to select
features from a given set to determine the splitting point. In
other words, the feature with the highest information gain
value is selected as the splitting point, Eq. 1.

Let Pi be the probability of an arbitrary sample in data set D
belonging to class Ci:

 (1)

Then, the amount of information that is required to classify
an instance in D, where m is the number of unique instances of
the data set, is given by Eq. 2:

 (2)

Expected information needed to classify the objects of the
data set D in all v sub-trees after using the feature A to split D
into v partitions is given by Eq. 3:

 (3)

Finally, the information that is gained by branching on the
feature A is given by Eq. 4:

 (4)

After finding the splitting node with the highest
information gain, a decision node is generated based on this
selected point. The training process then recursively continues
on the corresponding sub-lists that are obtained until all of the
data samples associated to the leaf nodes are of the same class
or the classifier runs out of training samples. More detailed
information on C4.5 learning algorithm can be found in [22].

b) Naïve Bayes: A Naïve-Bayes classifier is a simple
probabilistic classifier based on the Bayes theorem, which
assumes that the presence of a feature in a given class is
independent of other features. The classifier uses the method
of maximum likelihood (probability) for parameter estimation.
Given a training set (X, Y) where for each sample (x, y), x is
an n-dimensional vector and y is the class label out of k
number of classes, C1,C2...Ck , the classifier predicts that the
sample belongs to the class Ci having the highest posteriori,
conditioned on x:

 (5)

where:

 (6)

which equals to:

 (7)

All classifier parameters (i.e. class priori) can be calculated
using different assumptions (i.e. priories = 1/k where k is the
number of classes). A more detailed explanation of the
algorithm can be found in [22].

IV. EVALUATIONS
As discussed earlier, the proposed system is evaluated on

two botnets (Citadel and Zeus) employing two machine
learning classifiers (C4.5 and Naïve Bayes) using traffic flows
generated by Softflowd. Moreover, the performance of the
proposed system is also evaluated both with and without a
HTTP filter.

A. Data sets
Given that even Alexa lists might have malicious domain

names [23], we manually extracted 500 benign domain names
from Alexa lists for the data sets employed in this work1. For
Zeus botnet, we employed the list from ZeusTracker and DNS-
BH blocklist [15][16]. For Citadel botnet, we employed the
ZeusTracker and DNS-BH Citadel list [15][16]. Table I
presents the number of domain names with which we
communicated and captured the traffic.

Once, we communicated with the C&C domain names over
the HTTP and captured the traffic, Softflowd flow exporter
tool is employed on the captured traffic. Table II presents the
number of extracted flows by Softflowd on all traffic and Table
III presents the number of flows extracted by Softflowd once
the HTTP filter is in effect.

It should be noted here that Softflowd provides 41 features

99

TABLE I. NUMBER OF DOMAIN NAMES AND NUMBER OF
GENERATED PACKETS

Data Sets # of Domain Names # of Packets
Alexa 500 21210
Zeus 684 108947
Citadel 42 79516

TABLE II. NUMBER OF ALL FLOWS EXPORTED BY SOFTFLOWD

Data Sets # of All Flows
Alexa 7473
Zeus 14884
Citadel 5772

TABLE III. NUMBER OF HTTP FLOWS EXPORTED BY SOFTFLOWD

Data Sets # of HTTP Flows
Alexa 2899
Zeus 5237
Citadel 1921

TABLE IV. SOFTFLOWD FEATURES

Feature set
Flow duration Type of Service (ToS)
Source AS number Source ToS
Destination AS number Destination ToS
Input Interface Source mask
Output Interface Destination mask
Total number of packets Forwarding status
Forward number of packets Source Vlan label
Backward number of packets Destination Vlan label
Total number of bytes Bits per second
Forward number of bytes Packets per second
Backward number of bytes Bytes per packet Number of aggregated flows

Fig. 2. Alexa- Frequency of flow Duration (Buckets of 50 sec)

Fig. 3. Citadel- Frequency of flow Duration (Buckets of 50 sec)

Fig. 4. Alexa- Frequency of number of packets per flow (Buckets of

10 sec)

Fig. 5. Citadel- Frequency of number of packets per flow (Buckets of

10 sec)

in total. Detailed definition of these features can be found in
NfDump and Softflowd project web sites [20][21]. We
employed 23 of these features as inputs to our proposed
system, Table IV. The ones that we omit are: IP addresses, port
numbers and any non-numeric features. The reasons behind
this are: IP addresses can be spoofed whereas port numbers can
be assigned dynamically. Thus, employing such features may
decrease the generalization abilities of a classifier for unseen
behaviours. On the other hand, the presentation of non-numeric
features may introduce other biases to the detection system so
it is left to future work to include the non-numeric features.

B. A High Level Look at the Flow Data sets
As discussed in Section III-B, traffic is analyzed by a flow

analyzer (3rd component) after being exported (1st component)
and collected (2nd component). Although analyzers employ
complex analysis techniques and different views to illustrate
the flows in a more understandable way for the analyst (aka
security expert or network administrator/manager), we thought
it might be more beneficial to analyze the data set on some of
the most important features of the flow (used by other
researchers [4][6][8]) to understand whether there is any kind
of data set bias or anomaly.

Because of the page limitation, it is not possible to illustrate
all of our observations in this context. So, we just present the

most illustrative ones on only the HTTP flows of Softflowd.
The analysis of these flows shows that:

• 95% of the flows' durations are between 0 to 50
seconds in Alexa-HTTP. These represent the normal
behaviour, Fig 2. In Zeus-HTTP, 95% of flows' durations are
also in this range. However, in Citadel- HTTP only 72% of the
flows are in this range. This indicates that 23% of Citadel-
HTTP connections are longer than Alexa-HTTP (normal
behaviour), Fig 3.

• In Alexa-HTTP, almost all of the flows include less
than 30 packets, Fig. 4. Zeus-HTTP flows also include about
30 packets or less, Fig. 5. On the other hand, in Citadel-HTTP,
62% of the flows are in the same range as Alexa-HTTP flows.

1010

TABLE V. CLASSIFICATION RESULTS-- WITHOUT THE HTTP FILTER

 Data set DR Botnet Legitimate Time Complexity (sec) TPR FPR TPR FPR

C4.5 Citadel 88% 88% 12% 88% 12% 0.61
Zeus 86% 87% 16% 84% 13% 0.74

Naïve Bayes Citadel 78% 7% 1% 99% 93% 0.06
Zeus 54% 10% 1% 99% 90% 0.09

TABLE VI. CLASSIFICATION RESULTS-- WITH THE HTTP FILTER

 Data set DR Botnet Legitimate Solution
Complexity

Time Complexity
(sec)

Feature
Complexity TPR FPR TPR FPR

C4.5 Citadel 97% 97% 3% 97% 3% 83 0.11 6
Zeus 86% 86% 15% 85% 14% 223 0.16 8

Our high level look to the data sets indicates that
differentiating Zeus-HTTP botnet and Citadel-HTTP botnet
flows from Alexa-HTTP flows will not be as easy as one might
expect. As can be seen in Fig. 2 -5, specially Zeus botnet seems
to be very similar to Alexa normal behaviour in terms of high-
level statistics. This may result in high false alarm rates or high
solution complexities for the classifiers when they aim to
differentiate Zeus botnet behaviour from normal behaviour.

C. Performance Metric for the Proposed System
In this work, we used the following metric in our

evaluations:

1) Detection Rate (DR): DR is the fraction of all the
correctly labeled instances.

2) False Positive (FP) and True Positive (TP) Rates: In
general, positive means "identified" and negative means
"rejected". Therefore, FP means incorrectly identified and TP
means correctly identified. Thus, FP Rate (FPR) means the
ratio of incorrectly identified samples and TP Rate (TPR)
means the ratio of correctly classified samples of each class.

3) Complexity: The definition of complexity often
depends on the concept of the "system". Speaking of
classifiers, complexity can be measured on different criteria
such as memory consumption, time or solution. In this work,
three complexity criteria are utilized. Firstly, computation
time, which is a typical scale for learning algorithms during
training procedure denoted as training time. After a classifier
is trained, the trained model is presented as the solution to
be used for testing purposes on unseen data. Given that
presenting a better solution to a problem is important, we
define the solution complexity as our second criteria. This is
the tree size for the C4.5 based classifier. Given that solutions
which employ less number of features might be beneficiary in
the case of summarizing the data set, we finally define our
last complexity parameter, called feature complexity, as the
number of distinct features that are used as part of a solution.

D. Results
We implemented C4.5 and Naïve Bayes learning

algorithms via an open source tool called Weka [24]. We
compare these two learning classifiers because they represent
two well-known categories of ML. While C4.5 represents a
decision tree that generates a solution in the form of rules,
which are more understandable by the human expert, Naïve

Bayes presents more of a black box solution. Moreover, while
C4.5 has the ability of choosing the most appropriate features
from all the features given to it, Naïve Bayes does not have this
ability. Such an ability of C4.5 enables any analysis that can be
done post classification. To evaluate these classifiers on our
data sets, first an equal number of flows were randomly
selected (using the uniform random selection algorithm in
Weka) from the non-malicious data set (Alexa) as well as from
each of the malicious data sets (Zeus and Citadel). Classifiers
were then run on these balanced data sets using 10-fold cross-
validation to further avoid any data set biases that might affect
the results.

Table V shows the classification results on these traffic
flows without using a HTTP filter. These results clearly
demonstrate that C4.5 is a better choice for our classification
purposes even though it takes longer to run. Although C4.5
DRs in these evaluations are good, however the FPRs are for
higher than desired. Thus, as the next step, we employed a
HTTP filter on the data sets to analyze whether it would have
any effect on the DR and/or FPR.

1) HTTP Filtering: Given the wide range of the HTTP
usage on the Internet, most recent botnets employ HTTP
protocol to hide their malicious activities among the normal
web traffic, Fig. 2 - 5. Citadel and Zeus fall under this
category, too. Their C&C channels utilize HTTP protocol to
communicate with their bots. Therefore, to investigate the
effect of protocol filtering on botnet detection, specifically on
false alarm rates, we employed a HTTP filter to select only
HTTP related traffic. Then we repeat our previous approach to
train our detection model and evaluate it again.

Table VI shows the classification results for Citadel, and
Zeus botnets when the HTTP filter is employed on the traffic.
The results indicate that: (i) Filtering the HTTP traffic, in other
words classifying the traffic first based on the application
protocol suspected that a botnet uses seems to be effective,
specifically in terms of FPR and time complexity metrics. (ii)
Higher than desired FPR in Zeus classification shows that
differentiating Zeus traffic form Alexa normal traffic is a
challenging task. This was also seen in the analysis we
discussed in Section IV-B. Probably a different way of traffic
representation is necessary for Zeus botnet, given that
Softflowd traffic representation with traffic filtering can
achieve up to 97% detection rate and 3% false alarm rate for
the Citadel botnet but much less for the Zeus botnet. This

1111

means that there is a suitable feature set in Softflowd that can
very well represent Citadel botnet behaviour and help to
differentiate it from Alexa normal behaviour, but the same set
of features are not effective for Zeus botnet. (iii) Based on our
post-classification analysis, only six features of Softflowd were
common in C4.5 solutions. These six features are: Flow
duration, Total number of packets, Total number of bytes,
Number of bits per seconds, Number of packets per seconds
and finally Number of bytes per packet. This may indicate that
these six features represent the similar behaviours between the
two botnets but additional features are used to represent each
one’s unique behaviours.

 In summary, we think that these are very promising results.
Our proposed system detects not only the botnet behaviour
without using IP addresses, port numbers and payload
information but it can also provide a platform to determine the
most appropriate features indicating the botnet behaviour that
is under analysis. Although, our proposed system is only
evaluated on Zeus and Citadel botnets (recent aggressive
botnets), since we employ no a priori information, it can be
applied easily to other types of botnets with or without
encrypted traffic.

V. CONCLUSION

 Due to the high reported botnet infection rate and its wide
range of illegal activities, botnets are one of the main threats
against the cyber security. In this scope, Citadel and Zeus are
the two most powerful botnets that have affected the legitimate
Internet realm the most in the past few years. In this work, two
well-known machine learning techniques are investigated on
these two well-known botnets for the purpose of botnet
detection in traffic flows without using IP addresses, port
numbers or any payload information. Since ML classifiers
cannot be applied on network traffic directly, Softflowd, which
is an open source tool to generate NetFlow based traffic, is
employed on the captured packets to convert them into network
flows and extract their features. Then, two approaches are
employed: (i) Employing all the flows (without any HTTP
filter); and (ii) Employing just the HTTP flows (with a HTTP
filter).

Given that Citadel and Zeus botnets are HTTP-based
botnets and Alexa traffic is also a representation of HTTP
normal traffic, the effect of a HTTP filter was investigated.
Indeed, the use of a HTTP filter keeps the core of the
botnet/Alexa communication and discards the rest. Therefore,
the results of the second approach resulted in better
performance for detecting both of the botnets and thereby show
the importance and the effect of the HTTP filtering. In short,
our results indicate how a machine learning based system and
the choice of features can affect the results of botnet
identification in traffic flows. Moreover, these results also
indicate the importance of traffic classification/filtering for
determining malicious behaviour.

Future work will follow studying different flow exporter
and feature extraction techniques as well as a more in depth
study of protocol (application) filtering.

ACKNOWLEDGMENT
This research is supported in part by the Natural Science

and Engineering Research Council of Canada (NSERC)
Engage Grant, and Solana Networks Inc. The research is
conducted as part of the Dalhousie NIMS Lab at
https://projects.cs.dal.ca/projectx/.

REFERENCES
[1] Citadel's defences breached, (2013) [Online]. http://www.

symantec.com/connect/blogs/citadel-s-defenses-breached
[2] "The Role of DNS in Botnet Command & Control," Open DNS Inc.,

Whitepaper 2012.
[3] C. Livadas, R. Walsh, D. Lapsley, and W.T. Strayer, "Using machine

learning techniques to identify botnet traffic," in 2nd IEEE LCN
workshop on network security, pp. 967-974, 2006.

[4] W.T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, "Botnet detection
based on network behavior," Advances in Information Security, vol. 36,
pp. 1-24, 2008.

[5] H.R. Zeidanloo, A. Bt Manaf, P. Vahdani, F. Tabatabaei, and M.
Zamani, "Botnet detection based on traffic monitoring," in Networking
and Information Technology (ICNIT) , pp. 97-101, 2010.

[6] D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, and W. lu., "Peer-to-
Peer botnet detection based on flow intervals," in IFIP international
information security and privacy, pp. 87-102, 2012.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "BotMiner: clustering analysis
of network traffic for protocol- and structure- independent botnet
detection," in 17th USNIX Security symposium, pp. 139-154, 2008.

[8] P. Wurzinger, L. Bilge, Th. Holz, J. Goebel, Ch. Kruegel, and E. Kirda,
"Automatically generating models for botnet detection," in 14th
European conference on research in computer security (ESORICS) , pp.
232-249, 2009.

[9] V. Kirubavathi and R.A. Nadarajan, "HTTP botnet detection using
adaptive learning rate multilayer feed-forward neural network," in
Information Security Theory and Practice: security, privacy and trust in
computing systems and ambient intelligent ecosystems, pp. 38-48, 2012.

[10] F. Haddadi and A.N. Zincir-Heywood, "Analyzing string format-based
classifiers for botnet detection: GP and SVM," in IEEE Congress on
Evolutionary Computation (CEC) , pp. 2626-2633, 2013.

[11] J. Francois, Sh. Wang, R. State, and Th. Engel, "BotTrack: tracking
botnets using Netflow and PageRank," Networking, vol. 6640, pp. 1-14,
2011.

[12] PushDo evolves again: enhances evasion with Domain Generation
Algorithm (DGA), (2013). [Online]. https://www.damballa.com/
downloads/r_pubs/WP_PushDo_Evolves_Again.pdf

[13] Alexa. [Online]. http://www.alexa.com/topsites
[14] Zeus/ZBot Malware Shapes up in 2013. (2013) [Online].

http://blog.trendmicro.com/trendlabs-security-intelligence/zeuszbot-
malware-shapes-up-in-2013/

[15] Abuse: Zeus Tracker. [Online]. https://zeustracker.abuse.ch/
[16] DNS-BH- Malware Domain Blocklist. [Online]. Available:

http://www.malwaredomains.com/
[17] Microsoft, financial services and others join forces to combat massive

cybercrime ring, (2013). [Online]. http://www.microsoft.com/en-
us/news/press/2013/jun13/06-05dcupr.aspx

[18] Cisco IOS NetFlow. [Online]. http://www.cisco.com/
en/US/products/ps6601/products_ios_protocol_group_home.html

[19] RFC 3954, (2004). [Online]. http://www.ietf.org/rfc/rfc3954.txt
[20] Softflowd. [Online]. http://www.mindrot.org/projects/softflowd/
[21] NfDump. [Online]. http://nfdump.sourceforge.net/
[22] E. Alpaydin, Introduction to Machine Learning.: MIT Press, 2004.
[23] Paul Royal. Maliciousness in Top-ranked Alexa Domains. [Online].

https://www.barracudanetworks.com/blogs/labsblog?bid=2438
[24] WEKA. [Online]. http://www.cs.waikato.ac.nz/ml/weka/

1212

