
A Closer look at the HTTP and P2P based
Botnets from a Detector’s Perspective

Fariba Haddadi and A. Nur Zincir-Heywood

Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada

{haddadi,zincir}@cs.dal.ca

Abstract. Botnets are one of the main aggressive threats against cy-
bersecurity. To evade the detection systems, recent botnets use the most
common communication protocols on the Internet to hide themselves
in the legitimate users traffic. From this perspective, most recent bot-
nets are HTTP based and/or Peer-to-Peer (P2P) systems. In this work,
we investigate whether such structural differences have any impact on
the performance of the botnet detection systems. To this end, we stud-
ied the differences of three machine learning techniques (Decision Tree,
Genetic Programming and Bayesian Networks). The investigated ap-
proaches have been previously shown effective for HTTP based bot-
nets. We also analyze the detection models in detail to highlight any
behavioural differences between these two types of botnets. In our anal-
ysis, we employed four HTTP based publicly available botnet data sets
(namely Citadel, Zeus, Conficker and Virut) and four P2P based pub-
licly available botnet data sets (namely ISOT, NSIS, ZeroAccess and
Kelihos).

Key words: Botnet detection, HTTP, P2P, Machine learning.

1 Introduction

In the past couple of years, parties involved in information technology have
experienced enormous growth in cybersecurity. Technology as one side of this
domain has changed at an outstanding rate and threats, on the other hand,
have evolved significantly. In this scope, botnets are considered as one of the
most aggressive threats that are responsible for a large volume of malicious
activities.

A botnet is a network of compromised hosts (i.e. bots) that are under the
remote control of an offender, called botmaster. Bots are unwillingly and un-
knowingly utilized by the botmaster to carry out a diverse range of malicious
activities from the distributed-denial-of-service (DDoS) attacks to identity thefts
and spamming. On the other hand, masters have utilized various protocols (e.g.
IRC, HTTP and DNS), topologies (i.e. centralized and de-centralized) and tech-
niques (e.g. encryption and fluxing) since 2003. Such diverse structures have
assisted the botmasters to evolve and defeat the detection systems of this field.

2 F. Haddadi et al.

Botmaster forms the botnet through five phases called the initial infection,
the secondary injection, the connection, the malicious C&C (Command and Con-
trol) and the maintenance and update phases. Since a botnet can upgrade its
structure (or any algorithm that is used by botnets) in the fifth phase of the
lifecycle, automatic pattern discovery could potentially enable security systems
to adapt to such changes in the botnet evolution. In this case, many detec-
tion approaches have been proposed based on various machine learning (ML)
techniques. These approaches can be surveyed from the data perspective (i.e.
the type of network data being analyzed and its representation) and the ML
algorithms employed. From the data perspective, network traces should be rep-
resented to the algorithms through feature sets. Many of the approaches ana-
lyzed specific parts/packets of the network trace such as DNS queries, HTTP
requests and their corresponding responses. Others utilized the flow1 definition
to aggregate discrete network packets into a collection for the analysis purposes.
Network packets include two main parts: (i) Packet header, which includes the
control information of the protocols used on the network, and (ii) Packet pay-
load, which includes the application information used on the network. To be
able to analyze communication information such as the domain names, payload
information should be available in clear text. However, given that most recent
botnets utilize encryption methods to encode the communication information,
detection systems should be able decrypt the information. Using such approaches
may not be practical given that the decryption process increases the computing
complexity significantly. Moreover, the encryption methods/algorithms can be
modified/changed on the fly. On the other hand, flow-based detection approaches
can be very much useful since the features are only extracted from the packet
header.

In our previous work, we have proposed to employ the flow features of the
Tranalyzer flow exporter for botnet detection purposes. The effectiveness of this
feature set was evaluated on eight HTTP-based botnets using ML techniques.
However, botnets with the P2P topology (which may/may not use HTTP as
their communication protocol) are also among the most recent aggressive types
of botnets. Hence, in this work, we aim to evaluate the proposed approach as
well as the suggested feature set against the P2P botnets. We also investigate
whether the suggested approach can be as effective on the P2P botnets as it
was on HTTP-based botnets. To this end, we use Tranalyzer [1] to extract the
flow features from four P2P botnet data sets as well as four HTTP botnet
data sets. Three ML algorithms (C4.5 decision tree, Bayesian Networks and
the Symbiotic Bid-Based Genetic Programming (SBB)) are employed to build
the detection system models. Furthermore, beside evaluating the effectiveness
of the proposed approach, we also aim to analyze the trained detection models
in order to highlight the behavioural differences of the HTTP and the P2P

1 Flow is defined as a logical equivalent for a call or a connection in association with
a user specified group of elements [14]. The most common way to identify a traffic
flow is to use a combination of five properties (aka 5-tuple) from the packet header,
namely source/destination IP addresses and port numbers as well as the protocol.

A Closer look at the HTTP and P2P botnets 3

botnets. Last but not the least, a multi-class classification approach is designed
to investigate whether each botnet would have enough discrepancy from the
classifier’s perspective to be distinguished from the others.

The rest of the paper is structured as follows: The background and the related
work on botnet traffic analysis are summarized in section 2. Our methodology is
discussed in Section 3. Evaluation and results are provided in section 4. Finally,
conclusions are drawn in section 5.

2 Background and Related Work

A bot program is a self-propagating malware that infects vulnerable hosts known
as bots (zombies) and is designed to perform specific malicious tasks after being
triggered. Hosts can get infected with malwares in different ways such as visiting
an untrusted malicious website or opening a malicious email attachment. Usu-
ally bots receive commands from the master through a communication server
and carry out malicious tasks such as Distributed Denial of Service (DDoS),
spamming, phishing and identity theft attacks [5, 15].

Botnet architecture is categorized in different ways. In one method, central-
ized and de-centralized are considered as the two main categories of botnets. In
the centralized model, command and data exchange between the master and
bots is managed at the central C&C server. The C&C server uses different
services/protocols to manage the botnet. IRC, HTTP and DNS are the most
common protocols in this architecture, which is based on a client-server scheme.
Easy implementation of the centralized communication channels and low latency
are the two main advantages of this structure. The low latency is caused by the
clear connections between the clients and the C&C servers. This feature is very
important for the malicious tasks such as DDoS, which require the bots and
the servers to be highly synchronized. However, the main disadvantage of this
architecture is the single point of failure issue that is caused by the C&C servers.
In this case, if the C&C servers are discovered by the botnet detection systems,
the whole botnet can then be taken down. Having said this, discovering the bot-
nets with centralized architecture is relatively easier since all the connections are
going through specific C&C servers.

On the other hand, in the de-centralized category, botnets either use the P2P
architecture or utilize techniques such as fluxing with the C&C based communi-
cation servers to compensate the characteristics of the centralized architecture.
In the P2P structure, bots can act as both clients and servers. They do not con-
tact any specific server for commands directly but receive the commands from
their peers. Botnets with the de-centralized architecture are more resilient than
centralized botnets. In other words, discovering and removing a bot from a P2P
botnet or a C&C server from the list of all possible servers hardly affect the
botnet mission. Moreover, analyzing botnets behaviour with the de-centralized
architecture and detecting them is more complicated because of the distributed
structure. However, the implementation complexity and latency of botnets in
this category is notable comparing to the centralized structure.

4 F. Haddadi et al.

The HTTP botnets and P2P botnets (which may or may not use HTTP as
their communication protocol) are considered as the two main recent types of
botnets. Hence, in this work, we aim to investigate these types of botnets in
terms of any discrepancy in designing the detection systems and their perfor-
mances. Wurzinger et al. proposed an approach to detect botnets based on the
correlation of commands and responses in the monitored network traces [17].
To identify traffic responses, they located the corresponding commands in the
preceding traffic. Then, using these command and response pairs, the detection
model was built focusing on IRC, HTTP and P2P botnets. Data sets used in
this work were collected by running bot binaries in a controlled environment.
Traffic features such as the number of non-ASCII bytes in the payload were an-
alyzed to characterize bot behavior. Zhang et al. proposed a botnet detection
system to identify P2P botnets based on a two phase analysis of the traffic [18].
In the first phase, P2P hosts are identified regardless of being malicious or le-
gitimate. To do this, Netflow features are extracted and then filtered based on
the IP addresses associated with resolved DNS responses. In the second phase,
the remaining flows are analyzed to differentiate the P2P botnet traffic from
other legitimate P2P traffic. Wang et al. proposed a fuzzy pattern recognition
approach (called BBDP) to detect HTTP and IRC botnet behavioral patterns
[16]. It is known that botnets query several domain names in a given period of
time to identify their C&C server, and then form a TCP connection with the
C&C server. So, Wang analyzed the features of DNS queries (such as the num-
ber of failed DNS responses) and TCP flows to detect botnet malicious domain
names and IP addresses. To accelerate the detection process and be able to de-
tect botnets in real-time, traffic reduction and parallel processing were utilized.
Their results showed up to 95% detection rate for their system. Kirubavathi et
al. designed specifically an HTTP-based botnet detection system using a multi-
layer Feed-Forward Neural network [12]. Given that HTTP-based botnets do not
maintain a connection with the C&C server but periodically make a request to
the C&C server (over the HTTP) to download the instructions, they extracted
features related to TCP connections in specific time intervals based on the packet
headers. To collect data to evaluate their system, botnets were simulated in the
lab. Zhao et al. investigated a botnet detection system based on flow intervals
[19]. Flow features of traffic packets were utilized with several ML algorithms
where the decision tree classifier was finally selected as the preferred classifier
to detect botnets. They focused on P2P botnets (such as Waledac) that employ
the HTTP protocol and a fast-flux based DNS technique. Their proposed de-
tection approach resulted in up to 99% detection rates with false positive rate
around 2%. Beigi et al. investigated the effectiveness of flow-based feature sets
employed in previous botnet detection studies and evaluated them using their
own feature selection algorithm [3]. Their results indicated that the Byte-based
group of features has less effect while the packet-based group has more impact.
In their evaluation, IRC, HTTP and P2P botnet data sets were utilized. In our
previous work, a machine learning based detection system was designed and eval-
uated on several HTTP botnets [10]. In addition to different machine learning

A Closer look at the HTTP and P2P botnets 5

algorithms, five flow feature sets were benchmarked and investigated in detail.
The result of those analysis showed that the C4.5 classifier can detect HTTP
based botnets using Tranalyzer feature set with up to 100% detection rate. The
proposed approach was also compared against the Snort intrusion detection sys-
tem, a machine learning packet based system and BotHunter botnet detection
system [8]. The comparison results showed that the approach outperforms the
other three detection systems considering several performance criteria such as
complexity and detection rate. Moreover, the performance of the proposed ap-
proach was evaluated over a period of time. The results indicated that not only
the approach performs well facing the new versions of the botnet it is trained
for but also, it can identify the change of topology by observing the changes in
the performance [11].

In summary, some systems/approaches [16, 17] require both the payload and
the header section of the packets to extract the necessary features while others
[19, 10] only need the header of the packets (e.g. flow based systems). The impor-
tance of the approaches in the second group can be better understood knowing
that the most recent aggressive botnets employ encryption to better hide them-
selves and their information from the detection systems. Our proposed approach
stands in this group. Moreover, there are several studies on flow based botnet
detection systems where each proposed their own set of features [18, 19]. Some
studies have analyzed the feature selection algorithms to extract the most effec-
tive feature sets [3]. Such feature selection processes can cause the models to be
focused on specific type(s) of botnet(s) which may not be very effective for other
types. Hence, using a ML algorithm that has the ability to perform attribute
selection as an implicit property of constructing the classifier may be a better
way to approach feature selection while utilizing all the possible extracted flow
features. This is the main idea behind our previously proposed approach [10].

3 Methodology

As discussed in section 1, flow based botnet detection systems are beneficial
since most of the recent botnet traffic communications (placed in the packet
payloads) are encrypted and such systems do not require payload information
at all. On the other hand, using ML based techniques to build the detection
system potentially provides the system with the ability to cope with the botnet
upgrades using minimum apriori knowledge. In our previous work, we bench-
marked five flow feature sets and five ML techniques in order to find the best
performing combination [10]. Although the combination of Tranalyzer feature
set with the C4.5 classifier was proposed as the final and best combination, the
evaluation was only done on eight HTTP based botnets. Given that in addition
to HTTP botnets, P2P botnets are also among the most recent destructive ac-
tive botnets, we aim to examine the proposed system on the P2P architectures
as well. To this end, four HTTP botnets and four P2P botnets are collected
and three best-performed classifiers from our previous works [9, 10] (i.e. C4.5
decision tree, Bayesian Networks and SBB) are selected and evaluated in this

6 F. Haddadi et al.

research. Moreover, for the feature extraction purpose, Tranalyzer flow exporter
is utilized. Finally, additional experiments and model analysis are performed to
reveal the behavioural differences between these two categories of botnets.

3.1 Learning algorithms

The candidate ML algorithms in this work are C4.5 decision tree, Bayesian
Networks and SBB.

C4.5 is an extension to ID3 algorithm that aims to find the small decision trees
(using pruning) and then convert the trained tree into an if-then rule set. The
algorithm employs a normalized information gain criterion to select attributes
from a given set of attributes to determine the splitting point of the decision
tree. In other words, the attribute with the highest information gain value is
chosen as the splitting point. A more detailed explanation of the algorithm can
be found in [2].

Bayesian Networks are graphical representations for probabilistic relation-
ships among the variables given a set of discrete features. The graph nodes that
are associated with the attributes, are connected through the links that corre-
spond to the direct influence from one feature to the other. Given the Bayesian
networks’ structure, the conditional probability distribution of the graph is then
computed. The learning process aims to find a Bayesian Network structure that
describes the training data in the best possible way. Detailed explanation on
Bayesian Networks can be found in [2].

SBB is a form of linear genetic programming with a co-evolutionary architecture
[13]. Three populations are co-evolved in this algorithm: A point population, a
team population and a learner population. The learner population represents a
set of learners, which associate a GP-bidding behaviour with an action. The team
population comprises a set of learners and finally the point population denotes
a subset of training data exemplars. Evaluating a team on the points, all of the
team’s learner programs are executed while only the learner with the highest bid
suggests its action as the team’s action. The bidding procedure employs linear
GP in addition to a sigmoid function to standardize the bid values between zero
and one.

3.2 Traffic employed

In this paper, eight publically available botnet traffic traces are employed for
evaluation while four of them represent HTTP botnets behaviour and the rest
represents P2P botnets behaviour. To the best of our knowledge, the P2P botnet
data sets employed in this research are the only ones that are publicly available
at this time. Furthermore, the HTTP botnet data sets are not only publicly

A Closer look at the HTTP and P2P botnets 7

available but also are different from the data sets used in our previous work [10].
By choosing different data sets in this work, we intend to explore and evaluate
how much the performance of the proposed approach depends on the data sets
and how well it generalizes.

Conficker (CAIDA), Zeus (NIMS), Citadel (NIMS), Virut (CVUT) are the
sample data sets of the HTTP category. Conficker (CAIDA) is the Conficker
botnet data set collected and published by the CAIDA organization. The data
set is a three-day capture of Conficker version A and B which is anonymized.
In other words, the payload information is removed and the CAIDA network
addresses are masked. A more detailed description of the CAIDA Conficker data
set can be found at [4]. Moreover, Zeus (NIMS) and Citadel (NIMS) are the
Zeus and Citadel botnet data sets that are generated in the NIMS2 lab sandbox.
To generate these botnet traffic traces, Zeus botnet toolkit version 2.1.0.1 and
Citadel botnet toolkit version 1.3.5.1 are utilized. In the sandbox testbed, 12
windows bots and one C&C server are configured and set up. Finally, Malware
capture facility Project at the Czech Technical University in Prague (CVUT)
have collected several malware traffic logs [6]. Virut (CVUT) is one of the data
sets from this collection. Detailed information of this capture can be found at
[7].

On the other hand, NSIS (CVUT), ZeroAccess (CVUT), Kelihos (CVUT)
and ISOT (Uvic) are representative of P2P botnets used in this work. NSIS
(CVUT), ZeroAccess (CVUT) and Kelihos (CVUT) are from the CVUT malware
capture facility project [6] and ISOT (Uvic) is made publically available by the
University of Victoria [19]. ISOT (Uvic) data set has combined two separate data
sets of botnet malicious traffic from the French chapter of honeynet project on
Strom and Waledac botnets. This combination of two botnets traffic represents
the malicious side of the ISOT (Uvic) data sets.

In order to differentiate botnet behaviour from legitimate behaviour, a data
set must include legitimate data samples, representing legitimate behaviours.
In this case, ISOT (UVIC) data set includes traffic traces from two legitimate
resources, the traffic Lab at Ericsson Research in Hungary and the Lawrence
Berkeley National Laboratory (LBNL) in USA, to be representative of legitimate
behaviours. However, all other seven data sets either do not have any legitimate
traffic included or include some background traffic which may or may not rep-
resent legitimate behaviours. Given that other researchers in the literature have
also used the LBNL traffic traces to represent the normal behaviour, we utilized
and combined these traffic traces with the other seven data sets (all except the
ISOT (Uvic)). Therefore, all of the data sets employed in this work share the
same type of legitimate behaviour. Since we are not using the source/destination
IP addresses and source/destination port numbers, different ranges of these four
features will not affect the results.

ML approaches require the training and testing data sets to be presented by
feature sets. However, network traces are formed by network packets and there-

2 Network Information Management and Security:
https://projects.cs.dal.ca/projectx/

8 F. Haddadi et al.

fore, need to be processed in order to be represented by features. Although fields
of the network packets can be utilized as features (in packet based detection
approaches), aggregating the network packets into flows and extracting the flow
features has been shown effective in the recent literature. Hence, in this research,
Tranalyzer flow exporter is employed in the feature extraction phase. In general,
flow exporters summarize network traffic utilizing the network packet headers
only. These tools collect packet information with common characteristics such
as IP addresses and port numbers, aggregate them into flows and then calcu-
late some statistics such as the number of packets per flow etc. Tranalyzer is
a lightweight uni-directional flow exporter that employs an extended version of
NetFlow feature set to support 93 flow features. More detailed information on
the tool and its feature set can be found in [1, 10].

4 Evaluation and results

As discussed earlier, in this paper, we aim to investigate any differences in terms
of detection performances and solutions between HTTP and P2P botnets as
well as the generalization of the approach from one data set to another. To this
end, eight botnet data sets (four in each category) are evaluated using three ML
algorithms, namely C4.5, Bayesian networks and SBB.

To prepare the data sets, Conficker (CAIDA), Kelihos (CVUT), NSIS (CVUT),
Virut (CVUT), ZeroAccess (CVUT), Citadel (NIMS) and Zeus (NIMS) network
traces are combined with LNBL legitimate network traces similar to the ap-
proaches used in the literature [19]. Tranalyzer flow exporter is then employed
to extract the features and finally, uniform sampling was used to create balanced
(in terms of malicious vs non-malicious samples) data sets for training purposes.
We employed all of the numeric features provided by the Tranalyzer as inputs
to the ML classifiers except the IP addresses and port numbers. The reasons
behind this are: IP addresses can be anonymized whereas port numbers can be
assigned dynamically. Thus, employing such features may decrease the general-
ization abilities of the detection systems for unseen behaviors. Table 1 shows the
number of flow samples of all the eight data sets in addition to the original size
of the data sets (traffic trace files before adding the LBNL traces).

4.1 Performance metrics

Performance In traffic classification, two metrics are typically used in order
to quantify the performance of the classifiers: Detection Rate (DR) and False
Positive Rate (FPR). DR reflects the number of the correctly classified specific
botnet samples in a given data set using DR = TP

TP+FN where TP (True Pos-
itive) is the number of botnet traffic samples that are classified correctly, and
FN (False Negative) is the number of botnet samples that are classified incor-
rectly (as legitimate samples). On the other hand, FPR shows the number of
legitimate samples that are classified incorrectly as the botnet samples using
FPR = FP

FP+TN where TN (True Negative) is the number of legitimate traffic
samples that are classified correctly.

A Closer look at the HTTP and P2P botnets 9

Table 1: Specification of the data sets employed

Data set Size Sample count (# of flows)

Conficker (CAIDA) 183GB 4135673
Kelihos (CVUT) 409MB 1098448
NSIS.ay (CVUT) 281MB 26294

ZeroAccess (CVUT) 59.2MB 214442
Virut (CVUT) 109MB 305664
Citadel (NIMS) 40.4MB 12662

Zeus (NIMS) 18.7MB 21356
ISOT (Uvic) 10.6GB 197462

Complexity Classifier complexity can be measured by different criteria such
as memory consumption, time or the learned model by the learning algorithms.
In this work, two complexity criteria are utilized: 1) training (computation)
time is employed where this is estimated on a common computing platform.
2) solution complexity, is measured using the tree size for C4.5 and the
program size of the solution team for SBB. It should be noted here that a direct
comparison between solutions from different representations is impossible since
the underlying units of measurement are different in different ML algorithms.

4.2 Results

Table 2 shows the results of the three classifiers on all four HTTP data sets.
Comparing the results of the three classifiers on the HTTP botnets, C4.5 and
SBB performed the same. To this end, we expand our evaluations over time
and solution complexity. Table 3 shows that there is no consistent pattern in
the time complexity as C4.5 had the highest and the lowest training time of
the table on Conficker (CAIDA) and Citadel (NIMS) data sets, respectively.
However, in terms of solution complexity, SBB consistently provides solutions
with lower complexity. This confirms the results of our previous work on HTTP
botnets [9].

On the other hand, Table 4 shows the evaluation results of the P2P data sets.
In this case, C4.5 outperformed the other two classifiers. Unlike our experiments
on HTTP botnets, SBB could not keep up with C4.5 and showed the lowest DR
and the highest FPR. However, complexity analysis (Table 5) resulted in the
same pattern as our HTTP botnets, indicating that SBB offers solutions with
lower complexity.

Although SBB finds solutions with lower complexity in both types of bot-
nets (HTTP and P2P), a high performance is still the primary goal in malware
detection systems. Hence, SBB’s lower performance on P2P botnets makes C4.5
the desirable classifier in this work. Comparing the C4.5 classification results of
the HTTP and the P2P botnets, the classifier performed equally well on both
types of botnet. Hence, in terms of detection capability and performance, we
can conclude that our ML detection approach (combination of Tranalyzer flow

10 F. Haddadi et al.

Table 2: Classification results of the HTTP botnets

Data Set DR
Botnet Legitimate

TPR FPR TNR FNR

C4.5

Zeus (NIMS) 99.93% 99.9% 0.1% 100% 0.1%
Citadel (NIMS) 99.90% 99.9% 0.1% 99.9% 0.1%

Conficker (CAIDA) 99.95% 100% 0.1% 99.9% 0%
Virut (CVUT) 99.88% 99.9% 0.1% 99.9% 0.1%

Bayesian Networks

Zeus (NIMS) 98.45% 96.9% 0% 100% 3.1%
Citadel (NIMS) 98.76% 97.5% 0% 100% 2.5%

Conficker (CAIDA) 98.62% 99.1% 1.9% 98.1% 0.9%
Virut (CVUT) 94.64% 94.5% 5.2% 94.8% 5.5%

SBB

Zeus (NIMS) 99.97% 99.94% 0% 100% 0.06%
Citadel (NIMS) 100% 100% 0% 100% 0%

Conficker (CAIDA) 99.06% 99.01% 0.9% 99.01% 0.9%
Virut (CVUT) 98.29% 98.25% 1.77% 98.33% 1.75%

Table 3: Complexity analysis of the classifiers on the HTTP botnets

Data Set Time Complexity (sec) Solution Complexity

C4.5

Zeus (NIMS) 2.11 41
Citadel (NIMS) 1.06 31

Conficker (CAIDA) 7454.18 1317
Virut (CVUT) 215 481

SBB

Zeus (NIMS) 279.6 38
Citadel (NIMS) 295.55 30

Conficker (CAIDA) 235.439 58
Virut (CVUT) 214.76 17

exporter and C4.5 classifier), which was previously suggested for HTTP botnets,
can be a valid choice for the P2P botnet detection systems as well. Moreover,
some of the data sets employed in this paper are used by other researchers in the
literature. For example, Zhao et al. achieved DRs between 97.9 to 99.9% on the
ISOT (Uvic) data set [19] and Beigi et al. obtained DRs between 75% to 99%
on different combination of data sets including ISOT (Uvic), Virut (CVUT), Ze-
roAccess (CVUT) and NSIS (CVUT) [3]. This shows the performance achieved
by our ML detection approach is not only comparable to other approaches in
the literature but also outperformed those approaches in some cases.

Comparing the C4.5 complexity results, we notice higher complexity (time
and solution) on the P2P botnets. However, this might be very much caused by
the differences of the botnets’ behaviour or even the data sets with different num-
ber of samples. Hence, to shed more light into this, we analyzed and compared
the trained C4.5 classification models to understand if there are any obvious
characteristics in the models that can specifically point out the differences of
the P2P and the HTTP botnets. Table 7 shows the top features (on the first

A Closer look at the HTTP and P2P botnets 11

Table 4: Classification results of the P2P botnets

Data Set DR
Botnet Legitimate

TPR FPR TNR FNR

C4.5

ZeroAccess (CVUT) 99.94% 100% 0.1% 99.9% 0%
Kelihos (CVUT) 99.93% 99.9% 0.1% 99.9% 0.1%
NSIS (CVUT) 99.23% 99.3% 0.8% 99.2% 0.7%
ISOT (Uvic) 99.83% 99.8% 0.2% 99.8% 0.2%

Bayesian Networks

ZeroAccess (CVUT) 99.29% 99.7% 1.1% 98.9% 0.3%
Kelihos (CVUT) 93.16% 93.8% 7.4% 92.6% 6.2%
NSIS (CVUT) 95.94% 93.6% 1.8% 98.2% 6.4%
ISOT (Uvic) 96.49% 99.2% 6.2% 93.8% 0.8%

SBB

ZeroAccess (CVUT) 99.39% 99.63% 0.84% 99.16% 0.37%
Kelihos (CVUT) 97.74% 99.19% 3.7% 96.29% 0.8%
NSIS (CVUT) 94.09% 92.11% 3.9% 96.1% 7.8%
ISOT (Uvic) 93.12% 97.36% 11.11% 88.89% 2.64%

Table 5: Complexity analysis of the classifiers on the P2P botnets

Data Set Time Complexity (sec) Solution Complexity

SBB

ZeroAccess (CVUT) 279.6 38
Kelihos (CVUT) 295.55 30
NSIS (CVUT) 235.439 58
ISOT (Uvic) 214.76 17

C4.5

ZeroAccess (CVUT) 94.85 135
Kelihos (CVUT) 1149.57 849
NSIS (CVUT) 5.38 275
ISOT (Uvic) 82.57 525

three levels of the trees) of the C4.5 decision trees with the highest information
gain. The description of the features named in this work can be found in Table 6
while the description of all the features supported by Tranalyzer are available at
[1]. This analysis indicates that: (i) Packet-based and Byte-based features (such
as minPktSz or UppQuartilePl) are used by C4.5 for both types of botnets. (ii)
Various connection-based features (such as ConnSrcDst or ConnSrc) are utilized
for all of the P2P botnets. (iii) TTL-based features (such as ipMinTTL) are
mostly used by the P2P botnets. (iv) Inter-arrival based features are only used
for the HTTP botnets.

Going one step further, we also analyzed the features that are most frequently
utilized by C4.5 in Table 8. The analysis also confirms that the packet-based
and the byte-based features are frequently used for both types of botnets. On
the other hand, the inter-arrival based features are only selected and used for
the HTTP botnets. Finally, the connection-based features are utilized for the
P2P botnets more than the HTTP botnets. However, unlike our observation on
features with the highest information gain, TTL-based features are used for both

12 F. Haddadi et al.

Table 6: Brief description of some of the Tranalyzers’ features

Feature Description

connSrc Number of connections from source IP to different hosts
connDst Number of connections from destination IP to different hosts
connSrcDst Number of connections between source IP and destination IP
numBytesSnt Number of transmitted bytes
numBytesRcvd Number of received bytes
bytePS Send bytes per second
minPktSz Minimum layer3 packet size
maxPktSz Maximum layer3 packet size
numPktsSnt Number of transmitted packets
numPktsRcvd Number of received packets
RangePl Range of packet lengths
pktPS Send packets per second
UppQuartilePl Upper quartile of packet lengths
pktAsm Packet stream asymmetry
tcpOptPktCnt TCP options Packet count
tcpWS TCP Window Scale
tcpAveWinSz TCP average window size
tcpInitWinSz TCP initial window size
tcpPSeqCnt TCP packet seq count
tcpRTTAckTripAve TCP Ack Trip Average
ipMinTTL IP Minimum TTL
ipMaxTTL IP Maximum TTL
ipTTLChg IP TTL Change count
MinIat Minimum inter-arrival time
skewIat Skewness of inter-arrival times
lowQuartileIat Lower quartile of inter-arrival times
tcpMSS TCP Maximum Segment Length
ipMaxdIPID IP Maximum delta IP ID

types of botnets. In short, connection-based features seem to be more important
for the P2P botnet detection. This might be because of the frequent connections
between the peers on the network. Intuitively, this makes sense to us. On the
other hand, inter-arrival based features are more likely to be significant in HTTP
botnet detection. This might be because of the automated way that C&C servers
and the bots are configured to communicate. In other words, bots and servers are
setup to talk based on specific time intervals. Moreover, as our previous works
have also indicated, packet based and byte based features are important given
that botnets behave differently in terms of the number of packets and bytes
sent/received compared to the behaviours of the legitimate users.

Although we have observed discrepancy between the HTTP and the P2P
botnet detection models in terms of features with the highest information gain
or frequency, all the aforementioned important categories of features were used
by the C4.5 classifier for both types of botnets in order to build the detection

A Closer look at the HTTP and P2P botnets 13

Table 7: Features with the highest information gain

Data Set Features

P2P

ZeroAccess (CVUT) ConnSrcDst, minPktSz, ConnSrc, tcpWS, ipMinTTL

Kelihos (CVUT)
ipMinTTL, pktPS, tcpAveWinSz, tcpOptPktCnt,
Duration, ipTTLChg, connDst

NSIS (CVUT)
minPktSz, pktPS, connSrcDst, pktAsm, connSrc,
numBytesRcvd

ISOT (Uvic) connSrcDst, UppQuartilePl, connDst, ipMinTTL

HTTP

Zeus (NIMS)
tcpInitWinSz, pktPS, MinIat, SkewIat, pktPS,
numPktsSnt

Citadel (NIMS) tcpRTTAckTripAve, bytPS, MinIat, ipMaxTTL, connDst
Conficker (CAIDA) numPktsRcvd, numBytesSnt, minPktSz, Duration

Virut (CVUT)
maxPktSz, tcpPSeqCnt, pktPS, lowQuartileIat, pktAsm,
RangePl, connDst

Table 8: Features with the highest frequency

Data Set Features

P2P

ZeroAccess (CVUT)
connSrc, connDst, numBytesSnt, ipMinTTL, minPktSz,
numBytesRcvd

Kelihos (CVUT)
numBytesRcvd, numBytesSnt, connSrc, MinPktSize,
connDst, tcpInitWinSz

NSIS (CVUT)
ipMinTTL, connDst, MinPktSz, numBytesSnt, connSrc,
numBytesRcvd

ISOT (Uvic)
connSrcDst, ipMinTTL, MaxPktSz, numBytesRcvd,
connDst, numBytesSnt

HTTP

Zeus (NIMS) pktPS, ipMaxIPID, pktAsm, MinIat, ipMaxTTL
Citadel (NIMS) MinIat, ipMaxTTL, numBytesSnt, minPktSz, RangeIat

Conficker (CAIDA)
ipMinTTL, TcpInitWinSz, Duration, ipMaxdIPID,
connDst, tcpMSS

Virut (CVUT)
ipMinTTL, numpktRcvd, connDst, TcpInitWinSz,
connSrc, MaxPktSz

model. In other words, they all have been appeared in the decision trees of both
types of botnets at some point. Hence, we cannot exclusively assign/relate any
categories of features to P2P or HTTP botnets. This might be caused by the
fact that P2P botnets can use HTTP protocol as the base of communication
(forming some similarities). Kelihos and ZeroAccess are good examples of such
kind of P2P botnets, which are employed in this work.

In summary, we aimed to evaluate the combination of Tranalyzer feature
set and C4.5 classification algorithm on P2P botnets given that this combina-
tion was shown to be effective on HTTP botnets. The analysis, evaluation and
results show that this approach is as effective for P2P botnets as it was for
HTTP botnets. Moreover, we could not highlight any obvious differences be-

14 F. Haddadi et al.

Table 9: HTTP and P2P botnets versus legitimate behaviour

Data Set DR
Botnet Legitimate Complexity

TPR FPR TNR FNR Time Solution

C4.5 HPL 99.9% 99.99% 0.1% 99.9% 0.1% 13171.78 5781

tween the HTTP and P2P classification models to demonstrate the differences
of botnet behaviours. Thus, the new research question to answer is: How would
this combination handle a traffic trace that consists of P2P botnets, HTTP bot-
nets and legitimate traces? In other words, can this combination differentiate
botnet behaviours (P2P and HTTP) from legitimate behaviours? To this end,
we generated a new balanced data set combining all the eight botnet data sets
employed in this work labeled as “botnet” and the LBNL legitimate data set
labeled as “legitimate”. We refer to this data set as HPL (HttpP2pLegitimate)
with 3005999 botnet samples and 3005999 legitimate samples. Table 9 shows
the results of this classification indicating that C4.5 can classify the HTTP and
the P2P botnet behaviours from legitimate behaviours using Tranalyzer feature
set. Features with the highest information gain in this classification model are:
numBytesSnt, tcpPSeqCnt, connSrcDst, connDst, ipOptCnt, connSrc, minPk-
tSz, ipMinTTL, MinIat.

The result also shows that the HTTP and the P2P botnets do have some
similarities since C4.5 can put them together as one class. This can be based on
the HTTP protocol that is used by the P2P botnets or the similar automated na-
ture of botnet behaviours in general. Hence, to understand if these botnets have
enough distinct behaviours that can be used to differentiate them despite the
similarities, we run another experiment. In this new experiment, we generated
a multi-class data set, called HPL-multiClass which has nine classes: one legit-
imate class and eight botnet classes (four HTTP and four P2P classes). Since
some of the data sets used in this work are much larger than the others (such as
Conficker), we kept the new multi-class data set unbalanced, which consists of
all of the samples mentioned in Table 1. The result of this experiment is shown
in Table 10, indicating that C4.5 performed well while being able to differentiate
eight different botnet behaviours from legitimate behaviours (with overall DR
of 99.88%). However, given that this is an unbalanced multi-class classification,
a classwise average DR can better demonstrate the performance. To this end,
we utilized Score measure, which summarizes the classwise detection rates of a
classifier over all classes. Score criteria is defined as, Eq. 6, [13]:

Score =
1

|C|
∑
c∈C

DETc (1)

where DETc is the detection rate for class c. Based on Score, we conclude that
the HTTP, P2P botnets and legitimate traces employed in this work can be
differentiated with the accuracy of 97% despite the similarities shown in the
previous experiment (Table 9). Moreover, the results indicate that the TPR of

A Closer look at the HTTP and P2P botnets 15

Table 10: HPL-multiClass classification results

Data Set TPR FPR

P2P

ZeroAccess (CVUT) 99.8% 0%
Kelihos (CVUT) 99.8% 0%
NSIS (CVUT) 96.8% 0%
ISOT (Uvic) 99.4% 0%

HTTP

Zeus (NIMS) 92.8% 0%
Citadel (NIMS) 91.0% 0%

Conficker (CAIDA) 100% 0%
Virut (CVUT) 99.8% 0%

Legitimate LBNL 99.9% 0.1%

Overall DR = 99.88%
Score = 97.7%

Zeus (NIMS), Citadel (NIMS) and NSIS (CVUT) are not as high as the other
five botnets. Analyzing the confusion matrix showed that: (i) almost all the Zeus
(NIMS) miss-classified samples are classified as Citadel (NIMS), (ii) almost all
of the Citadel (NIMS) miss-classified samples are classified as Zeus (NIMS), and
(iii) most of the NSIS (CVUT) miss-classified samples are classified as Legiti-
mate, Conficker (CAIDA), Virut (CVUT) and Kelihos(CVUT). We believe that
the Citadel and Zeus miss-classification pattern is caused by the fact that Citadel
botnet is an enhanced version of the Zeus botnet, and therefore they share some
similarities in behaviours. On the other hand, NSIS (CVUT) miss-classification
pattern showed that this botnet has some similarities with HTTP botnets in
terms of behaviour, which should be further investigated.

5 Conclusions

A Botnet, which is a network of infected hosts remotely controlled by a botmas-
ter, is considered as one of the main cybersecurity challenges given the variety,
the high infection rate and the extended range of malicious tasks. Being able to
upgrade any part of the structure on the fly is one of the reasons why this type
of malware could sustain itself since 2003. To this end, detection systems also
require automatic and intelligent mechanisms to cope with the updates. In this
work, we employed three machine learning algorithms, namely C4.5, Bayesian
Networks and SBB, to generate botnet detection models for several types of
botnets such as Zeus, Citadel, Virut, Conficker, Kelihos and ZeroAccess. These
botnets can be categorized into two main groups: HTTP and P2P. To repre-
sent the traffic traces, Tranalyzer flow exporter was utilized which aggregate the
packets into traffic flows and extract their features.

Our main objective in this work was to investigate the possibility of detect-
ing P2P botnets with our previously proposed approach on HTTP botnets. As
the results indicate, the combination of Tranalyzer feature set and the C4.5 ML

16 F. Haddadi et al.

algorithm can also be effective in P2P botnet detection. We obtained the DR
of up to 99.95%. Additionally, similarities and differences of these botnets were
further investigated by two multi-botnet classification scenarios. Again the de-
tection performances were very promising, reaching up to 99.9%. Moreover, the
detection models are analyzed and compared using the features selected and uti-
lized by the C4.5 decision trees in order to highlight the behavioural differences
between the HTTP and the P2P botnets, if possible. In this case, the features
with the highest information gain and the highest frequency are investigated.
The analysis showed that some of the features could potentially be more useful
in P2P botnet detection (such as connection-based features) while some others
can be better to describe the HTTP botnets (such as inter-arrival based fea-
tures). This is to say that these features cannot be specifically assigned to one
type of botnet (HTTP or P2P). However, the degree of importance might be
different.

6 Acknowledgments

This research is supported by the Canadian Safety and Security Program(CSSP)
E-Security grant. The CSSP is led by the Defense Research and Development
Canada, Centre for Security Science (CSS) on behalf of the Government of
Canada and its partners across all levels of government, response and emergency
management organizations, nongovernmental agencies, industry and academia.

References

1. Tranalyzer. http://tranalyzer.com/.
2. E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.
3. E. B. Beigi, H. Jazi, N. Stakhanova, and A. Ghorbani. Towards effective feature

selection in machine learning-based botnet detection approaches. In Communica-
tions and Network Security (CNS), 2014.

4. CAIDA Conficker. http://www.caida.org/data/passive/telescope-3days-
conficker dataset.xml.

5. M. Feily and A. Shahrestani. A survey of botnet and botnet detection emerging
security information. In Systems and Technologies, 2009.

6. S. Garcia. Malware capture facility project, cvut university.
https://agents.fel.cvut.cz/malware-capture-facility, February 2013.

7. S. Garcia, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison of botnet
detection methods. Computers and Security, 45:100–123, 2014.

8. F. Haddadi, D. L. Cong, L. Porter, and A. N. Zincir-Heywood. On the effectiveness
of different botnet detection approaches. In ISPEC, 2015.

9. F. Haddadi, D. Runkel, A. Zincir-Heywood, and M. Heywood. On botnet behaviour
analysis using GP and C4.5. In Gecco comp., 2014.

10. F. Haddadi and A. N. Zincir-Heywood. Benchmarking the effect of flow exporters
and protocol filters on botnet traffic classification. IEEE Systems journal, 2014.

11. F. Haddadi and A. N. Zincir-Heywood. Botnet detection system analysis on the
effect of botnet evolution and feature representation. In Gecco comp., 2015.

A Closer look at the HTTP and P2P botnets 17

12. V. Kirubavathi and R. Nadarajan. Http botnet detection using adaptive learning
rate multilayer feed-forward neural network. In Information Security Theory and
Practice: security, privacy and trust in computing systems and ambient intelligent
ecosystems, 2012.

13. P. Lichodzijewski and M. I. heywood. Coevolutionary bid-based genetic program-
ming for problem decomposition in classification. Genetic Programming and Evolv-
able Machines, 9:331–365, 2008.

14. RFC 2722. http://tools.ietf.org/html/rfc2722, October 1999.
15. S. T. Vuong and M. S. Alam. Advanced methods for botnet intrusion detection

systems. In Intrusion Detection Systems, 2011.
16. K. Wang, C. Huang, S. Lin, and Y. Lin. A fuzzy pattern-based filtering algorithm

for botnet detection. Computer Networks, 55:3275–3286, 2011.
17. P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Automatically

generating models for botnet detection. In 14th European conference on research
in computer security (ESORICS), 2009.

18. J. Zhang, R. Perdisci, U. S. W. Lee, and Z. Luo. Detecting stealthy p2p botnets
using statistical traffic fingerprints. In Dependable Systems and Networks (DSN),
2011.

19. D. Zhao, I. Traore, B. Sayed, W. Lu, a. G. S. Saad, and D. Garant. Botnet detection
based on traffic behavior analysis and flow intervals. Computers and Security, 39,
2013.

