

Analyzing String Format-Based Classifiers For
Botnet Detection: GP and SVM

Fariba Haddadi, A. Nur Zincir-Heywood
Computer Science, Dalhousie University

Halifax, NS, Canada
{haddadi, zincir@cs.dal.ca}

Abstract—The domain name system (DNS) is an
essential component of Internet. As it is expected to be
used by all legitimate users and applications, generally
there are less inspections, restrictions and filters on it.
Botnets rely on this open component to accomplish their
malicious operation. Therefore, to defeat the single point
of failure and evade static blacklists and firewalls, they
employ DNS-based methods to frequently generate new
automatic domain names. Stateful-SBB, which is a form of
genetic programming (GP), was previously designed and
developed by the authors to detect these automatically
generated domain names based on minimum a priori
information which was shown efficient. In this paper, we
compare Stateful-SBB against the String Subsequence
Kernel (SSK) and SSK with Lambda Pruning (SSK-LP),
which are based on support vector machines (SVM) and
also use string format inputs. Analyzing the domain names
that each of the classifiers chooses as a part of their
solutions in the classification process, we notice that 50%
to 63% of the Stateful-SBBs' frequently selected points on
the Pareto-front are also used by SSK and SSK-LP,
respectively. By analyzing these common domain names,
we identify some of the characteristics of the botnet
domain names. Moreover, we introduce a pruned version
of the Stateful-SBB that resulted in reducing the solution
complexity by 83% with the same high accuracy.

Keywords—evolutionary computation; genetic programming;
botnet domain name detection

I. INTRODUCTION
Exponential growth of the Internet and online activities

necessitate the existence of a secure infrastructure to protect
users' identity and information. Attackers distribute malicious
programs that can turn a computer into a bot which is the short
term for robot. When this occurs, a computer can perform
automated tasks over the Internet, without the owner's
knowledge. Attackers typically use bots to infect large numbers
of computers. These computers form a network, or a botnet. A
typical botnet is based on a client/server architecture where the
server is referred as a botmaster and the clients are the bots. In
the architecture, the botmaster employs a Command and
Control (C&C) server to communicate with the bots. In 2010,
Dambala Inc. published a paper on the top 10 active botnets

that not only introduced the top active botnets of the year but
also reported the highly increasing botnet infection rate by the
average growth of 8% per week [1]. McAfee thread reports
also confirm that this growth continues into 2013 [2].
Moreover, these reports also emphasize that new botnets arise
every year. Hence, with the high reported infection rate and the
vast range of illegal activities, botnets are one of the main
threats against the cyber security [3].

Various detection mechanisms have been proposed and
improved by researchers. In response to these detection
approaches, botmasters have upgraded their bots or even have
changed their methodology. Therefore, identifying the botnets
and detecting them have become very challenging. As a
complementary technique, an active continuous botnet
monitoring and detection mechanism is required which could
potentially learn the new patterns through the monitoring
process and adapt to the changes in the botnet evolution.

In recent years, most botnets use Domain Name System
(DNS) as a way to evade detection mechanisms. DNS
translates the domain names that people use to the IP addresses
that machines use to locate computers and services on the
Internet. DNS is an essential and important functionality for
the Internet to work as we know it. Botnets manage to use DNS
in two different ways: (i) using DNS packets as the carrier of
information and commands between the botnet computers; (ii)
locating the C&C server by querying a list of domain names
supplied at the time of infection or after. Typically, the list of
domain names is algorithmically generated for this purpose.
This list of domain names is large enough that it cannot be
blacklisted manually or at the firewall level. Given that the
algorithmically generated domain names exhibit structural and
syntactical anomalies compared to regular domain names, it
should be possible to detect them by monitoring high volume
access to unusually structured domain names. Thus, most of
the existing works in this field employ network DNS traffic
behaviour analysis [4] [5] [6] and some works combine such an
approach with domain name lexical analysis to improve the
performance [7] [8] [9] [10]. However, domain name lexical
analysis requires attributes (features) to be defined a priori to
work accurately. Yet, the botnets keep changing the
architectures, C&C channels and the domain name generation
algorithms they use frequently [11] [12] [13]. So it is difficult
to keep up with such changes, when the detection systems still
use a priori knowledge on botnet architectures or domain name

2013 IEEE Congress on Evolutionary Computation
June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 2626

generation algorithms that belong to the earlier version(s). In
our previous work [14], we have designed and developed a GP
based system, namely Stateful-SBB, to detect maliciously
generated domain names. Stateful-SBB can work with the
string format variable length domain name without requiring
any a priori known features [14]. We have shown that it
performs comparable to other well-known classification
methods with the privilege of not requiring any a priori
knowledge [14]. Now in this work, we aim to evaluate the
Stateful-SBBs' solutions utilizing a much larger dataset (more
than seven thousands domain names) to test its generalization
capabilities as well as comparing it against other classifiers that
can work with string format inputs. To this end, we compare it
against String Subsequence Kernel (SSK) as well as SSK with
Lambda Pruning (SSK-LP) and analyze the domain names that
each chooses as a part of the solution.

The remainder of the paper is organized as follows: Section
2 describes botnets and botnet detection systems. Section 3
discusses the protocols and learning models employed in this
work. Evaluation and results are provided in Section 4 and
conclusions are drawn and the future work is discussed in
Section 5.

II. BACKGROUND

A. Botnets
A bot program is a self-propagating malware that is

designed to infect a vulnerable host through exploitation
techniques. As discussed earlier, a network of these
compromised computers, bots, is called a botnet that is under
the remote control of a botmaster via the C&C server. Since
DNS is an essential component for the Internet to function,
security solutions would not filter out the DNS traffic. Thus,
DNS became one of the most powerful protocols to be utilized
in malicious activities such as botnets. DNS is used in botnet
architectures to provide robustness and mobility as well as to
avoid the single point of failure in two categories: (i) Rallying
and (ii) Communication [15]. In Rallying, DNS is used to help
the bots to locate their C&C server. In Communication, DNS is
used as the information carrier, i.e. communication protocol, in
the botnet operation. To the best of our knowledge, there are
not so many active botnets in the second category since the
first fully DNS-based botnet came into existence in 2011 [15].
Having said this, Dietrich et al. claimed to present the first
paper that documented DNS-based botnet C&C traffic [16].
Conversely, there are many botnets that use DNS for Rallying
purposes (such as Conficker, Kraken, Bobax, Torpig, etc.).
These botnets use domain and IP fluxing to be more robust and
to avoid being detected. In this context, domain or IP fluxing
refers to the technique that a malicious user can use to prevent
identification of his/her key server's IP address. By abusing the
way the DNS works, a botnet can be created with nodes that
can join and drop off the network faster than the security
systems can detect them. As is mentioned in different security
reports, some of the botnets of this type are in the list of top
destructive botnets with high infection rates. For example,
Conficker-A was in the top 10 botnets list of Damballa in 2009
[17], Conficker-C was listed in Damballa top 10 botnets of
2010 [1] and Bobax was listed in McAfee thread reports of
2011 and 2012 [18] [19] .

B. Botnet Detection
Botnets employ different protocols (i.e. IRC or HTTP),

topologies (i.e. centralized or distributed) and techniques (i.e.
fluxing). Hence, different detection mechanisms have been
proposed focusing on different aspects. For instance, Strayer et
al. proposed a botnet protocol-independent detection approach
based on the network flow characteristics [20] while Perdisci et
al. developed a detection method for HTTP-based botnet C&C
detection [21]. To identify DNS-based botnets, which use DNS
for either locating their C&C server or as the information
carrier, many works employ only network traffic analysis
and/or use domain names textual characteristics

Holz et al. developed a fast-flux service networks (FFSN)
detection system based on the recursive DNS traffic analysis
[4]. Several malicious fast-flux features such as short Time-to-
Live (TTL) and unique Autonomous System Numbers (ASNs)
were identified and accordingly, metrics such as Fluxiness and
Flux-Score were introduced and measured. Perdisci et al.
implemented a FFSN detection system through passively
analyzing the recursive DNS traces [5]. The same features,
Holz et al. introduced, were identified. Passively collecting the
recursive DNS traces from multiple large networks and
clustering based on the related domain names, they built a
system to identify the fast-flux domain names. Manasrab et al.
proposed a botnet detection mechanism based on the fact that
botnets appeared as a group of hosts periodically [6].
Monitoring and capturing the DNS traffic at different time
intervals and using the Jaccard index to measure the similarity,
they developed a system to detect botnets.

There are several other approaches that use domain name
lexical analysis along with traffic analysis which are more
relevant to our work. Stalmans et al. developed a system to
detect fast-flux domain names using DNS queries [7].
Analyzing the DNS query responses, two groups of features
were extracted to identify legitimate and malicious queries:
DNS features (i.e. unique ASNs and TTL) and Textual features
(i.e. alpha numeric characters frequency distributions). Given
the extracted features, they employed C5.0 and Bayesian
classifiers to identify fast-flux queries. Yadav et al. proposed a
methodology to detect malicious algorithmically generated
domain names, addressing the domain fluxing mechanism [8].
To this end, they used several methods and features to group
the DNS queries. Then for each group, metrics that
characterized the distribution of alphanumeric characters- such
as Kullback-Leibler divergence and Levenshtein edit distance-
were computed and used to identify domain names with
structural anomalies. Ma et al. employed supervised learning
techniques (i.e. Naive-Bayes, SVM) to detect malicious web
sites from suspicious URLs [9]. To characterize the URL's, two
categories of features are used: lexical features (the length of a
domain name, the number of dots, etc.) and host-based features
(IP address properties, WHOIS properties, etc.). Antonakakis
et al. presented a dynamic reputation system, Notos [10]. Using
DNS query information as well as zone and network features
of domain names, Notos builds models of legitimate and
malicious domain names. Then, using these models, reputation
scores are assigned to label them as malicious or legitimate.
Haddadi et al. designed and developed a botnet detection
system using evolutionary technique, called Stateful-SBB [14].

2627

Algorithm-1
Input: X and y loaded with training labeled data,
α <- 0 or α <- partially trained SVM
1: C <- Some value
2: repeat
3: for all {xi, yi}, {xj, yj} do
4: Optimize αi and αj
5: end for
6: until no changes in α or other resource constraint criteria met
Ensure: Retain only support vectors (αi> 0)

Fig. 1. SVM training algorithm [24]

The proposed system only uses the raw string format domain
names and does not employ any traffic analysis. In addition to
automatically generating signatures, Stateful-SBB identifies
the set of attributes to be used in detection automatically
without any a priori knowledge.

III. METHODOLOGY
In this work, we aim to evaluate the robustness of different

string format based classifiers to detect maliciously generated
domain names with minimum a priori information. Thus, in
this section we will summarize the classifiers employed for this
purpose.

To be more flexible, to act more intelligently, to enhance
their functionality and to avoid detection systems, botnets tend
to use automatic algorithms in several stages of their malicious
lifecycle. For example, they use automatic exploitation
techniques instead of fixed vulnerability checklists to find
security breaches in the computers (victims). They also employ
fluxing techniques, using automatic domain generating
algorithms (DGAs), to hide the C&C servers. Thus, detection
systems also require automatic and intelligent mechanisms to
be able to cope with the advanced techniques botnets employ.

As discussed earlier, DNS as the ubiquitous component of
Internet has been used in Botnets' topology in several ways
[15]. In this category of botnets, some used domain fluxing
techniques along with DGAs. To deal with this type of botnets,
in our previous work, we developed the Stateful-SBB to
differentiate malicious automatically generated domain names
(indicating botnets activity) from legitimate ones, which are
used in many well-known applications/services such as Google
and Facebook. Going a step further, in this work, we gather a
new larger data set of domain fluxing botnets' data to test the
generalization capabilities of our proposed system. Moreover,
given that the final goal of botnet detection systems are
differentiating the malicious domain names from the legitimate
ones, in this work we intend to adjust and test the proposed
Stateful-SBB in order to differentiate the humanly structured
legitimate domain names (i.e. domain names listed in Alexa)
from the malicious automatically generated domain names.

 To the best of our knowledge, all detection systems in this
field analyze DNS network traffic behaviour via classifiers
with pre-defined feature sets. However, our system, Stateful-
SBB, only uses string format data, i.e. the raw domain name
strings (no a priori information). To compare Stateful-SBB
against a classifier that can also work on string type data, we
choose SVM with string kernel in [22]. In addition, given that
the C4.5 classifier was the best performer to detect malicious
automatically generated domain names from legitimate ones
using a pre-defined feature set , i.e. a priori information, [14], it
is also used in the evaluations here. We believe this helps us to
understand how far we can push a minimum or no a priori
information approach as well as understanding how well these
approaches (a priori vs. no a priori) generalize to different data
sets gathered from different sources, i.e. robustness.

A. SVM With String Kernel
The Support Vector Machine is a binary learning machine

that can be used for classification and rule regression [23]. The
main idea of this classification algorithm is to build a

hyperplane that optimally separates the samples of data into
two categories with maximal margin. The classifier can easily
be extended to K-class classification by constructing k two
class classifiers.

Fig. 1 illustrates the training process of an SVM, where
training samples are a set of {xi, yi} in which xi is an N-
dimensional feature vector and yi is the class label (for example
y � {-1,+1}), C controls the misclassification behavior/penalty
and α controls the shape of the separating hyperplane. The data
points xi for which αi > 0 are the points on the margin (or
within the margin while using soft-margin SVM). These data
points are called support vectors which are shown with cycles
in fig. 2. Finally, the hyperplane can be represented as (1): ݓ ൌ ∑ ௜ן ௜௜ݔ௜ݕ (1)

In order to use an SVM to solve a classification problem on
a non-linearly separable data, a non-linear mapping of an input
data into a high dimensional feature space is required. Then, an
optimal hyperplane for separating the high dimensional
features of input data can be constructed, which maximizes the
separation margin. Finally, a linear mapping from the feature
space to the output space is required. Generally, explicitly
mapping the non-linearly separable data into a high dimension
feature space has a very high computational cost. Therefore, To
handle the problem, kernel functions are utilized to implicitly
map the data points to the feature space. Mathematically, for
any mapping ߶ ׷ ܦ ՜ ܨ the function ܭ ׷ ,ଵݔሺܭ ଶሻݔ ൌሺ߶ሺݔଵሻ, ߶ሺ ݔଶሻሻ is a kernel function where (., .) denotes the dot
product. Several kernels have been introduced so far such as
Polynomial, Gaussian and Hyperbolic tangent.

Lodhi et al. proposed a string kernel, called SSK (String
Subsequence Kernel), for the purpose of text classification
[22]. The idea is to define the dot product of two text data
points by means of their substrings. The more substrings they
have in common, the more similar they are. Note that the
substrings do not need to be contiguous. However, the
subsequences are weighted by an exponentially decaying factor
of their length, emphasizing on the substrings that are close to
contiguous. In other words, the contiguity degree of a substring
determines its' effectiveness (weight) in the comparison.

The main parameters of SSK are n (subsequence length),
and λ (decay factor). The kernel implicitly maps the input
string data into a feature space F for every subsequence u of n
characters using the following formula, (2). ߶௨ሺݏሻ ൌ ∑ ௟ሺ௜ሻ௜: ௨ୀ௦ሾ௜ሿߣ (2) ߶௨ሺݏሻ is the overall result for all the occurrences of u in a
string s. ߣ௟ is the value of each occurrence of u where l denotes

2628

Fig. 2. SVM hyperplane and support vectors [25]

the length of that subsequence in s (length of u plus interior
gaps of the occurrence). Kernel function result for two strings s
and t is the dot product of their features mapping, (3).

,ݏ௡ሺܭ ሻݐ ൌ ∑ ൫߶௨ሺݏሻ. ߶௨ሺݐሻ൯௨ఀא೙ ൌ ∑ ௟ሺ௜ሻߣ ∑ ∑ ೙ఀא௟ሺ௝ሻ௝:௨ୀ௧ሾ௝ሿ௜:௨ୀ௦ሾ௜ሿ௨ߣ ൌ ∑ ∑ ∑ ೙ఀא௟ሺ௜ሻା ௟ሺ௝ሻ௝:௨ୀ௧ሾ௝ሿ௜:௨ୀ௦ሾ௜ሿ௨ߣ
(3)

Given that even for a small substring size (i.e. four) and an
average sized text, direct computation of feature space is
impractical. Thus, SSK utilizes an efficient recursive
formulation using dynamic programming techniques with the
complexity of O(n|s||t|).

B. SSK-LP
Seewald et al. introduced SSK-LP (SSK-Lambda Pruning)

to decrease SSK computational time and memory consumption
along with a little loss in accuracy. In SSL-LP, the recursion is
stopped as soon as it gets to an acceptable result in the current
branch. This approach decreases the computational effort
required for the SKK. A detailed explanation of the algorithm
can be found in [26].

C. Stateful-SBB
The SBB is a genetic programming-based learning

algorithm [27]. It coevolves three populations: A point
population, a team population and a learner population. The
learner population represents a set of symbionts (learners),
which associate a GP-bidding behaviour with an action. The
team population comprises a set of learners and finally the
point population denotes a subset of training data exemplars.
Although all of the teams' learner programs are executed while
evaluating a team on the points, only the learner with the
highest bid suggest its action. The bidding procedure employs
linear GP. Each program consists of a sequence of instructions
representing one- and two-oprand operations ({cos, exp, log, +,
-, *, %}) applied to inputs and a set of null-initialized registers.

The point and the team population interaction follows a
Pareto-based competitive coevolution. In this concept, if an
individual is not dominated by any other individual, it is set to
be a part of Pareto-front. This relation is used by SBB training
algorithm to determine the points and the teams, which survive
to the next generation. At each generation, Pgap new points are
generated by sampling the training data and Mgap new teams
are generated through variation operators (add, delete, swap

and mutate) applied to the existing teams, while learners in
both parent teams are copied into the offspring. Following the
fitness evaluation of all teams against all points, Psize-Pgap
points and Msize-Mgap teams are opted to appear in the next
generation using a Pareto-based selection. Pareto competitive
coevolution ranks the teams' performance, the Pareto non-
dominated teams with the highest ranks are selected. Likewise,
the non-dominated points are also preserved. Meanwhile, if a
point/team ranking is required in these non-dominated subsets,
a form of competitive fitness sharing is employed in order to
bias in favour of the points/teams that exhibit non-overlapping
behaviour.

As many other classifiers, SBB requires data to be
represented using a fixed length feature set. This means SBB
learners bid on the points represented by the whole feature set.
Therefore, the variable length string format domain names
cannot be used neither in SBB, nor in any other standard
classifier such as C4.5, SVM or Naive-Bayes. Instead, a useful
set of features need to be determined, to properly represent the
domain name characteristics. Indeed, this is a challenging task
and requires a priori knowledge. Once the feature set is
determined to represent the domain names, then a feature
extraction procedure should be applied to the data set prepare it
for the classifiers. To avoid these data processing steps, we
designed and developed a new version of SBB, which keeps
the state information for each exemplar; hence, we called it the
Stateful-SBB [14]. Before describing the new model, there are
three important characteristics of learners in association with
the bidding mechanism that should be mentioned. First, each
learner bids on the point separately but only the learner action
with the highest bid is returned as the team action. Second,
using the data set with a fixed number of features for the
exemplars, the learners bid on each point based on the whole
feature set. Finally, each learner resets its registers before
bidding on the next point.

To deal with the variable length domain names (in their text
format), we changed the original SBB interface to bid based on
each character of a domain name each time. Features for this
model are the ASCII codes of the domain names' characters. A
team receives a complete domain name but passes it character
by character to its team of learners. Each learner then bids per
character as opposed to per exemplar. The learners' action that
outbids the others is assigned as the team output for that
specific character. Domain name characters are related to each
other and are not independent. To achieve the correlation of
characters reflected in the bidding process, learners reset their
registers only at the beginning of each specific domain name,
not for every bid process on every character in a domain. At
the end of each domain name (when all the learners bid on the
entire domain name characters), a team will output a sequence
of the best learners’ actions. Finally, the team will decide on its
final action for that specific domain name. Different policies
can be used for the final action selection of a team. Based on
our previous results [14], in this work, we employ the "Last-
best" method for the action selection procedure.

D. Pruned Stateful-SBB
In Stateful-SBB, all the generated teams in the learning

procedure are evaluated on the training data set and the one

2629

TABLE I. DATA SETS EMPLOYED IN THIS WORK

Data Type Training Testing
 Kraken (Class 0) 4017 1722
 Conficker (Class 1) 654 280
 Alexa (Class 2) 350 150

1 http://web.cs.dal.ca/~haddadi/Alexa-list.pdf

with the best performance is selected as the final solution. The
solution team is a combination of a set of learners with their
corresponding GP instructions. Since the maximum program
size is 48 in parameters, each learner in the solution can at
most have 48 instructions including non-effective codes, called
introns. Given that introns were found to count for between
60% to 90% of instructions in linear GP, intron removal would
lead to major improvement [28]. Thus, in this work, we employ
intron removal to reduce the complexity of Stateful-SBB.

E. C4.5
C4.5 is a decision tree, which is a non-parametric

supervised learning method, based classification algorithm first
developed by Quinlan [29]. Given that C4.5 is an extension to
the ID3 algorithm, it is designed to address the issues that are
not covered by the former algorithm such as removing the
restriction that features must be categorical, converting the
output of ID3 algorithm, trained tree, into an if-then rule set,
measuring rules' accuracy to determine their order of being
applied and finally pruning [23].

C4.5 constructs decision trees based on a training data set,
applying the Information Entropy concept. The algorithm
employs a normalized information gain criterion to select
attributes from a given set of attributes to determine the
splitting point. In other words, the feature with the highest
information gain value is chosen as the splitting point. A
decision node is then generated based on this selected point.
The training process then recursively continues on the
corresponding sub-lists obtained until all of the data samples
associated to the leaf nodes are of the same class or the
classifier runs out of training samples. To this end, purity of all
branches is measured. A branch is pure only if all of the
associated samples are of the same class. If so, the splitting
process stops. If the split is not pure, the instances should be
split to decrease the impurity. A detailed description of the
learning algorithm can be found in [23].

IV. EVALUATION AND RESULTS

A. Data Set
The malicious data employed in this work is collected from

two publically available botnet C&C domain name lists,
Conficker [30] [31] and Kraken [32] [33] [34]. Given that
Conficker was one of the top 10 active botnets in 2009 and
2010 and Kraken has been active for the last few years, these
botnets have the most publically available domain name for
filtering out traffic as "blacklists". Hence, we employ these
lists to form the malicious exemplars in our data set.
Conficker-A generates 250 domain names every 3 hours.
Conficker-B is a rewrite of Conficker-A with some differences
which generates 250 domain names every 2 hours with
different seeds and additional TDLs (Top Level Domain
Names) [11]. To detect Conficker operations, some
organizations attempted to pre-register these daily domain
names lists to prevent the bots to connect to the C&C servers
and get the updates or commands [35]. To avoid this defensive
procedure, Conficker-C creates 50000 domain names per day,
making the pre-registration almost impossible due to its high
cost [12]. On the other hand, the botnet called Kraken uses a
more sophisticated DGA called the dictionary based generator

to generate new domain names. The generator employs a
complicated random word generator and creates words that
look like English words and then combines them with
randomly selected parts of common English words/phrases
(noun, verb, adjective) as suffixes [36]. For some detection
mechanisms that detect the automatically generated domain
names based on the fact that these domains do not follow
common and pronounceable phrase rules in English, the
detection procedure gets much more complicated.

In addition to Conficker and Kraken, some of the most
frequently requested domain names from the Alexa lists are
used to represent legitimate domain names [37]. Alexa Internet
Inc. ranks websites based on page views and unique site users
and accordingly, publishes the list of most common websites.
Given that even the Alexa lists may have malicious domain
names [38], we manually extracted 500 benign domain names
from the Alexa list for our dataset employed in this work1.

Each domain name has three components: (i) TLD, (ii) core
domain, and (iii) sub-domain. For example, in
"mail.google.com", "com" is the TLD, "google" is the "core"
domain, and "mail" is the sub-domain. We applied two filters
on the Conficker and the Kraken data sets to obtain a more
balanced data set: (i) Domain names that have at least three
parts (Sub-domain, core and TDL) and (ii) Domain names that
have valid IP addresses assigned to them. Table I. details the
data set employed in this work. We divided the dataset into two
parts (training and testing) based on: (i) An almost 30-70%
breakdown for testing and training, respectively; and (ii)
keeping enough samples of each class in both of the datasets.

B. Performance Criteria
1) Score: Typically, classifiers are evaluated using

accuracy or classification rate as the fraction of all the correctly
labeled instances. However, given an unbalanced data set or a
multi-class data set, these metrics can be misleading. In this
regard, we employ a classwise detection rate, (4), [39]. ܧܦ ௖ܶ ൌ ்௉೎ிே೎ା ்௉೎ (4)

DETc is the class c detection rate and TPc and FNc are the
True-Positive and False-Negative counts for class c. They also
present Score criteria to summarize the classwise detection
rates of a classifier over all classes, (5). ܵܿ݁ݎ݋ ൌ ଵ|஼| ∑ ܧܦ ௖ܶ௖א஼ (5)

2) Complexity: Definition of complexity often depends on
the concept of the "system". Speaking of classifiers,
complexity can be measured on different criteria such as
memory consumption, time or solution. In this work, two
complexity criteria is utilized. Firstly, computation time, which
is a typical scale for learning algorithms during training
procedure denoted as training time. After a classifier is trained,

2630

TABLE II. RESULTS

Classifier Training time Score

Kraken Conficker Alexa
Solution Complexity TP FP TP FP TP FP

Stateful-SBB 2227.64 0.983 0.984 0.004 0.993 0.001 0.973 0.015 674
Pruned Stateful-SBB 2227.64 0.983 0.984 0.004 0.993 0.001 0.973 0.015 116

SSK 431.53 0.996 1 0 0.989 0 1 0.001 1094
SSK-LP 166.2 0.994 1 0 0.989 0.001 0.993 0.001 805

C4.5 0.06 0.937 1 0.014 0.964 0.01 0.847 0.004 19

the trained model is presented as the solution to be used for
testing purposes. Given that presenting a better solution to a
problem is important, we define the solution complexity as our
second criteria. A direct comparison between solutions of
different approaches is impractical since the underlying units
of measurement are different. Therefore, different elements
are: For C4.5, the tree size; for SSK and SSK-LP, the number
of support vectors, and finally for Stateful-SBB, the program
size of the solution team.

C. Results
As discussed earlier, C4.5 and SSK classifiers will be

compared against Stateful-SBB on our data set. Among these
three classifiers, C4.5 requires the data set to be represented via
a priori known feature set for training and testing purposes.
Therefore, feature extraction procedure was applied to the
training and testing data set using the features introduced in
[14]. On the other hand, SSK, SSK-LP and Stateful-SBB can
use raw domain names in string format without requiring any a
priori known feature set. For SKK, SKK-LP and Stateful-SBB,
each testing and training data exemplars have two attributes:
Domain name (string format) and Class label.

We run C4.5, SSK, SSK-LP, Stateful-SBB and pruned
Stateful-SBB several times changing different parameters (C
parameter and pruning option for C4.5, Lambda and
subsequence length for SSK and SSK-LP and finally maximum
team size and seed number for Stateful-SBB). Table II.
presents the best result of each classifier on our data sets.
Given that our goal is to have a low complexity with a high
Score, which are most of the times conflicting, the decision of
the best run need to be taken in the presence of trade-offs
between these two criteria.

Not to cause any changes to the individuals in the learner
population during evolution, we removed the non-effective
instructions after the training. Therefore, the training time of
Stateful-SBB and Pruned Stateful-SBB are the same, as is
indicated in Table II. Given that we only removed the introns
from the learners' instruction set, TP and FP rates are also not
changed, hence the Score. Since training is a onetime process
but the solution will be used several times, our goal of pruning
Stateful-SBB was to reduce the solution complexity which will
speed up the botnet malicious domain name detection process
in real-time. The results indicate that using the pruned version
of Stateful-SBB reduces the complexity by 83% which is a
significant improvement. On the other hand, the SSK-LP
reduces the complexity of SSK by 27%. These results suggest
that the Pruned Stateful-SBB is a very promising classifier as
an automatically built malicious domain name detector, which
can achieve very high accuracy with no a priori known feature

set. On the other hand, C4.5 has a very low training time and
solution complexity but it requires a priori known set of
features to be able to achieve a high accuracy. Given that the
recent botnets change their DGAs almost on the fly, we believe
that classifiers working with a priori known feature sets may
not be able to cope with this in practice.

Furthermore, comparing the SSK-LP with Stateful-SBB,
we go a step further and analyze the domain names that each of
them selected to use as a base of classification. Point
population Pareto-front in Stateful-SBB is equivalent to the
support vectors in the SSK and SSK-LP, called critical points
from now on. Since Stateful-SBB point selection is heuristic
but SSK, or SVM in general, tests all of the samples, we
compare the Pareto-front points used in 20 runs of Stateful-
SBB and the support vectors of the best runs of SSK and SSK-
LP. Table III. shows the critical point counts. Given that SSK
and SSK-LP are binary classifiers, to build a 3-class classifier,
in our case, a combination of three binary classifiers are
utilized, hence some of the support vectors are used more than
once. Stateful-SBB, SSK and SSK-LP used 868, 844 and 669
critical data points, respectively. These critical data points
represent the most important domain names that aid in the
pattern discovery (classification) process.

Fig 3. shows the training data set where each point
represent a specific domain name. As it is indicated in the
figure, Kraken data points comprise three categories: (i)
"+.dynserv.com"; (ii) "+.mooo.com", and (iii) "+.yi.org"2. In the
first two categories, Stateful-SBB and SSK have selected
almost the same number of points as part of their solution
while only 0.6% of these points are chosen by both of the
classifiers. Analyzing these points showed that the sub-domain
section of the points have relatively the same structure in case
of the characters, distribution and combination. This means,
many of the data points in "+.dynserv.com" and "+.mooo.com"
categories would play the same role if chosen as the critical
points. On the other hand, "+.yi.org" data points are seemed not
to follow a specific structure. Almost all of the data points in
this category are used in Stateful-SBB or SSK where 50% of
them are used in both of the classifiers. No specific feature
could be identified analyzing these 50% of the domain names.

Fig 3. indicates that Conficker data points can be divided
into three main categories: (i) "+.co*"; (ii) "+.com*", and (iii)
"+.ws". Stateful-SBB and SSK employ 47% and 35% of the
data points of the first two categories, respectively, where 20%
of them are common between the two classifiers.
Unfortunately, not any explicit feature could be identified
while analyzing these common data points. On the other hand,
there are a few exemplars in Conficker data set that belongs to
"+.ws" category. Given that these data points are long in length

2 '+' means more than one and '*' means zero to many characters

2631

TABLE III. CRITICAL POINTS COUNT

Classifier Total Num. of
Critical Points

Total Num.of Points
(no duplicates)

Range of
Frequency

Stateful-SBB 2380 868 1-20 times
SSK 1049 844 1-2 times

SSK-LP 805 669 1-2 times

Fig. 3. Training data points

with no observable structure and few in number, all of them are
used by both of the classifiers. Finally, in Alexa data points,
two categories are evident, Fig. 3: (i) "+.co/com.*, and (ii)
others. Stateful-SBB and SSK used 26% and 20% of the
domain names in each category, respectively. However, only
20% are employed in both of the classifiers. Analyzing these
20% of the data points, we understand that they are the longest
domain names of the Alexa list with the average length of 20.
Given that the average domain name length of Conficker,
Kraken and Alexa are 18.9, 16.7 and 10.9, respectively, these
20% data points are more close to the botnet data points. This
could be one of the reasons that both of the Stateful-SBB and
SSK classifiers chose these exemplars as the critical points.

Overall, almost 30% of the points of Stateful-SBB overlap
with the data points selected by SSK and SSK-LP. Of these
868 domain names (critical data points), Stateful-SBB used
155 of them more than three times of which 63% and 51% are
also used in SSK and SSK-LP, respectively, as shown in Fig. 4.
This means 50% to 60% of the Stateful-SBB highly frequent
domain names are also selected in SVM string kernel
classifiers. Analyzing the common critical points between
Stateful-SBB (with frequencies of 4 and more), SSK and SSK-
LP: In class Kraken, 50% belong to the "yi.org" category; in
class Conficker, 57% belong to the ".ws" category; and finally
in class Alexa, 91% of the domains belong to ".co/com"
category. Further analysis on these frequently used domain
names may aid us to identify automatically generated
malicious domain name characteristics which lead us to design
a better detection system to recognize botnet behaviour.

As discussed in section 3, Kraken botnet uses a dictionary-
based generator to create the domain names that are more
similar to human generated domain names. However, we did
not observe this in our results and analysis on our data set. On
the contrary, in our experiments, most of the misclassifications
of Stateful-SBB, SSK and SSK-LP classifiers, are between
class-1 (Conficker) and class-2 (Alexa). This indicates that
Conficker domain names are more realistic and more similar to
Alexa legitimate domain names. Moreover, our observation of
Kraken and Conficker domain name categorization also
indicate that while Conficker is using ".com" and ".co" as a
part of its domain name, which is more like Alexa domain
names, Kraken is using predefined "dynserv.com" and
"mooo.co" and only generates the sub-domain section
algorithmically. Indeed, more data sets need to be analyzed to
confirm our observations.

V. CONCLUSION
Not only legitimate users utilize DNS to communicate in

the network but also botnets employ DNS-based techniques to
avoid 'hardcoding' the address of the C&C server and therefore,
to avoid being detected at the firewall level. To this end,
domain-fluxing technique is utilized to generate a large list of

algorithmically generated domain names. The domain names
of the list will be then queried by the victim host when required
to locate the C&C server. Fortunately, the structure of the
domain names is different from legitimate domain names and
querying these domains leave abnormal footprints in the
network DNS traffic. Therefore, these anomalies can be
employed to detect the botnets that use this method.

Previously, Stateful-SBB was presented by the authors to
differentiate malicious automatically generated domain names
from legitimate ones. The proposed system was proved to be
efficient in case of accuracy while having the vantage of not
requiring any pre-defined feature set (no a priori knowledge).
In this work, a pruned version of Stateful-SBB is proposed that
reduces the solution complexity by 83%. The Stateful-SBB and
Pruned Stateful-SBB were then evaluated on a larger data set
of malicious algorithmically generated domain names as well
as Alexa Legitimate domains and compared against SSK and
SSK-LP (SSK with Lambda pruning) which can also use string
format input. The results indicate that Stateful-SBB performs
comparable to SSK and SSK-LP based on classwise detection
rate, called Score. On the other hand, it is shown that the
Pruned Stateful-SBB is more effective in terms of solution
complexity. In other words, Pruned Stateful-SBB has a very
competitive detection capability with less rules. This in return
speeds up the real-time detection process. Further analysis was
done on the Stateful-SBB point Pareto-fronts and their
equivalent, SSKs' support vectors. The results show that more
that 50% of highly used point Pareto-fronts of SBB were also
used in SSK and SSK-LP. The analysis of the common points
also reveals some textual features of the botnet and Alexa
(non-botnet) domain names. Future work will include more
detailed textual analysis of the botnets' domain names.

2632

Fig. 4. Stateful-SBB most frequent critical points

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

3

8

13

18

23

28

SSK_LP

SSK

Stateful-SBB

Stateful-SBB Pareto-fronts

Fr
eq

ue
nc

y

ACKNOWLEDGMENT
This research is supported by the Natural Science and

Engineering Research Council of Canada (NSERC) grant, and
is conducted as part of the Dalhousie NIMS Lab at
http://projects.cs.dal.ca/projectx/

REFERENCES
[1] Damballa, "Top 10 Botnet Threats," Damballa Inc., 2010.
[2] McAfee Thread Reports. [Online]. http://www.mcafee.com/apps/view-

all/publications.aspx
[3] M. Feily and A. Shahrestani, "A Survey of Botnet and Botnet Detection,"

in Emerging Security Information, Systems and Technologies, 2009.
[4] Ch. Holz, Ch. Gorecki, K. Rieck, and F.C. Freiling, "Measuring and

Detecting Fast-Flux Service Networks," in NDSS, 2008.
[5] R. Perdisci, I. Corona, D. Dagon, and W. Lee, "Detecting Malicious Flux

Service Networks through Passive Analysis of Recursive DNS Traces,"
in ACSAC, 2009.

[6] A. Manasrab, A. Hasan, O.A. Abouabdalla, and S. Ramadass, "Detecting
Botnet Activities Based on Abnormal DNS traffic," in IJCSIC, vol. 6, no.
1, pp. 97-104, 2009.

[7] E. Stalmans and B. Irwin, "A Framework for DNS Based Detection and
Mitigation of Malware Infections on a Network," in ISSA, 2011.

[8] S. Yadav, A.K.K. Reddy, A.L. Narasimha Reddy, and S. Ranjan,
"Detecting Algorithmically Generated Domain-Flux Attacks With DNS
Traffic Analysis," in IEEE/ACM Transaction on Networking, 2012.

[9] J. Ma, L.K. Saul, S. Savage, and G. Voelker, "Beyond blacklists:
Learning to detect malicious Web sites from suspicious URLs," in ACM
KDD, 2009.

[10] M. Antonakakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster
"Building a Dynamic Reputation System for DNS," in USENIX
Security, 2010.

[11] Ph. Porras, H. Saidi, and V. Yegneswaran, "An Analysis Of Conficker's
Logic And Rendezvous Points", 2009. [Online]
http://mtc.sri.com/conficker

[12] Ph. Porras, H. Saidi, and V. Yegneswaran, "Conficker C Analysis",
2009. [Online] http://mtc.sri.com/Conficker/addendumC/index.html

[13] "Kelihos Back In Town Using Fast Flux", 2012. [Online]
http://www.abuse.ch/?p=3658

[14] F. Haddadi, H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood,
"Malicious automatically Generated Domain Name Detection Using
Stateful-SBB," in EvoApplication, 2012, in press.

[15] "The Role of DNS in Botnet Command & Control," Open DNS Inc.,
Whitepaper, 2012.

[16] Ch.J. Dietrich, Ch. Rossow and F.C. Freiling, "On Botnets that use DNS
for Command and Control," in EC2ND, 2011.

[17] O. Gunter: Damballa, "Top-10 Botnet Outbreaks in 2009", 2009.
[Online]. http://blog.damballa.com/?p=569

[18] McAfee Labs TM, "McAfee Threats Report: First Quarter 2011,"
McAfee, 2011.

[19] McAfee Labs TM, "McAfee Threats Report: First Quarter 2012,"
McAfee, 2012.

[20] W. Timothy Stayer, D. Lapsely, R. Walsh, and C. Livadas, "Botnet
Detection Based on Network Behavior," in Botnet Detetcion.: Springer,
pp. 1-24, 2008.

[21] R. Perdisci, W. Lee, and N. Feamster, "Behavioral Clustering of HTTP-
based Malware and Signature Generation using Malicious Network
Traces," in NSDI, 2010.

[22] H. Lodhi, C. Saunders, J. Shawe-Tylor, Nello Cristianini, and Ch.J.C.H.
Watkins, "Text Classification using String Kernels," In Journal of
Machine Learning Research, vol. 2, pp. 419-444, 2002.

[23] E. Alpaydin, Introduction to Machine Learning.: MIT Press, 2004.
[24] R. Perersen and M. Schoeberl, "An Embedded Support Vector

MAchine," in WISES, 2006.
[25] S. Haykin, "Neural Networks and Learning Machines", 3rd ed. United

States of America: Pearson Education Inc., 2009.
[26] A.K. Seewald and F. Kleedorfer, "Lambda Pruning: an approximation of

the string subsequence kernel for practical SVM classification and
redundancy clustering," in ADAC, vol. 1, no. 3, pp. 221-239, 2007.

[27] J. Doucette, A.R. McIntyre, P. Lichodzijewski, and M.I. Heywood,
"Symbiotic Coevolutionary Genetic Programming: A Benchmarking
Study Under Large Attribute Spaces," in journal of Genetic
Programming and Evolvable Machines, vol. 13, no. 1, pp. 71-101, 2012.

[28] M. Brameier and W. Banzhaf, "A Comparison of Linear Genetic
Programming and Neural Networks in Medical Data Mining," IEEE
Transaction on Evolutionary Computation, vol. 5, no. 1, pp. 17-26,
2001.

[29] J.R. Quinlan, C4.5: Programs for Machine learning.: Morgan
Kaufmann, 1993.

[30] Conficker Domain List. [Online].
http://www.malwaredomains.com/wordpress/?cat=111

[31] Conficker Domain List. [Online]. http://net.cs.uni-
bonn.de/uploads/media/c_domains_april2009.zip

[32] Kraken Domain List [Online].
http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies

[33] Kraken Domain List [Online].
http://www.malwaredomains.com/wordpress/?tag=kraken

[34] Paul Royal, "On Kraken and Bobax Botnets," Damballa, 2008. [Online].
https://www.damballa.com/downloads/press/Kraken_Response.pdf

[35] F. Leder and T. Warner, "Know Your Enemy: Containing Conficker To
Tame a Malware," Honeynet Project, 2009.

[36] A.K.K. Reddy, "Detecting Networks Employing Algorithmically
Generated domain Names," Texas A&M University, Master of Science
Thesis 2010.

[37] Alexa. [Online]. http://www.alexa.com/topsites
[38] P. Royal, "Maliciousness in Top-ranked Alexa Domains", [Online].

https://www.barracudanetworks.com/blogs/labsblog?bid=2438
[39] P. Lichodzijewski and M.I. heywood, "Coevolutionary Bid-Based

Genetic Programming for Problem Decomposition in Classification," in
Genetic Programming and Evolvable Machines, vol. 9, no. 4, pp. 331-
365, 2008.

2633

