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ABSTRACT
Botnets represent a destructive cyber security threat that
aim to hide their malicious activities within legitimate In-
ternet traffic. Part of what makes botnets so affective is
that they often upgrade themselves over time, hence react-
ing to improved detection mechanisms. In addition, Inter-
net common communication protocols (i.e. HTTP) are used
for the purposes of constructing subversive communication
channels. This work employs machine learning algorithms
(genetic programming and decision trees) to detect distinct
behaviours in various botnets. That is to say, botnets mimic
legitimate HTTP traffic while actually serving botnet pur-
poses. To this end, two different feature sets are employed
and analyzed to see how differences between three botnets
– Zeus, Conficker and Torpig – can be distinguished. Spe-
cific recommendations are then made regarding the utility
of different feature sets and machine learning algorithms for
detecting each type of botnet.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software
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1. INTRODUCTION
Botnets represent a set of compromised hosts under the re-

mote control of a botmaster i.e., a master–slave relationship.
They epitomize an approach to putting what would nor-
mally be considered legitimate users to malicious ends. As
researchers propose detection mechanisms to identify bot-
nets behaviours, botmasters upgrade their bots to defeat
detection. Given the distributed nature of botnets, there
are many avenues by which detection and evasion can take
place. Moreover, given the widespread use of legacy sys-
tems, which remain connected to the Internet, even ‘old’
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botnets remain effective. Hence, even after a takedown, bot-
nets make impressive comebacks [28]. In effect, the recovery
of a botnet is potentially caused by the lack of suitable up-
grades to legacy systems. As reported by Fu et al. [15],
Conficker (as a relatively older generation botnet compared
to Zeus) was detected on 104 devices at the James A. Ha-
ley Veteran’s Hospital in Tampa in 2013. Moreover, McAfee
predicted that in 2014 attackers will target systems using
the old Windows XP operating system;1 where legacy point
of sale and medical systems frequently use Windows XP.

Many existing approaches to botnet detection rely on net-
work traffic behaviour analysis. Some of these employ Ma-
chine Learning (ML) techniques (i.e. classification and clus-
tering) to automatically generate botnet detection models.
In such systems, the first step is to represent the network
traffic in a way that is meaningful for the ML techniques
employed. To this end, different systems assume their own
set of features [11, 16, 31, 33]. Some only use network packet
headers (i.e. [11, 16]), while others take advantage of packet
payloads (i.e. [31, 33]). Botnets, on the other hand, employ
encryption techniques to avoid detection systems that ana-
lyze the communication information embedded in the packet
payload.

In this work, we investigate a machine learning-based bot-
net detection mechanism that does not use packet payload
information; where this is opaque when encrypted. If suc-
cessful, we will therefore be able to detect botnets using en-
cryption. To this end, two ML approaches will be employed
(C4.5 decision tree induction [8] and a form of team based
genetic programming (GP) [13]), with the goal of qualifying
to what degree assuming different methods provides better
detection coverage. Both algorithms have previously demon-
strated to be effective for distinguishing between encrypted
and non-encrypted traffic [9].

The approach adopted in this work is to first construct
network traffic and extract the required features (attributes)
using a flow exporter tool. Specifically, TCP packets are
converted into a flow representation summarizing various
properties for a group of packets associated with the same
source / destination IP and port numbers as well as proto-
cols. However, there are many properties that can be derived
to characterize such flows. Depending on the tool used to
construct the flow, the resulting features may be more / less
effective at detecting botnet activity. Moreover, it is possi-

1Microsoft announced that as of 8 April 2014, Windows XP
will no longer be supported. However, Windows XP is still
the second most widely deployed desktop operating system.
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ble that botnets are using TCP flags in ways that were not
intended for legitimate use [20].

Traffic from three botnets will be used: Conficker, Tor-
pig and Zeus. These botnets have recently been associated
with critical network infrastructure such as medical systems
[15] or demonstrated a high infection rate. Our objectives
are three-fold: 1) establish how effective a basic flow based
information is for detecting each botnet; 2) to identify the
most effective attributes for detecting each botnet, and 3)
to make recommendations regarding signatures appropriate
for detecting each botnet.

2. BACKGROUND
Many systems require supplementary information such as

network alert information or several botnet binaries for the
purpose of detection [21, 26, 25]. However, it is possible to
detect the botnets without any additional information be-
yond that available in network traffic data. Yadav et al.,
proposed a methodology to detect botnets, addressing the
domain fluxing mechanism employed by the botnets such as
Zeus, Conficker and Torpig [32]. To this end, they analyzed
the DNS queries and the entropy of the domain names be-
longing to such queries. The proposed system was tested
against Conficker botnet, which resulted in a promising de-
tection and false positive rates. Haddadi et al., on the
other hand, designed and developed a Stateful-SBB (a co-
evolutionary GP approach) based technique to detect bot-
nets such as Conficker, employing only the command and
control (C&C) domain names without any DNS group be-
haviour analysis [17]. However, since the systems proposed
by both Yadav et al. and Haddadi et al. require access to a
domain name information (i.e., packet payload information),
neither are effective for botnets with encrypted packet pay-
loads.

Botnet detection systems can be categorized based on the
communication protocol they employ, the detection meth-
ods they employ or the type of data they use. Thus, some
researchers apply machine learning techniques for botnet de-
tection purposes using flow-based information (as attributes)
[11, 16, 27, 14]. Given that botnets are increasingly employ-
ing encryption techniques to hide their information, then
detection techniques that analyze the packet payload infor-
mation can no longer be useful (e.g., [31, 33]). Researchers
should therefore design frameworks that can also detect en-
crypted botnet behaviour. Celik et al., proposed a flow-
based botnet C&C activity detection system using only head-
ers of traffic packets [11]. Specifically, they investigated the
effect of calibration of time-based flow features using ma-
chine learning algorithms such as C4.5. Kirubavathi et al.
designed specifically an HTTP-based botnet detection sys-
tem using a multilayer Feed-Forward Neural network [19].
Given that HTTP-based botnets do not maintain a connec-
tion with the C&C server but periodically make a request to
the C&C server (over the HTTP) to download the instruc-
tions, they extracted features related to TCP connections in
specific time intervals based on the packet headers. Haddadi
et al. designed a botnet detection approach based on botnet
traffic analysis [16]. Network traces representing normal and
attack traffic were generated with publicly available domain
names of botnet C&C servers and legitimate web servers.
NetFlow based feature extraction (only from packet head-
ers) was used and machine learning algorithms (C4.5 and
Naive-Bayes) were then employed to detect the botnets.

3. METHODOLOGY
In this work, two ML paradigms are assumed: C4.5 deci-

sion tree [8] and the symbolic bid-based (SBB) framework
for evolving teams of programs to detect botnet behaviour
[13]. Both of these learning algorithms generate solutions
(models) that are in human readable format and therefore
enable the analysis of the learned models.

Traffic features (attributes) are expressed as flows using
the Softflowd tool [5]. In this case, the features are derived
from packet header information alone. Therefore they can
be employed for encrypted traffic classification, too. More-
over, most of the works in the literature employ a specific
set of features for various botnets. However, in this work, we
investigate which features can be useful to detect which type
of botnet. To do so, two feature sets, namely Softflowd set.1
and Softflowd set.2, exported by Softflowd are employed and
analyzed. We believe that this type of feature analysis may
lead us to understand the botnet behaviors and their differ-
ences in more detail and in return could enable us to design
and develop better botnet detection systems.

We evaluate our system on three botnets, namely Con-
ficker, Torpig and Zeus. The reasons behind this are the
following: most of the aggressive botnets employ encryption
methods to hide their sensitive information (such as Zeus),
and most of the systems such as the medical devices that
Conficker and Torpig recently target have legacy operating
systems. In doing so, we not only employ our proposed ap-
proach in legacy systems or medical devices but also on any
device that runs on a TCP/IP network whether it is en-
crypted or not. Thus, the coverage is much greater than
targeting a specific operating system or application.

3.1 Learning Algorithms Employed
The candidate ML algorithms go about constructing clas-

sifiers using different credit assignment policies and repre-
sentations. However, both approaches share an ability to
perform attribute selection is an implicit property of con-
structing a classifier. This property will later be used to gain
insight to how botnets are communicating using HTTP.

3.1.1 C4.5 decision tree algorithm
C4.5 is a decision tree algorithm extending the earlier ID3

algorithm developed by Quinlan [8]. Decision trees are con-
structed through a process of deterministically splitting the
training partition based on the selection of the attribute
maximizing the normalized information gain. Following the
addition of each split, an IF–THEN node is added to the
current decision tree. Each branch of the tree partitions the
(training) data into subsets, where the goal is to identify
subsets that have the same label. Recursive application of
this process incrementally constructs the decision tree until
leaf nodes appear with sufficiently high normalized informa-
tion gain.

In more detail, we note that the expected information or
‘entropy’ of a class given the exemplars, X from the training
data has the form:

I(X) = −
∑
i=1

f(X, i)× log2(f(X, i)) (1)

where

f(X, i) =
|{j ∈ X|(j) := i|

|X| (2)
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A candidate split partitioning the data into partitions
X1, , Xn has the entropy:

IS(X) = −
n∑

k=1

|Xk|
|X| × I(Xk) (3)

The resulting information gain is the difference in entropy
before and after introducing the split or gain(X) = I(X)−
IS(X). The C4.5 algorithm makes use of additional normal-
izations to reduce biases towards unequal class representa-
tion [8]. The implementation used in this work takes the
form of the WEKA ‘J48’ release [30].

3.1.2 SBB
The Symbiotic Bid-Based (SBB) algorithm is a form of

genetic programming that builds teams of programs cooper-
atively while simultaneously identifying useful exemplars to
learn from [13]. To do so, three distinct populations are uti-
lized: a point population, a team population and a learner
population. The learner population represents a set of sym-
bionts (learners), which associate a GP-bidding behaviour
with an action. The team population identify subsets of
learners to define team membership under a variable length
representation; the implication of the latter being that team
size as well as composition evolves. Finally the point popu-
lation denotes a subset of training data exemplars.

Host evaluation takes the following form. Each symbiont
(sj) consists of a program, sj .p, and an action (class), sj .a ∈
{1, ..., C} where C denotes the maximum number of classes.
All symbionts a member of the target host, h, have their pro-
gram evaluated on the same training exemplar, xk, (from the
point population). The symbiont with the maximum output
is identified or sym∗ = argsymj∈h max(sj .p(xk)). It is this

symbiont who has ‘won’ the right to present its correspond-
ing action, sym∗.a as the class label on exemplar xk. Any
form of GP could be assumed for symbiont programs. In
this work a linear GP representation is employed [10].

Fitness evaluation is only conducted against the current
content of the point population, thus decoupling fitness eval-
uation from the cardinality of the entire training partition.
The interaction between point and team population takes
the form of Pareto archiving e.g., [12]. Thus, if an individ-
ual is not dominated by any other individual, it is set to be
a part of Pareto-front. This relation is used by SBB train-
ing algorithm to determine the points and the teams that
survive to the next generation.

At each generation, Pgap new points are generated by
sampling the training data while enforcing a heuristic to en-
sure all classes see equal representation in the point popu-
lation. Conversely, Hgap new teams are generated through
variation operators (add, delete, swap and mutate) as ap-
plied to the existing teams. New symbiont programs poten-
tially appear through mutation alone, resulting in a vari-
able size symbiont population. That is to say, there is no
symbiont ‘fitness’ as such, however, should a symbiont not
see any host index, it is deleted. After fitness evaluation
the point and team population content is deterministically
ranked with Pgap points and Hgap teams deleted before a
new generation commences.

The above ranking process utilizes Pareto archiving, thus
the Pareto non-dominated teams with the highest ranks are
selected. Likewise, the non-dominated points are also pre-
served. Meanwhile, if a point / team ranking is required in

these non-dominated subsets, a form of competitive fitness
sharing is employed in order to introduce a bias in favour of
the points / teams that exhibit non-overlapping behaviour.

Post evolution, all the generated teams in the learning
procedure are evaluated on the training data set and the
one with the best performance selected as the ‘champion’
solution. The performance metric assumed for this purpose
takes the form of the class-wise average detection rate (Eqn.
(5) Section 4.2.1). The solution team is a combination of
a set of learners with their corresponding GP instructions.
In our evaluations, the maximum program size is set to 48.
Thus, each learner in the solution can have maximum 48
instructions including the non-effective code, called introns.
Given that introns were found to count for between 60% to
90% of instructions in a linear GP [10], we employ intron re-
moval to reduce the complexity of SBB [17]. A more detailed
explanation of the algorithm can be found in [13].

3.2 Data set Generation and Feature
Extraction

The Hyper Text Transfer Protocol (HTTP) is one of the
most common Internet protocols on account of the popular-
ity of web applications on the Internet. Naturally, botnets
have started to use this protocol to hide their malicious be-
haviours in the legitimate users’ activities [24]. Zeus, Con-
ficker and Torpig represent three botnets that utilize HTTP
protocol for their communication purposes. These are well-
known botnets where Conficker was recently reported to be
seen on medical devices and is also known to be used for
collecting banking information. Torpig, on the other hand,
is known to be a good representative of how domain fluxing
is used on the HTTP to steal financial and medical infor-
mation. Finally, Zeus is one of the most destructive botnets
reported which came with a new variant in 2013 after the
takedown in 2012. This botnet has been collecting bank-
ing data by using man-in-the-browser keystroke logging and
form grabbing but can be configured for any type of identity
theft attack.

A typical advanced botnet forms in five stages: initial in-
fection, secondary infection, connection, malicious C&C and
finally update and maintenance. During stage 1, exploita-
tion techniques are used to find victim vulnerabilities and
infects the target host. Once infected the shell-code is exe-
cuted on the victim machine to fetch the image of the bot
binary which then installs itself on the machine (stage 2).
In the third stage, the bot binary establishes the C&C chan-
nel. This channel is then used by the bot master to send the
command in the malicious C&C stage. Finally, the update
and maintenance stage is entered when the botmaster needs
to update the bots for one reason or another.

Since, there is not a significant amount of botnet traffic
publically available, we generated traffic. To this end, we
designed an approach to generate the botnet traffic repre-
senting the first phase of the botnet communication which
happens during the third stage of botnet lifecycle. In or-
der to do this, we employed publicly available (from legiti-
mate resources) lists of C&C domain names for Conficker,
Torpig and Zeus. We generated the representative botnet
traffic for the first phase of botnet communication by ini-
tiating HTTP based communication to the domain names
reported in these publicly available lists. These lists were
obtained from ZeusTracker [6], DNS-BH [3], Twitter API
[29], Bonn University [2] websites. As for the representative
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legitimate traffic, we employed the publicly available Alexa
domain lists which are based on the most popular websites
from Alexa Inc. [1]. This way, both the attack and the nor-
mal traffic were generated using the publicly available do-
main name lists to avoid any biases in the generated traffic.
The aforementioned generated botnet data sets are evalu-
ated against the few publicly available botnet data sets in
[18]. The results of this evaluation indicate that the gener-
ated traffic representing the first phase of a botnet communi-
cation is comparable to the real-life botnet traffic data sets.
Moreover, since Zeus botnet leaked in 2011, there are Zeus
botnet kits publically available. Therefore, we also run the
Zeus botnet in a controlled environment and captured the
network traffic. Furthermore, there are Zeus botnet traffic
captures available at NETRESEC [4] and Snort [7] websites
that we also employed in this work.

Once the traffic is collected, we convert the captured packet
format traffic into Internet Protocol (IP) traffic flows using
an IP Flow exporter. Flow exporters aggregates the traf-
fic based on 5-tuple information: Source IP address, Des-
tination IP address, Source port number, Destination port
number and Protocol. Then the flow traffic is summarized
in terms of some statistics such as the number of packets per
flow, bytes per flow etc.

Cisco Systems introduced NetFlow to collect and aggre-
gate IP traffic information. Given that Cisco is the leader of
IP flow technology, NetFlow became an industry standard
and therefore, many network equipments in the market sup-
port it. Thus, in this work, we employ of one of the open
source implementations of NetFlow exporters, namely Soft-
flowd [5].

4. EVALUATIONS AND RESULTS
As discussed earlier, our goal is first to detect various types

of botnets using only flow-based features and second, to find
the features that best describe the behaviour of the botnets
employed. To this end, two ML algorithms are employed on
two different feature sets and the solutions analyzed.

4.1 Data Sets
Softflowd is used to provide 14 flow attributes with the de-

fault parameters. All numeric attributes could be employed
directly. However, the “flag” attribute is a string based fea-
ture, hence requires conversion to a numeric form prior to
use by ML either SBB or C4.5. However, the numeric encod-
ing assumed for this purpose can have a significant impact
on the resulting classifier [23]. Benchmarking will therefore
be conducted without the “flag” attribute (Softflowd set.1)
and with (Softflowd set.2).

In the case of Softflowd set.2, six “flag”-based features are
defined (Table 1). Each of the six flags are encoded us-
ing two numeric values to indicate when they are set / not
set (during a communication). Table 1 summarizes the at-
tributes that are utilized in this work. A detailed defini-
tion of the attributes can be found in Softflowd project web
site [5]. Since the traffic generated/collected for each of the
data sets is different, after extracting the flows, the data
sets were then divided into two parts (Training and Test-
ing) based on: (i) a ≈ 30(70)% breakdown for the testing
(training) respectively; and (ii) keeping enough samples of
each class in both of the data sets. Table 2 indicates the
number of flow samples in each data set. Hereafter, we will
refer to the data sets generated in our lab using the pub-

Table 1: Employed Softflowd Features

Softflowd set.1 & 2 Softflowd set.2 only

Duration Flag-A
Total number of packets (Pkts) Flag-P
Total number of bytes (Byts) Flag-R
Flows Flag-S
Type of Service (TOS) Flag-F
Bits per second (bps) Flag-U
Packets per second (pps)
Bytes per packet (Bpp)

Table 2: Number of flows in each data set employed

Data Set
Training Testing

Legit Botnet Legit Botnet

Zeus-1 (NIMS) 6099 6099 2614 2614
Zeus-2 (NIMS) 611 611 262 262

Zeus
252 252 108 108

(NETRESEC)
Zeus (Snort) 100 100 43 43

Conficker (NIMS) 28951 28921 12386 12416
Torpig (NIMS) 1864 1856 794 800

licly available domain names as Zeus-1 (NIMS), Conficker
(NIMS) and Torpig (NIMS) and the Zeus data set that is
created based on the publicly available Zeus botnet kit as
Zeus-2 (NIMS). On the other hand, the other botnet traf-
fic is referred to using the download source. Hence, Zeus
(Snort) is the Zeus traffic made public on the Snort web site
[7] and Zeus (NETRESEC) is the botnet traffic provided on
the NETRESEC web site [4].

4.2 Performance Metrics

4.2.1 Performance
Typically, classifiers are evaluated using accuracy or clas-

sification rate as the fraction of all the correctly labeled in-
stances. However, given an unbalanced data set or a multi-
class data set, these metrics can be misleading. In this re-
gard, a classwise detection rate is defined as [22]:

DETc =
TPc

FNc + TPc
(4)

where DETc is the class c detection rate and TPc and FNc
are the True-Positive and False-Negative counts for class
c. Finally, to summarize the classwise detection rates of a
classifier over all classes the average DR criteria is defined
by [22]:

Score =
1

|C|
∑
c∈C

DETc (5)

4.2.2 Complexity
Classifier complexity can be measured by different crite-

ria such as memory consumption, time or the learned model
by the learning algorithms. In this work, three complexity
criteria are utilized: 1) training (computation) time is
employed where this is estimated on a common computing
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platform. 2) solution complexity, however, a direct com-
parison between solutions from different representations is
impractical since the underlying units of measurement are
different. Therefore, the tree size for C4.5 and the program
size of the solution team for SBB are considered as our units
of measurement. 3) feature complexity reflects the num-
ber of unique attributes employed per solution and poten-
tially gives additional knowledge regarding botnet commu-
nication.

4.3 Results
Table 3 and 4 present the classification results of C4.5

and SBB employing two different feature sets, namely Soft-
flowd set.1 and Softflowd set.2. The first feature set (Soft-
flowd set.1) consists of the default numerical flow features
exported by Softflowd whereas the second feature set (Soft-
flowd set.2) augments the default numerical flow features
with the numerically encoded TCP-Flag attributes (Section
4.1). As shown in Table 3, some of the FPRs are high
when using Softflowd set.1 with C4.5 and SBB. Having said
this, both of the classifiers performed equally well on Zeus-
2 (NIMS), Zeus (NETRESEC), Zeus (Snort) and Conficker
(NIMS) while using Softflowd set.1. On the other hand, the
performance results on Torpig (NIMS) and Zeus-1 (NIMS)
are much lower than the others when Softflowd set.1 is em-
ployed as the feature set. This observation indicates that
Torpig and Zeus-1 (NIMS) botnets characteristics cannot
be well represented by the features of Softflowd set.1.

The Softflowd set.2 feature set is then employed to inves-
tigate if TCP-flags would be beneficial to improve classifi-
cation performance for Torpig (NIMS) and Zeus-1 (NIMS)
specifically. Table 4 shows the results of these additional ex-
periments. The results show that the performance of almost
all of the botnets (except for Zeus (NETRESEC)) increased
by at least 1% indicating that providing the TCP flags as the
features to botnet classifiers can be beneficial. Surprisingly,
Torpig (NIMS) results were improved by more than 30%
when traffic is represented using the Softflowd set.2 feature
set, implying that the six flag features of Softflowd set.2,
were particularly effective at characterizing the Torpig bot-
net. Morever, there appears to be no disadvantage in using
the Softflowd set.2 attributes.

Comparing the results over complexity criteria, Table 4,
there is not much difference between the solutions based on
feature complexity, i.e. the number of features used from
the set given. However, there are significant differences in
terms of time and solution complexities. To this end, C4.5
training time is much less than SBB training time. SBB,
on the other hand, obtained smaller solutions (e.g. 88%
smaller for Conficker data set) based on the solution com-
plexity. This enables SBB to implement the solutions more
efficiently. Given that such solutions need to operate at net-
work flow speeds, simpler solutions are more advantageous,
because the detection system can perform faster with less
number of rule/signatures. Although, in some cases, the
low complexity is caused by an under-performing solution,
in others, it is a good indicator of a good solution with low
complexity.

4.3.1 C4.5 solution analysis
Going beyond analyzing the classification results in terms

of performance parameters such as Score, TP and FP rates,
we analyzed the solutions learned by the classifiers. This

Figure 1: Part of the Zeus (Snort) C4.5 decision tree

type of analysis might give of some insights on the Zeus,
Conficker and Torpig botnet behaviours.

To this end, the C4.5 solution (after training using the
Softflowd set.2) for the Conficker botnet is a very complex
tree (365 rules). On the other hand, C4.5 solution (after
training using Softflowd set.2) for the Torpig botnet resulted
in a very small tree with very high performance. As 65% of
the nodes in the decision tree of the torpig botnet utilized the
flag-based features (which were not included in the Softflowd
set.1), we believe that Torpig probably employs these flags
to tag its packets in a not-routine way. We will investigate
this direction in our future work in more detail.

Additionally, we analyzed C4.5 solutions for the various
Zeus botnet data sets employed in this work. Due to the
high complexity of Zeus-1 (NIMS), no distinct rule could be
observed rather than the very limited usage of flag-based
features versus the highly used features related to the num-
ber of bytes and packets such as “Pkts” and “bps”. On the
other hand, the analysis of the other three Zeus botnet data
sets shows that “Pkts” (i.e. the total number of packets in
a flow), “Byts” (i.e. the total number of bytes in a flow),
“Flag-S” (indicating the status of TCP SYN flag in the com-
munication) and “Flag-F” (indicating the status of the TCP
FIN flag in the communication) are widely utilized. To this
end, in Zeus (NETRESEC), 15% of the botnet training sam-
ples were labeled using the “Flag-R” (when TCP reset flag
is set in the communication) or in Zeus (Snort), 80% of the
training data set is labeled based on “Pkts” and “Byts”, Fig-
ure 1. Although the flag-based features are used by C4.5
to build the classification models for Zeus botnets, compar-
ing the C4.5 results of Softflowd set.1 and set.2 shows that
there are some fluctuations in the performance of the classi-
fier from one Zeus data set to another when flag features are
employed. It seems that these features do help in the iden-
tification of Zeus botnet traffic downloaded from the Snort
web site as well as the Zeus-1 traffic. On the other hand,
it seems like it does not help the identification of Zeus bot-
net traffic downloaded from the NETRESEC site nor the
Zeus-2 traffic. However, in both these cases, the decrease in
DR is compensated by the improvement in the FPR. This
observation indicate that not all versions of the Zeus botnet
(considering different data sets that may belong to differ-
ent versions of this botnet) utilize the TCP flags in their
communication.

4.3.2 SBB solution Analysis
In SBB, the champion team on the training dataset is se-

lected as the final solution, which is then applied to the test
dataset for performance evaluation. Under SBB the cham-
pion classifier takes the form of a team of programs. Each
program is only associated with a single class label. This
provides a level of task decomposition that is not possible
under C4.5.

Figure 2 shows an example of a Torpig class-1 learner’s
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Table 3: Classification Results Using Softflowd set.1 Feature Set

Data Set Score
Legitimate Botnet Complexity
TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-1 (NIMS) 84% 86% 17% 83% 14% 0.26 485 8
Zeus-2 (NIMS) 97% 96% 1% 99% 4% 0.01 29 5

Zeus (NETRESEC) 97% 97% 3% 97% 3% 0.04 43 8
Zeus (Snort) 93% 98% 12% 88% 2% 0 13 4

Conficker (NIMS) 92% 91% 7% 93% 9% 2.71 411 6
Torpig (NIMS) 68% 91% 55% 45% 9% 0.07 49 6

SBB

Zeus-1 (NIMS) 77% 80% 27% 73% 20% 185.56 27 5
Zeus-2 (NIMS) 97% 96% 1% 99% 4% 176.98 42 6

Zeus (NETRESEC) 90% 93% 13% 87% 7% 29.57 6 3
Zeus (Snort) 98% 98% 2% 98% 2% 6.39 53 5

Conficker (NIMS) 90% 89% 9% 91% 11% 178.10 81 7
Torpig (NIMS) 65% 92% 63% 37% 8% 186.12 20 4

Table 4: Classification Results Using Softflowd set.2 Feature Set

Data Set Score
Legitimate Botnet Complexity
TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-1 (NIMS) 87% 90% 16% 84% 10% 0.24 457 9
Zeus-2 (NIMS) 97% 97% 3% 97% 3% 0.01 35 9

Zeus (NETRESEC) 96% 97% 6% 94% 3% 0.01 29 8
Zeus (Snort) 98% 97% 1% 99% 3% 0 11 5

Conficker (NIMS) 94% 93% 5% 95% 7% 3.41 365 10
Torpig (NIMS) 99% 99% 1% 99% 1% 0.04 17 5

SBB

Zeus-1 (NIMS) 78% 73% 18% 82% 27% 188.252 51 8
Zeus-2 (NIMS) 97% 94% 0% 100% 6% 161.87 14 6

Zeus (NETRESEC) 90% 87% 7% 93% 13% 36.80 48 8
Zeus (Snort) 100% 100% 0% 100% 0 8.22 41 8

Conficker (NIMS) 91% 90% 9% 91% 10% 192.44 41 9
Torpig (NIMS) 100% 100% 0% 100% 0% 109.23 60 11

instruction set which is part of the SBB’s solution for the
Torpig botnet i.e., a subset of the SBB solution shown in
Table 4. The program’s instruction count is reduced to 2
from 17 by pruning (cf., intron removal). The pruned in-
struction set indicates that the learner multiplies the “Bpp”
(i.e. Bytes per packet) value by 0.54 if the “Flag-U” (indi-
cating the urgent TCP flag) is set and returns “Bpp” value
otherwise. Knowing that if this learner wins the bid over a
data sample, it labels the sample as botnet, this learner’s so-
lution implies that samples with the set “Flag-U” look more
suspicious and labeled as a botnet.

Using flag bits in malware communication has already
been suspected by other researches [20]. Our observation
supports this hypothesis for Torpig botnet on the data sets
we analyzed. Overall SBB used the“Pkts”and“bps” (stands
for bits per seconds) features the most for all of the botnets
while for the Torpig botnet, it also utilized the “Flag-S” and
“Flag-U” frequently. When SBB solutions using Softflowd
set.1 and Softflowd set.2 are compared against each other,
we observe similar trends to the behaviour of the C4.5 clas-
sifier. There are some fluctuations in the performance of the
SBB classifier from one Zeus data set to another when flag
features are employed. SBB’s solutions again indicate that
the versions of Zeus botnet seem to be different from one
Zeus traffic file to another. For SBB flag features improve
the solution performance, specially for Zeus Snort and Tor-

pig botnets. In most cases it also introduces an improvement
in the false alarm rates for SBB.

4.4 Discussion
In summary, Softflowd set.2 feature set performed bet-

ter in terms of higher Score and lower FPR. Analysis of
both the SBB and the C4.5 decision tree could help us to
recognize the most important features of the attribute set
and also the direct/indirect relationships between these fea-
tures. Table 5 shows all of the features employed by each
of the classifiers on each of the botnet data sets. As the ta-
ble indicates, SBB and C4.5 are using different feature sets
from one botnet to another. This implies that the classi-
fiers are learning different behaviours. There are some ob-
vious similarities/differences between the features employed
by the classifiers such as: (i) almost all of the classifiers used
“Pkts” and “bps”. This shows the importance of these fea-
tures in botnet detection, (ii) C4.5 did not use the“ToS”and
“Flows”features at all while SBB used at least one of them in
all types of botnet classifications, (iii) the features employed
by C4.5 and SBB for Zeus (Snort) classification are almost
complementary while SBB’s selected feature set could ob-
tain a 100% detection rate with a zero FPR, and (iv) in
the Zeus-1 (NIMS) data set where the performance is lower
than expected, the selected features by the two classifiers
do not overlap much. This raises the question of whether
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Figure 2: SBB- a sample learner instruction set with
botnet label on Torpig– Softflowd set.2

the performance would increase by finding a solution that
combines these two different solutions with complimentary
feature sets.

Overall, our results and analysis presented in this work
indicate that SBB and C4.5 learning algorithms focus on dif-
ferent properties of the traffic. This in return enables them
to recognize different botnet behaviours. However, we think
that SBB’s low solution complexity makes it a better classi-
fier when implementing a real-time botnet detection system.
Finally, the two employed classifiers could detect most of the
botnets with high performance while having higher than de-
sired FPR for the Conficker and Zeus-1 botnets. Having
said this, in our evaluations using a different feature set
with TCP flags did help to decrease the FPR from Soft-
flowd set.1 to Softflowd set.2 for these two botnet data sets.
This indicates that a more detailed feature set analysis is
necessary for these botnets. Moreover, given that different
classifiers seems to work better for different botnets, i.e. dif-
ferent behaviours, an ensemble learning algorithm might be
beneficial for future research.

5. CONCLUSIONS
A botnet is a set of compromised hosts that are under the

remote control of a botmaster. Due to high infection rate
and vast range of malicious activities, botnets are consid-
ered as one of the main threats against the cyber security.
Since botmasters can update any phase of the botnet life-
cycle at any time to defeat the detection systems, detection
systems also require automatic and intelligent mechanisms
to cope with the updates. In this work, we employ two
machine learning algorithms, namely C4.5 and SBB, to gen-
erate botnet detection models for Zeus (different versions),
Conficker and Torpig botnets automatically. Moreover, we
represented the traffic using a flow exporter, namely Soft-
flowd, to convert packets to traffic flows and extract their
features. To this end, two feature sets (Softflowd set.1 and
Softflowd set.2) both exported by Softflowd, are employed
which enable us in revealing some of the characteristics of
the aforementioned botnets behaviour.

Our first objective in this work was to investigate the pos-
sibility of detecting the aforementioned botnets using flow

based features. As the results indicate, both of the classi-
fiers performed very well using the Softflowd set.2 feature set
and obtained the Score (classwise detection rate) of up to
100% for some of the botnets. This confirms the accomplish-
ment of our first objective. To fulfill our second and third
objectives which were finding the feature sets that best de-
scribe the botnets and return a solution that is suitable for a
signature-based botnet detection system, the generated so-
lutions and the features used are analyzed. The analysis de-
termined some of the botnet characteristics. For example,
given that Torpig detection models by both of the classi-
fiers did not perform well using the Softflowd set.1 but did
perform out-standing (30% increase in detection rate) using
the Softflowd set.2 feature set, we believe that Torpig bot-
net employs the TCP flags in an abnormal way. However,
we did not notice such behaviour in the Zeus or Conficker
botnet solutions, which implies that these botnets do not
employ such flags. Having said this, almost in all of our ex-
periments SBB performed better than C4.5 in terms of the
solution complexity.

Future work will explore what other flow features can be
employed in botnet behavior analysis and their effects in
terms of lowering the false alarm rates.
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