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Abstract. In this paper, we propose a systematic approach to gener-
ate botnet traffic. Given the lack of benchmarking botnet traffic data,
we anticipate that such an endeavour will be beneficial to the research
community. To this end, we employ the proposed approach to generate
the communication phase of the Zeus and Citadel botnet traffic as a
case study. We evaluate the characteristics of the generated data against
the characteristics of a sandbox Zeus botnet, as well as the Zeus and
Citadel botnet captures in the wild provided by NETRESEC and Snort.
Our analysis confirms that the generated data is comparable to the data
captured in the wild.
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1 Introduction

In the world of fast growing Internet having a secure infrastructure is the pri-
mary need to protect users’ identity and information. Botnets- among various
types of malware- are recognized as one of the main threats against cyber security.
A botnet is a set of compromised hosts that are under the remote control of a bot-
master. To detect botnets, various detection mechanisms have been proposed by
researchers where many rely on network traffic behaviour analysis. Some focus on
specific types of botnets while others attempt to build general models. However,
in all cases, the first challenge, is to obtain realistic data that represents botnets
traffic (behaviour). Due to the malicious nature of such data, there are very few
publicly available data sets in the field. Therefore, different approaches have been
explored by the researchers to obtain the necessary data for their research pur-
poses. These approaches include (but not limited to): (i) Running botnet binaries
(that are publicly available or modifying such binaries) in sandbox environments
and capturing the traffic [1–4]; (ii) Obtaining captured Honeynet traffic [5,6]; or
(iii) Obtaining traffic from a network operator or a security company [7]. The first
approach employs publicly available botnet binaries. This implies that any traffic
obtained represents the old behaviours because only older versions of such bina-
ries are publicly available. The second approach employs honeynets. Even though
this method can catch newer botnet behaviours, it is also challenging to set up
honeynets that can simulate real applications in normal behaviour. So there is
no guarantee on the quality of the traffic attracted to the honeynet. The third
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approach is the only case where most up to date behaviours can be analyzed by
obtaining data from network companies. However, this type of data has privacy
issues so such data might not be made public for further benchmarking and eval-
uation purposes. We anticipate that if a systematic approach can be found, then
potentially publicly available benchmarking data sets can be generated without
such problems. Thus, in this work, we propose a systematic approach to gener-
ate botnet traffic data representing the connection phase of botnet traffic. In this
phase, the infected host intends to locate the C&C server and starts a connec-
tion with the server. Once we generate such data using the proposed approach,
we demonstrate that such an approach could indeed generate realistic behaviours
of the botnet traffic. To this end, we evaluated our approach and confirm that the
data generated represent similar behaviour to the botnet traffic that is captured
in the wild and the botnet traffic that is generated in a sandbox environment
based on publicly available bot binaries. To the best of our knowledge, this is the
first work with such a goal. To achieve our goal, we follow two steps to evaluate
the data after it is generated: (i) Analysis via flow measurements; and (ii) post-
classification analysis via decision tree.

2 Related Work

Gu et al. developed BotMiner based on group behaviour analysis to detect
botnets [5]. They collected the botnet data sets by employing publicly available
botnet binaries as well as using Honeynet data sets. As for the normal traffic,
university campus network traces were employed. Wurzinger et al. proposed an
approach to detect botnets by correlating the commands and responses in the
C&C channels of the monitored network traces [1]. Running a publicly available
bot binary in a controlled environment, they collected the data sets used in this
work. Kirubavathi et al. designed specifically an HTTP-based botnet detection
system using a multilayer Feed-Forward Neural Network [2]. To evaluate the pro-
posed system, botnet binaries were used in the lab. Strayer et al. developed an
IRC botnet detection framework that makes use of classification and clustering
techniques [3]. Again, they captured their data in the lab by running bot bina-
ries. Francois et al. proposed a NetFlow monitoring framework that leverages a
simple host dependency model to track communication patterns and employed
linkage analysis and clustering techniques to identify similar botnet behavioral
patterns [7]. They obtained traffic traces from an Internet operator company.
Zhao et al. investigated a botnet detection approach based on flow intervals [6].
They also employed botnet binaries in the lab and Honeynet project data as for
the normal traces, they used Lawrence Berkeley National Laboratory data sets.
Haddadi et al. designed a machine learning based detection system [8]. Network
traces representing malicious and normal behaviour were generated in the lab
based on botnet and legitimate public data.
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3 Methodology

A typical advanced botnet has five phases (i.e. lifecycle): (1) the initial infection
phase where exploitation techniques are used to find the vulnerabilities and to
infect the target host, (2) the secondary infection phase where the botnet shell-
code is executed on the victim machine to fetch the image of the bot binary
to install, (3) the connection phase where the bot binary establishes the C&C
channel, (4) the malicious C&C phase in which the established C&C channel
is utilized by the bot master to send the command and (5) the update and
maintenance phase where the botmaster updates the bots when required. It
is known that to enhance their functionality and to avoid detection systems,
botnets tend to use automatic algorithms in different phases of their lifecycle.
Fluxing techniques are one of such methods that botnets use to hide the C&C
servers using automatic Domain Generation Algorithms (DGAs). Citadel and
Zeus are just two of the recent examples of such botnets. A DGA is designed
to periodically generate a large list of domain names. The infected computer
(bot) may locate the C&C server by querying (sending a DNS query to retrieve
the associated IP address) a list of domain names. However, only one of the
domain names from the list is valid at a given time. Once a response is received
for the query, the bot establishes a connection to the C&C server to receive
updates and commands. The list of domain names provided to the bot is large
enough so that blacklisting (blocking) at the firewall level is not straight forward.
Therefore, the domain fluxing technique is highly utilized in current botnets.
Since there are publically available lists of domain names generated by botnet
DGAs, we implemented a systematic approach to generate network traffic using
these botnet domain names to represent the botnet communication during the
connection phase of the botnet lifecycle.

Once the botnet communication traffic is generated, we analyze and evaluate
it against three publicly available botnet traffic data that are captured in the wild
and one botnet binary based traffic data captured in the sandbox environment.
In doing so, our aim is to confirm that our generated traffic is representative of
the publicly available ones and the sandbox ones.

We generate the representative botnet traffic flows using the publicly avail-
able (from legitimate resources) C&C domain name lists. As for generating the
representative legitimate (normal) traffic, we use a legitimate domain name list.
This ensures that both the attack and the normal traffic are generated using the
publically available domain name lists to enable re-engineering of the approach
for benchmarking purposes. For the malicious domain name lists, the two of
the most recent botnets, namely Citadel and Zeus are used. The domain name
lists for these two botnets are obtained from ZeusTracker and DNS-BH project
websites [9,10]. As for the legitimate name list, some of the most frequently
requested domain names from Alexa lists (domain names of the high ranked
web sites) are used [11]. Both the malicious and legitimate behaviour data use
the HTTP protocol as their communication protocol. So, to generate the traffic,
we developed a program to establish HTTP connections with the domain names
from the aforementioned lists. First, this program sends out DNS queries for
the domain names in the lists. If in return it receives a proper DNS response,
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Table 1. Data specification

Data set No. of Packets No. of Exported Flows

Alexa (NIMS) 21210 7473

Citadel (NIMS) 79516 5772

Citadel (NETRESEC) 15239 226

Zeus-1 (NIMS) 108947 14884

Zeus (NETRESEC) 7453 361

Zeus (Snort) 6995 145

Zeus-2 (NIMS) 32818 874

Table 2. Softflowd feature set

Softflowd Features

Duration Src-AS Dst-AS In-If Out-If Total-Pkt F-Pkt B-Pkt

Total-Byte F-Byte B-Byte Flows ToS Src-ToS Dst-ToS Src-Msk

Dst-Msk FWD Src-Vlan Dst-Vlan bps pps Bpp

this indicates that the domain name is registered and is associated with a valid
IP address. Then, our program attempts to establish an HTTP connection with
that IP address. Hereafter, we will refer to our generated data sets using this
approach as Zeus-1 (NIMS) and Citadel (NIMS) botnet data sets.

In addition, we employed the few botnet traffic data sets available at
NETRESEC [12] and Snort [13] web sites for Zeus and Citadel botnets. Since
many works in the literature employed running publicly botnet binaries in the
lab (sandbox), we also run a Zeus botnet in a controlled environment and cap-
tured the traces [4]. This toolkit is also analyzed and employed in [14]. However,
we could not do the same for the Citadel botnet given that there is no pub-
licly available free kit, to the best of our knowledge. Hereafter, this Zeus data is
referred to as Zeus-2 (NIMS).

4 Evaluation

As a case study, we focus on generating Zeus and Citadel traffic data using our
proposed system. For analyzing the traffic data generated, features are extracted
using IP-flow technology. Specifically, we employ Softflowd [15], which is an open
source tool based on the NetFlow standard [16]. Table 1 presents the number of
captured packets and the corresponding extracted flows for each of the data
sets employed in this work. Table 2 presents the features that are utilized in our
approach.

4.1 First Step–Analysis via Flow Measurements

As a first step, we anticipate that it will be beneficial to analyze the data sets
on some of the most important features (used by other researchers [1,3,4,6]) of
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a flow. These features are: the flow duration (Duration), the number of bytes
per flow (Total-Byte) and the number of packets per flow (Total-Pkt).

Given the wide range of the HTTP usage on the Internet, most recent bot-
nets employ HTTP protocol to hide their malicious activities among the normal
web traffic. Citadel and Zeus utilize HTTP protocol to communicate with their
bots, too. Thus, to analyze and compare the aforementioned data sets, we filter
out the non-HTTP flows. This way all the background information is removed
from the data and therefore, the data sets can be compared on their fundamental
properties.

The analysis show that the majority of flows durations (96 %, 70 %, 91 % in
Zeus (NIMS), Zeus (Snort) and Zeus (NETRESEC), respectively) are less than
50 s long (placed in the first bucket). However, 20 % of Zeus (Snort) and 67 %
of Zeus-2 (NIMS) flows last longer than the other two Zeus data sets. Zeus-2
(NIMS), Zeus (Snort) and Zeus (NETRESEC) have more flows with higher num-
ber of transmitted packets (30 packets or more) and more bytes, respectively.
We predict that these differences are due to the connection time, because we do
not keep the connection between our system and botnet C&C servers open long.
Basically, we close the connection once this phase of communication is finished.

Moreover, the analysis also shows that the pattern for duration of flows for
the Citadel (NIMS) botnet, is different from the pattern of the duration of the
flows for Citadel (NETRESEC). On the other hand, there is almost no difference
(among the two data sets) between the number of packets and the number of
bytes transmitted per flow. Therefore, we can conclude that the Citadel C&C
connections in NETRESEC data were kept open without any actual client-server
command and response communication. Since keeping a connection open for a
long time is one of the signs of malicious activities, botnets tend to close the
connection when the necessary information is sent/received and open a new con-
nection for the next round when needed. However, a high number of connections
also raises flags for malicious behaviour. Therefore, there is a trade-off between
these two parameters when the botnets aim to hide their malicious activity in
the normal traffic. Thus, in our approach, we decided to keep the communica-
tion duration with the C&C servers as short as possible, because it gives us
a good balance for the aforementioned trade-offs. In summary, the analysis of
the important features of the flows of the generated traffic and the flows of the
traffic captured in the wild seem to be similar except the durations of the flows
as explained above. More detailed analysis and the visualizations can be found
at [17].

4.2 Second Step–Post-classification Analysis via Decision Tree

To further analyze how similar the generated data (by our proposed approach)
is to the data captured in the wild and the data generated in the sandbox, we
employed a post-classification analysis using a decision tree. To this end, we
trained a C4.5 classifier on the proposed data generation approach and tested
the trained model on the botnet data from the NETRESEC and Snort web sites
as well as on the sandbox data. Table 3 presents the results of this step.
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Table 3. C4.5 decision tree classification results

Training data set Testing data set DR Botnet Legitimate

TPR FPR TNR FNR

Citadel (NIMS) Citadel (NETRESEC) 100 % 100 % 0 % 0 % 0 %

Zeus-1 (NIMS) Zeus (Snort) 81 % 81 % 0 % 0 % 19 %

Zeus-1 (NIMS) Zeus (NETRESEC) 79 % 79 % 0 % 0 % 21 %

Zeus-1 (NIMS) Zeus-2 (NIMS) 88 % 88 % 0 % 0 % 12 %

Zeus-1 (NIMS) Zeus-1 (NIMS-unseen) 84 % 84 % 0 % 0 % 16 %

In traffic classification, two metrics are typically used in order to quantify
the performance of the classifier: Detection Rate (DR) and False Positive Rate
(FPR). In this case, DR reflects the number of botnet flows correctly classified
and is calculated using: DR = TP/(TP+FN); whereas FPR reflects the number
of legitimate flows incorrectly classified as botnet flows. FPR is calculated using:
FPR = FP/(FP + TN). Naturally, a high DR and a low FPR are the most
desirable outcomes. On the other hand, False Negative Rate (FNR) indicates
that botnet flows are classified as legitimate flows, whereas TNR, True Negative
Rate, indicates the correctly classified legitimate flows. As shown in Table 3,
the trained model on NIMS Citadel could detect all of the NETRESEC Citadel
correctly (100 % TP rate).

In this case, our post-classification analysis show that the main features that
the C4.5 classifier employ for the Citadel trained model are: Duration, Total-Pkt,
Total-Byte, bps, pps and Bpp (from Table 2). Moreover, in the first step of our
analysis, duration feature of a flow presented the most discrepancy between the
NIMS botnet data set and the one captured in the wild. However, the classifica-
tion results indicate that this discrepancy does not seem to have a negative effect
on the identification of Citadel botnet behaviour in a given traffic trace. This
might be because of the importance of the other features employed. This implies
that NIMS Citadel data set is similar to the real-life NETRESEC Citadel data
set. Therefore, we can confirm that the proposed approach seems to generate
realistic Citadel botnet traffic.

Table 3 also presents the classification results on the Zeus botnet traffic.
Again, we trained a C4.5 classifier on Zeus-1 (NIMS) data set, which is gen-
erated by the proposed approach. Then, we tested the trained model against
the Zeus-2 (NIMS) and Zeus data sets from Snort and NETRESEC. As the
results indicate, the DRs of the Zeus-2, Snort and NETRESEC data sets vary
between 79 % to 88 %. This is lower than the DR for Citadel, but still a promising
performance1.

To further analyze the generated data by the proposed approach on Zeus
botnet, we run another experiment. Since NIMS Zeus generated traffic was big-
ger than Alexa legitimate data (and therefore had more flows), we only used a

1 Since these test data sets are one class data sets (only malicious), there is no TNR
and FPR.
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fraction of the Zeus HTTP traffic to build a balanced Zeus-Alexa training data
set for the results presented in Table 3. Hence, we had some unseen Zeus flows
that were not included in the training process. Thus, we also tested the trained
Zeus model on these unseen Zeus flows. As the result shows, we obtained the
DR of 84 %, Table 3. The performance is almost the same as the classification
result when testing the trained model on other data sets such as NETRESEC
and Snort. This seems to indicate the complicated behaviour of Zeus botnet and
confirm that the results are not side effects of the generated data being different
(or unrealistic), but rather the classifier performs the same on both the generated
data and the data captured in the wild for Zeus botnet. This experiment also
indicates that Zeus botnet behaviour is more complicated than Citadel botnet
behaviour. Moreover, it seems to hide in the legitimate HTTP behaviour better
than Citadel could.

In short, our 2-step analysis indicates that the traffic generated using our
proposed approach is valid and comparable to the botnet traffic captured in real
life (Snort and NETRESEC data) as well as the traffic captured in a sandbox
environment (Zeus-2 NIMS). In other words, traffic generated based on the pro-
posed approach can be employed in botnet behaviour analysis for representing
real data. We provide our NIMS data sets for further benchmarking purposes at
the following URL:

https://web.cs.dal.ca/∼haddadi/data-analysis.htm

5 Conclusion

Due to the high reported botnet infection rate and its wide range of illegal activi-
ties, botnets are one of the main threats against the cyber security. One problem
of this field is the availability of public data sets for meaningful benchmarks and
comparisons among the botnet identification systems. In this work, we propose
a systematic approach to generate botnet traffic and analyze its properties
against that of available botnet traffic captures in the field. To this end, we
explore a 2-step analysis. In the first step, we analyzed the data sets using the
main features of the botnet traffic reported in the literature [1,3,6]. The results
of this step show that the data generated by the proposed approach and the data
captured in the wild by NETRESEC and Snort, are not very different in terms of
their main measured features. However, the sandbox traffic data has noticeable
differences (compared to the data captured in the wild) in terms of most of the
measured features. In the second step, we perform a post-classification analysis
on the data sets using the C4.5 classifier. In this step, we train the classifier
with the data generated by the proposed approach, and test the trained model
on the NETRESEC, Snort and the sandbox data sets. The results indicate that
the trained model could classify the unseen data captured in the wild and the
sandbox data with a high DR and a low FPR. This suggests that the botnet data
generated by the proposed approach confirms to the botnet data captured in the
wild or in the sandbox. We anticipate that this can further enable benchmarking
and evaluation efforts in this research area. Future work will explore employing
the proposed traffic generation approach for other botnets.

https://web.cs.dal.ca/~haddadi/data-analysis.htm
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