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Abstract—The domain name system (DNS) is an 
essential component of Internet. As it is expected to be 
used by all legitimate users and applications, generally 
there are less inspections, restrictions and filters on it. 
Botnets rely on this open component to accomplish their 
malicious operation. Therefore, to defeat the single point 
of failure and evade static blacklists and firewalls, they 
employ DNS-based methods to frequently generate new 
automatic domain names. Stateful-SBB, which is a form of 
genetic programming (GP), was previously designed and 
developed by the authors to detect these automatically 
generated domain names based on minimum a priori 
information which was shown efficient. In this paper, we 
compare Stateful-SBB against the String Subsequence 
Kernel (SSK) and SSK with Lambda Pruning (SSK-LP), 
which are based on support vector machines (SVM) and 
also use string format inputs. Analyzing the domain names 
that each of the classifiers chooses as a part of their 
solutions in the classification process, we notice that 50% 
to 63% of the Stateful-SBBs' frequently selected points on 
the Pareto-front are also used by SSK and SSK-LP, 
respectively. By analyzing these common domain names, 
we identify some of the characteristics of the botnet 
domain names. Moreover, we introduce a pruned version 
of the Stateful-SBB that resulted in reducing the solution 
complexity by 83% with the same high accuracy. 

Keywords—evolutionary computation; genetic programming; 
botnet domain name detection 

I. INTRODUCTION  
Exponential growth of the Internet and online activities 

necessitate the existence of a secure infrastructure to protect 
users' identity and information. Attackers distribute malicious 
programs that can turn a computer into a bot which is the short 
term for robot. When this occurs, a computer can perform 
automated tasks over the Internet, without the owner's 
knowledge. Attackers typically use bots to infect large numbers 
of computers. These computers form a network, or a botnet. A 
typical botnet is based on a client/server architecture where the 
server is referred as a botmaster and the clients are the bots. In 
the architecture, the botmaster employs a Command and 
Control (C&C) server to communicate with the bots. In 2010, 
Dambala Inc. published a paper on the top 10 active botnets 

that not only introduced the top active botnets of the year but 
also reported the highly increasing botnet infection rate by the 
average growth of 8% per week [1]. McAfee thread reports 
also confirm that this growth continues into 2013 [2]. 
Moreover, these reports also emphasize that new botnets arise 
every year. Hence, with the high reported infection rate and the 
vast range of illegal activities, botnets are one of the main 
threats against the cyber security [3]. 

Various detection mechanisms have been proposed and 
improved by researchers. In response to these detection 
approaches, botmasters have upgraded their bots or even have 
changed their methodology. Therefore, identifying the botnets 
and detecting them have become very challenging. As a 
complementary technique, an active continuous botnet 
monitoring and detection mechanism is required which could 
potentially learn the new patterns through the monitoring 
process and adapt to the changes in the botnet evolution. 

In recent years, most botnets use Domain Name System 
(DNS) as a way to evade detection mechanisms. DNS 
translates the domain names that people use to the IP addresses 
that machines use to locate computers and services on the 
Internet. DNS is an essential and important functionality for 
the Internet to work as we know it. Botnets manage to use DNS 
in two different ways: (i) using DNS packets as the carrier of 
information and commands between the botnet computers; (ii) 
locating the C&C server by querying a list of domain names 
supplied at the time of infection or after. Typically, the list of 
domain names is algorithmically generated for this purpose. 
This list of domain names is large enough that it cannot be 
blacklisted manually or at the firewall level. Given that the 
algorithmically generated domain names exhibit structural and 
syntactical anomalies compared to regular domain names, it 
should be possible to detect them by monitoring high volume 
access to unusually structured domain names. Thus, most of 
the existing works in this field employ network DNS traffic 
behaviour analysis [4] [5] [6] and some works combine such an 
approach with domain name lexical analysis to improve the 
performance [7] [8] [9] [10]. However, domain name lexical 
analysis requires attributes (features) to be defined a priori to 
work accurately. Yet, the botnets keep changing the 
architectures, C&C channels and the domain name generation 
algorithms they use frequently [11] [12] [13]. So it is difficult 
to keep up with such changes, when the detection systems still 
use a priori knowledge on botnet architectures or domain name 
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generation algorithms that belong to the earlier version(s). In 
our previous work [14], we have designed and developed a GP 
based system, namely Stateful-SBB, to detect maliciously 
generated domain names. Stateful-SBB can work with the 
string format variable length domain name without requiring 
any a priori known features [14]. We have shown that it 
performs comparable to other well-known classification 
methods with the privilege of not requiring any a priori 
knowledge [14]. Now in this work, we aim to evaluate the 
Stateful-SBBs' solutions utilizing a much larger dataset (more 
than seven thousands domain names) to test its generalization 
capabilities as well as comparing it against other classifiers that 
can work with string format inputs. To this end, we compare it 
against String Subsequence Kernel (SSK) as well as SSK with 
Lambda Pruning (SSK-LP) and analyze the domain names that 
each chooses as a part of the solution. 

The remainder of the paper is organized as follows: Section 
2 describes botnets and botnet detection systems. Section 3 
discusses the protocols and learning models employed in this 
work. Evaluation and results are provided in Section 4 and 
conclusions are drawn and the future work is discussed in 
Section 5. 

II. BACKGROUND 

A. Botnets 
A bot program is a self-propagating malware that is 

designed to infect a vulnerable host through exploitation 
techniques. As discussed earlier, a network of these 
compromised computers, bots, is called a botnet that is under 
the remote control of a botmaster via the C&C server. Since 
DNS is an essential component for the Internet to function, 
security solutions would not filter out the DNS traffic. Thus, 
DNS became one of the most powerful protocols to be utilized 
in malicious activities such as botnets. DNS is used in botnet 
architectures to provide robustness and mobility as well as to 
avoid the single point of failure in two categories: (i) Rallying 
and (ii) Communication [15]. In Rallying, DNS is used to help 
the bots to locate their C&C server. In Communication, DNS is 
used as the information carrier, i.e. communication protocol, in 
the botnet operation. To the best of our knowledge, there are 
not so many active botnets in the second category since the 
first fully DNS-based botnet came into existence in 2011 [15]. 
Having said this, Dietrich et al. claimed to present the first 
paper that documented DNS-based botnet C&C traffic [16]. 
Conversely, there are many botnets that use DNS for Rallying 
purposes (such as Conficker, Kraken, Bobax, Torpig, etc.). 
These botnets use domain and IP fluxing to be more robust and 
to avoid being detected. In this context, domain or IP fluxing 
refers to the technique that a malicious user can use to prevent 
identification of his/her key server's IP address. By abusing the 
way the DNS works, a botnet can be created with nodes that 
can join and drop off the network faster than the security 
systems can detect them. As is mentioned in different security 
reports, some of the botnets of this type are in the list of top 
destructive botnets with high infection rates. For example, 
Conficker-A was in the top 10 botnets list of Damballa in 2009 
[17], Conficker-C was listed in Damballa top 10 botnets of 
2010 [1] and Bobax was listed in McAfee thread reports of 
2011 and 2012 [18] [19] . 

B. Botnet Detection 
Botnets employ different protocols (i.e. IRC or HTTP), 

topologies (i.e. centralized or distributed) and techniques (i.e. 
fluxing). Hence, different detection mechanisms have been 
proposed focusing on different aspects. For instance, Strayer et 
al. proposed a botnet protocol-independent detection approach 
based on the network flow characteristics [20] while Perdisci et 
al. developed a detection method for HTTP-based botnet C&C 
detection [21]. To identify DNS-based botnets, which use DNS 
for either locating their C&C server or as the information 
carrier, many works employ only network traffic analysis 
and/or use domain names textual characteristics  

Holz et al. developed a fast-flux service networks (FFSN) 
detection system based on the recursive DNS traffic analysis 
[4]. Several malicious fast-flux features such as short Time-to-
Live (TTL) and unique Autonomous System Numbers (ASNs) 
were identified and accordingly, metrics such as Fluxiness and 
Flux-Score were introduced and measured. Perdisci et al. 
implemented a FFSN detection system through passively 
analyzing the recursive DNS traces [5]. The same features, 
Holz et al. introduced, were identified. Passively collecting the 
recursive DNS traces from multiple large networks and 
clustering based on the related domain names, they built a 
system to identify the fast-flux domain names. Manasrab et al. 
proposed a botnet detection mechanism based on the fact that 
botnets appeared as a group of hosts periodically [6]. 
Monitoring and capturing the DNS traffic at different time 
intervals and using the Jaccard index to measure the similarity, 
they developed a system to detect botnets.  

There are several other approaches that use domain name 
lexical analysis along with traffic analysis which are more 
relevant to our work. Stalmans et al. developed a system to 
detect fast-flux domain names using DNS queries [7]. 
Analyzing the DNS query responses, two groups of features 
were extracted to identify legitimate and malicious queries: 
DNS features (i.e. unique ASNs and TTL) and Textual features 
(i.e. alpha numeric characters frequency distributions). Given 
the extracted features, they employed C5.0 and Bayesian 
classifiers to identify fast-flux queries. Yadav et al. proposed a 
methodology to detect malicious algorithmically generated 
domain names, addressing the domain fluxing mechanism [8]. 
To this end, they used several methods and features to group 
the DNS queries. Then for each group, metrics that 
characterized the distribution of alphanumeric characters- such 
as Kullback-Leibler divergence and Levenshtein edit distance- 
were computed and used to identify domain names with 
structural anomalies. Ma et al. employed supervised learning 
techniques (i.e. Naive-Bayes, SVM) to detect malicious web 
sites from suspicious URLs [9]. To characterize the URL's, two 
categories of features are used: lexical features (the length of a 
domain name, the number of dots, etc.) and host-based features 
(IP address properties, WHOIS properties, etc.). Antonakakis 
et al. presented a dynamic reputation system, Notos [10]. Using 
DNS query information as well as zone and network features 
of domain names, Notos builds models of legitimate and 
malicious domain names. Then, using these models, reputation 
scores are assigned to label them as malicious or legitimate. 
Haddadi et al. designed and developed a botnet detection 
system using evolutionary technique, called Stateful-SBB [14]. 
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Algorithm-1 
Input: X and y loaded with training labeled data, 
α <-  0 or α <- partially trained SVM 
1:  C <-  Some value 
2:  repeat 
3: for all {xi, yi}, {xj, yj} do 
4:       Optimize αi and αj 
5: end for 
6: until no changes in α or other resource constraint criteria met 
Ensure: Retain only support vectors (αi> 0) 

Fig. 1. SVM training algorithm [24] 

The proposed system only uses the raw string format domain 
names and does not employ any traffic analysis. In addition to 
automatically generating signatures, Stateful-SBB identifies 
the set of attributes to be used in detection automatically 
without any a priori knowledge. 

III. METHODOLOGY 
In this work, we aim to evaluate the robustness of different 

string format based classifiers to detect maliciously generated 
domain names with minimum a priori information. Thus, in 
this section we will summarize the classifiers employed for this 
purpose. 

To be more flexible, to act more intelligently, to enhance 
their functionality and to avoid detection systems, botnets tend 
to use automatic algorithms in several stages of their malicious 
lifecycle. For example, they use automatic exploitation 
techniques instead of fixed vulnerability checklists to find 
security breaches in the computers (victims). They also employ 
fluxing techniques, using automatic domain generating 
algorithms (DGAs), to hide the C&C servers. Thus, detection 
systems also require automatic and intelligent mechanisms to 
be able to cope with the advanced techniques botnets employ. 

As discussed earlier, DNS as the ubiquitous component of 
Internet has been used in Botnets' topology in several ways 
[15]. In this category of botnets, some used domain fluxing 
techniques along with DGAs. To deal with this type of botnets, 
in our previous work, we developed the Stateful-SBB to 
differentiate malicious automatically generated domain names 
(indicating botnets activity) from legitimate ones, which are 
used in many well-known applications/services such as Google 
and Facebook. Going a step further, in this work, we gather a 
new larger data set of domain fluxing botnets' data to test the 
generalization capabilities of our proposed system. Moreover, 
given that the final goal of botnet detection systems are 
differentiating the malicious domain names from the legitimate 
ones, in this work we intend to adjust and test the proposed 
Stateful-SBB in order to differentiate the humanly structured 
legitimate domain names (i.e. domain names listed in Alexa) 
from the malicious automatically generated domain names. 

 To the best of our knowledge, all detection systems in this 
field analyze DNS network traffic behaviour via classifiers 
with pre-defined feature sets. However, our system, Stateful-
SBB, only uses string format data, i.e. the raw domain name 
strings (no a priori information). To compare Stateful-SBB 
against a classifier that can also work on string type data, we 
choose SVM with string kernel in [22]. In addition, given that 
the C4.5 classifier was the best performer to detect malicious 
automatically generated domain names from legitimate ones 
using a pre-defined feature set , i.e. a priori information, [14], it 
is also used in the evaluations here. We believe this helps us to 
understand how far we can push a minimum or no a priori 
information approach as well as understanding how well these 
approaches (a priori vs. no a priori) generalize to different data 
sets gathered from different sources, i.e. robustness. 

A. SVM With String Kernel 
The Support Vector Machine is a binary learning machine 

that can be used for classification and rule regression [23]. The 
main idea of this classification algorithm is to build a 

hyperplane that optimally separates the samples of data into 
two categories with maximal margin. The classifier can easily 
be extended to K-class classification by constructing k two 
class classifiers. 

Fig. 1 illustrates the training process of an SVM, where 
training samples are a set of {xi, yi} in which xi is an N-
dimensional feature vector and yi is the class label (for example 
y � {-1,+1}), C controls the misclassification behavior/penalty 
and α controls the shape of the separating hyperplane. The data 
points xi for which αi > 0 are the points on the margin (or 
within the margin while using soft-margin SVM). These data 
points are called support vectors which are shown with cycles 
in fig. 2. Finally, the hyperplane can be represented as (1): ݓ ൌ  ∑ ௜ן ௜௜ݔ௜ݕ    (1) 

In order to use an SVM to solve a classification problem on 
a non-linearly separable data, a non-linear mapping of an input 
data into a high dimensional feature space is required. Then, an 
optimal hyperplane for separating the high dimensional 
features of input data can be constructed, which maximizes the 
separation margin. Finally, a linear mapping from the feature 
space to the output space is required. Generally, explicitly 
mapping the non-linearly separable data into a high dimension 
feature space has a very high computational cost. Therefore, To 
handle the problem, kernel functions are utilized to implicitly 
map the data points to the feature space. Mathematically, for 
any mapping ߶ ׷ ܦ ՜ ܨ   the function ܭ ׷ ,ଵݔሺܭ ଶሻݔ ൌሺ߶ሺݔଵሻ, ߶ሺ ݔଶሻሻ is a kernel function where (., .) denotes the dot 
product. Several kernels have been introduced so far such as 
Polynomial, Gaussian and Hyperbolic tangent. 

Lodhi et al. proposed a string kernel, called SSK (String 
Subsequence Kernel), for the purpose of text classification 
[22]. The idea is to define the dot product of two text data 
points by means of their substrings. The more substrings they 
have in common, the more similar they are. Note that the 
substrings do not need to be contiguous. However, the 
subsequences are weighted by an exponentially decaying factor 
of their length, emphasizing on the substrings that are close to 
contiguous. In other words, the contiguity degree of a substring 
determines its' effectiveness (weight) in the comparison.  

The main parameters of SSK are n (subsequence length), 
and λ (decay factor). The kernel implicitly maps the input 
string data into a feature space F for every subsequence u of n 
characters using the following formula, (2). ߶௨ሺݏሻ  ൌ  ∑ ௟ሺ௜ሻ௜: ௨ୀ௦ሾ௜ሿߣ   (2) ߶௨ሺݏሻ is the overall result for all the occurrences of u in a 
string s. ߣ௟  is the value of each occurrence of u where l denotes 
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Fig. 2.   SVM hyperplane and support vectors [25]  

the length of that subsequence in s (length of u plus interior 
gaps of the occurrence). Kernel function result for two strings s 
and t is the dot product of their features mapping, (3). 

,ݏ௡ሺܭ     ሻݐ ൌ ∑ ൫߶௨ሺݏሻ. ߶௨ሺݐሻ൯௨ఀא೙  ൌ ∑ ௟ሺ௜ሻߣ ∑ ∑ ೙ఀא௟ሺ௝ሻ௝:௨ୀ௧ሾ௝ሿ௜:௨ୀ௦ሾ௜ሿ௨ߣ                ൌ ∑ ∑ ∑ ೙ఀא௟ሺ௜ሻା ௟ሺ௝ሻ௝:௨ୀ௧ሾ௝ሿ௜:௨ୀ௦ሾ௜ሿ௨ߣ   
(3)

Given that even for a small substring size (i.e. four) and an 
average sized text, direct computation of feature space is 
impractical. Thus, SSK utilizes an efficient recursive 
formulation using dynamic programming techniques with the 
complexity of O(n|s||t|). 

B. SSK-LP 
Seewald et al. introduced SSK-LP (SSK-Lambda Pruning) 

to decrease SSK computational time and memory consumption 
along with a little loss in accuracy. In SSL-LP, the recursion is 
stopped as soon as it gets to an acceptable result in the current 
branch. This approach decreases the computational effort 
required for the SKK. A detailed explanation of the algorithm 
can be found in [26]. 

C. Stateful-SBB 
The SBB is a genetic programming-based learning 

algorithm [27]. It coevolves three populations: A point 
population, a team population and a learner population. The 
learner population represents a set of symbionts (learners), 
which associate a GP-bidding behaviour with an action. The 
team population comprises a set of learners and finally the 
point population denotes a subset of training data exemplars. 
Although all of the teams' learner programs are executed while 
evaluating a team on the points, only the learner with the 
highest bid suggest its action. The bidding procedure employs 
linear GP. Each program consists of a sequence of instructions 
representing one- and two-oprand operations ({cos, exp, log, +, 
-, *, %}) applied to inputs and a set of null-initialized registers. 

The point and the team population interaction follows a 
Pareto-based competitive coevolution. In this concept, if an 
individual is not dominated by any other individual, it is set to 
be a part of Pareto-front. This relation is used by SBB training 
algorithm to determine the points and the teams, which survive 
to the next generation. At each generation, Pgap new points are 
generated by sampling the training data and Mgap new teams 
are generated through variation operators (add, delete, swap 

and mutate) applied to the existing teams, while learners in 
both parent teams are copied into the offspring. Following the 
fitness evaluation of all teams against all points, Psize-Pgap 
points and Msize-Mgap teams are opted to appear in the next 
generation using a Pareto-based selection. Pareto competitive 
coevolution ranks the teams' performance, the Pareto non-
dominated teams with the highest ranks are selected. Likewise, 
the non-dominated points are also preserved. Meanwhile, if a 
point/team ranking is required in these non-dominated subsets, 
a form of competitive fitness sharing is employed in order to 
bias in favour of the points/teams that exhibit non-overlapping 
behaviour. 

As many other classifiers, SBB requires data to be 
represented using a fixed length feature set. This means SBB 
learners bid on the points represented by the whole feature set. 
Therefore, the variable length string format domain names 
cannot be used neither in SBB, nor in any other standard 
classifier such as C4.5, SVM or Naive-Bayes. Instead, a useful 
set of features need to be determined, to properly represent the 
domain name characteristics. Indeed, this is a challenging task 
and requires a priori knowledge. Once the feature set is 
determined to represent the domain names, then a feature 
extraction procedure should be applied to the data set prepare it 
for the classifiers. To avoid these data processing steps, we 
designed and developed a new version of SBB, which keeps 
the state information for each exemplar; hence, we called it the 
Stateful-SBB [14]. Before describing the new model, there are 
three important characteristics of learners in association with 
the bidding mechanism that should be mentioned. First, each 
learner bids on the point separately but only the learner action 
with the highest bid is returned as the team action. Second, 
using the data set with a fixed number of features for the 
exemplars, the learners bid on each point based on the whole 
feature set. Finally, each learner resets its registers before 
bidding on the next point. 

To deal with the variable length domain names (in their text 
format), we changed the original SBB interface to bid based on 
each character of a domain name each time. Features for this 
model are the ASCII codes of the domain names' characters. A 
team receives a complete domain name but passes it character 
by character to its team of learners. Each learner then bids per 
character as opposed to per exemplar. The learners' action that 
outbids the others is assigned as the team output for that 
specific character. Domain name characters are related to each 
other and are not independent. To achieve the correlation of 
characters reflected in the bidding process, learners reset their 
registers only at the beginning of each specific domain name, 
not for every bid process on every character in a domain. At 
the end of each domain name (when all the learners bid on the 
entire domain name characters), a team will output a sequence 
of the best learners’ actions. Finally, the team will decide on its 
final action for that specific domain name. Different policies 
can be used for the final action selection of a team. Based on 
our previous results [14], in this work, we employ the "Last-
best" method for the action selection procedure. 

D. Pruned Stateful-SBB 
In Stateful-SBB, all the generated teams in the learning 

procedure are evaluated on the training data set and the one 

2629



 

TABLE I. DATA SETS EMPLOYED IN THIS WORK

Data Type Training Testing 
 Kraken (Class 0) 4017 1722 
 Conficker (Class 1) 654 280 
 Alexa (Class 2) 350 150 

 

1  http://web.cs.dal.ca/~haddadi/Alexa-list.pdf                            

with the best performance is selected as the final solution. The 
solution team is a combination of a set of learners with their 
corresponding GP instructions. Since the maximum program 
size is 48 in parameters, each learner in the solution can at 
most have 48 instructions including non-effective codes, called 
introns. Given that introns were found to count for between 
60% to 90% of instructions in linear GP, intron removal would 
lead to major improvement [28]. Thus, in this work, we employ 
intron removal to reduce the complexity of Stateful-SBB. 

E. C4.5 
C4.5 is a decision tree, which is a non-parametric 

supervised learning method, based classification algorithm first 
developed by Quinlan [29]. Given that C4.5 is an extension to 
the ID3 algorithm, it is designed to address the issues that are 
not covered by the former algorithm such as removing the 
restriction that features must be categorical, converting the 
output of ID3 algorithm, trained tree, into an if-then rule set, 
measuring rules' accuracy to determine their order of being 
applied and finally pruning [23]. 

C4.5 constructs decision trees based on a training data set, 
applying the Information Entropy concept. The algorithm 
employs a normalized information gain criterion to select 
attributes from a given set of attributes to determine the 
splitting point. In other words, the feature with the highest 
information gain value is chosen as the splitting point. A 
decision node is then generated based on this selected point. 
The training process then recursively continues on the 
corresponding sub-lists obtained until all of the data samples 
associated to the leaf nodes are of the same class or the 
classifier runs out of training samples. To this end, purity of all 
branches is measured. A branch is pure only if all of the 
associated samples are of the same class. If so, the splitting 
process stops. If the split is not pure, the instances should be 
split to decrease the impurity. A detailed description of the 
learning algorithm can be found in [23]. 

IV. EVALUATION AND RESULTS 

A. Data Set 
The malicious data employed in this work is collected from 

two publically available botnet C&C domain name lists, 
Conficker [30] [31] and Kraken [32] [33] [34]. Given that 
Conficker was one of the top 10 active botnets in 2009 and 
2010 and Kraken has been active for the last few years, these 
botnets have the most publically available domain name for 
filtering out traffic as "blacklists". Hence, we employ these 
lists to form the malicious exemplars in our data set. 
Conficker-A generates 250 domain names every 3 hours. 
Conficker-B is a rewrite of Conficker-A with some differences 
which generates 250 domain names every 2 hours with 
different seeds and additional TDLs (Top Level Domain 
Names) [11]. To detect Conficker operations, some 
organizations attempted to pre-register these daily domain 
names lists to prevent the bots to connect to the C&C servers 
and get the updates or commands [35]. To avoid this defensive 
procedure, Conficker-C creates 50000 domain names per day, 
making the pre-registration almost impossible due to its high 
cost [12]. On the other hand, the botnet called Kraken uses a 
more sophisticated DGA called the dictionary based generator 

to generate new domain names. The generator employs a 
complicated random word generator and creates words that 
look like English words and then combines them with 
randomly selected parts of common English words/phrases 
(noun, verb, adjective) as suffixes [36]. For some detection 
mechanisms that detect the automatically generated domain 
names based on the fact that these domains do not follow 
common and pronounceable phrase rules in English, the 
detection procedure gets much more complicated.  

In addition to Conficker and Kraken, some of the most 
frequently requested domain names from the Alexa lists are 
used to represent legitimate domain names [37]. Alexa Internet 
Inc. ranks websites based on page views and unique site users 
and accordingly, publishes the list of most common websites. 
Given that even the Alexa lists may have malicious domain 
names [38], we manually extracted 500 benign domain names 
from the Alexa list for our dataset employed in this work1. 

Each domain name has three components: (i) TLD, (ii) core 
domain, and (iii) sub-domain. For example, in 
"mail.google.com", "com" is the TLD, "google" is the "core" 
domain, and "mail" is the sub-domain. We applied two filters 
on the Conficker and the Kraken data sets to obtain a more 
balanced data set: (i) Domain names that have at least three 
parts (Sub-domain, core and TDL) and (ii) Domain names that 
have valid IP addresses assigned to them. Table I. details the 
data set employed in this work. We divided the dataset into two 
parts (training and testing) based on: (i) An almost 30-70% 
breakdown for testing and training, respectively; and (ii) 
keeping enough samples of each class in both of the datasets. 

B. Performance Criteria 
1) Score: Typically, classifiers are evaluated using 

accuracy or classification rate as the fraction of all the correctly 
labeled instances. However, given an unbalanced data set or a 
multi-class data set, these metrics can be misleading. In this 
regard, we employ a classwise detection rate, (4), [39]. ܧܦ ௖ܶ  ൌ  ்௉೎ிே೎ା ்௉೎                 (4) 

DETc is the class c detection rate and TPc and FNc are the 
True-Positive and False-Negative counts for class c. They also 
present Score criteria to summarize the classwise detection 
rates of a classifier over all classes, (5). ܵܿ݁ݎ݋ ൌ  ଵ|஼| ∑ ܧܦ ௖ܶ௖א஼     (5) 

2) Complexity: Definition of complexity often depends on 
the concept of the "system". Speaking of classifiers, 
complexity can be measured on different criteria such as 
memory consumption, time or solution. In this work, two 
complexity criteria is utilized. Firstly, computation time, which 
is a typical scale for learning algorithms during training 
procedure denoted as training time. After a classifier is trained, 
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TABLE II.  RESULTS 

 
Classifier Training time Score 

Kraken Conficker Alexa 
Solution Complexity TP FP TP FP TP FP 

Stateful-SBB 2227.64 0.983 0.984 0.004 0.993 0.001 0.973 0.015 674 
Pruned Stateful-SBB 2227.64 0.983 0.984 0.004 0.993 0.001 0.973 0.015 116 

SSK 431.53 0.996 1 0 0.989 0 1 0.001 1094 
SSK-LP 166.2 0.994 1 0 0.989 0.001 0.993 0.001 805 

C4.5 0.06 0.937 1 0.014 0.964 0.01 0.847 0.004 19 

the trained model is presented as the solution to be used for 
testing purposes. Given that presenting a better solution to a 
problem is important, we define the solution complexity as our 
second criteria. A direct comparison between solutions of 
different approaches is impractical since the underlying units 
of measurement are different. Therefore, different elements 
are: For C4.5, the tree size; for SSK and SSK-LP, the number 
of support vectors, and finally for Stateful-SBB, the program 
size of the solution team. 

C. Results 
As discussed earlier, C4.5 and SSK classifiers will be 

compared against Stateful-SBB on our data set. Among these 
three classifiers, C4.5 requires the data set to be represented via 
a priori known feature set for training and testing purposes. 
Therefore, feature extraction procedure was applied to the 
training and testing data set using the features introduced in 
[14]. On the other hand, SSK, SSK-LP and Stateful-SBB can 
use raw domain names in string format without requiring any a 
priori known feature set. For SKK, SKK-LP and Stateful-SBB, 
each testing and training data exemplars have two attributes: 
Domain name (string format) and Class label. 

We run C4.5, SSK, SSK-LP, Stateful-SBB and pruned 
Stateful-SBB several times changing different parameters (C 
parameter and pruning option for C4.5, Lambda and 
subsequence length for SSK and SSK-LP and finally maximum 
team size and seed number for Stateful-SBB). Table II. 
presents the best result of each classifier on our data sets. 
Given that our goal is to have a low complexity with a high 
Score, which are most of the times conflicting, the decision of 
the best run need to be taken in the presence of trade-offs 
between these two criteria. 

Not to cause any changes to the individuals in the learner 
population during evolution, we removed the non-effective 
instructions after the training. Therefore, the training time of 
Stateful-SBB and Pruned Stateful-SBB are the same, as is 
indicated in Table II. Given that we only removed the introns 
from the learners' instruction set, TP and FP rates are also not 
changed, hence the Score. Since training is a onetime process 
but the solution will be used several times, our goal of pruning 
Stateful-SBB was to reduce the solution complexity which will 
speed up the botnet malicious domain name detection process 
in real-time. The results indicate that using the pruned version 
of Stateful-SBB reduces the complexity by 83% which is a 
significant improvement. On the other hand, the SSK-LP 
reduces the complexity of SSK by 27%. These results suggest 
that the Pruned Stateful-SBB is a very promising classifier as 
an automatically built malicious domain name detector, which 
can achieve very high accuracy with no a priori known feature 

set. On the other hand, C4.5 has a very low training time and 
solution complexity but it requires a priori known set of 
features to be able to achieve a high accuracy. Given that the 
recent botnets change their DGAs almost on the fly, we believe 
that classifiers working with a priori known feature sets may 
not be able to cope with this in practice. 

Furthermore, comparing the SSK-LP with Stateful-SBB, 
we go a step further and analyze the domain names that each of 
them selected to use as a base of classification. Point 
population Pareto-front in Stateful-SBB is equivalent to the 
support vectors in the SSK and SSK-LP, called critical points 
from now on. Since Stateful-SBB point selection is heuristic 
but SSK, or SVM in general, tests all of the samples, we 
compare the Pareto-front points used in 20 runs of Stateful-
SBB and the support vectors of the best runs of SSK and SSK-
LP. Table III. shows the critical point counts. Given that SSK 
and SSK-LP are binary classifiers, to build a 3-class classifier, 
in our case, a combination of three binary classifiers are 
utilized, hence some of the support vectors are used more than 
once. Stateful-SBB, SSK and SSK-LP used 868, 844 and 669 
critical data points, respectively. These critical data points 
represent the most important domain names that aid in the 
pattern discovery (classification) process. 

Fig 3. shows the training data set where each point 
represent a specific domain name. As it is indicated in the 
figure, Kraken data points comprise three categories: (i) 
"+.dynserv.com"; (ii) "+.mooo.com", and (iii) "+.yi.org"2. In the 
first two categories, Stateful-SBB and SSK have selected 
almost the same number of points as part of their solution 
while only 0.6% of these points are chosen by both of the 
classifiers. Analyzing these points showed that the sub-domain 
section of the points have relatively the same structure in case 
of the characters, distribution and combination. This means, 
many of the data points in "+.dynserv.com" and "+.mooo.com" 
categories would play the same role if chosen as the critical 
points. On the other hand, "+.yi.org" data points are seemed not 
to follow a specific structure. Almost all of the data points in 
this category are used in Stateful-SBB or SSK where 50% of 
them are used in both of the classifiers. No specific feature 
could be identified analyzing these 50% of the domain names. 

Fig 3. indicates that Conficker data points can be divided 
into three main categories: (i) "+.co*"; (ii) "+.com*", and  (iii) 
"+.ws". Stateful-SBB and SSK employ 47% and 35% of the 
data points of the first two categories, respectively, where 20% 
of them are common between the two classifiers. 
Unfortunately, not any explicit feature could be identified 
while analyzing these common data points. On the other hand, 
there are a few exemplars in Conficker data set that belongs to 
"+.ws" category. Given that these data points are long in length 

2     '+' means more than one and '*' means zero to many characters                 
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TABLE III.  CRITICAL POINTS COUNT 

Classifier Total Num. of 
Critical Points 

Total Num.of  Points 
(no duplicates ) 

Range of 
Frequency 

Stateful-SBB 2380 868 1-20 times 
SSK 1049 844 1-2 times 

SSK-LP 805 669 1-2 times 
 

 

 

Fig. 3.   Training data points  

with no observable structure and few in number, all of them are 
used by both of the classifiers. Finally, in Alexa data points, 
two categories are evident, Fig. 3: (i) "+.co/com.*, and (ii) 
others. Stateful-SBB and SSK used 26% and 20% of the 
domain names in each category, respectively. However, only 
20% are employed in both of the classifiers. Analyzing these 
20% of the data points, we understand that they are the longest 
domain names of the Alexa list with the average length of 20. 
Given that the average domain name length of Conficker, 
Kraken and Alexa are 18.9, 16.7 and 10.9, respectively, these 
20% data points are more close to the botnet data points. This 
could be one of the reasons that both of the Stateful-SBB and 
SSK classifiers chose these exemplars as the critical points. 

Overall, almost 30% of the points of Stateful-SBB overlap 
with the data points selected by SSK and SSK-LP. Of these 
868 domain names (critical data points), Stateful-SBB used 
155 of them more than three times of which 63% and 51% are 
also used in SSK and SSK-LP, respectively, as shown in Fig. 4. 
This means 50% to 60% of the Stateful-SBB highly frequent 
domain names are also selected in SVM string kernel 
classifiers. Analyzing the common critical points between 
Stateful-SBB (with frequencies of 4 and more), SSK and SSK-
LP: In class Kraken, 50% belong to the "yi.org" category; in 
class Conficker, 57% belong to the ".ws" category; and finally 
in class Alexa, 91% of the domains belong to ".co/com" 
category. Further analysis on these frequently used domain 
names may aid us to identify automatically generated 
malicious domain name characteristics which lead us to design 
a better detection system to recognize botnet behaviour. 

As discussed in section 3, Kraken botnet uses a dictionary-
based generator to create the domain names that are more 
similar to human generated domain names. However, we did 
not observe this in our results and analysis on our data set. On 
the contrary, in our experiments, most of the misclassifications 
of Stateful-SBB, SSK and SSK-LP classifiers, are between 
class-1 (Conficker) and class-2 (Alexa). This indicates that 
Conficker domain names are more realistic and more similar to 
Alexa legitimate domain names. Moreover, our observation of 
Kraken and Conficker domain name categorization also 
indicate that while Conficker is using ".com" and ".co" as a 
part of its domain name, which is more like Alexa domain 
names, Kraken is using predefined "dynserv.com" and 
"mooo.co" and only generates the sub-domain section 
algorithmically. Indeed, more data sets need to be analyzed to 
confirm our observations. 

V. CONCLUSION 
Not only legitimate users utilize DNS to communicate in 

the network but also botnets employ DNS-based techniques to 
avoid 'hardcoding' the address of the C&C server and therefore, 
to avoid being detected at the firewall level. To this end, 
domain-fluxing technique is utilized to generate a large list of 

algorithmically generated domain names. The domain names 
of the list will be then queried by the victim host when required 
to locate the C&C server. Fortunately, the structure of the 
domain names is different from legitimate domain names and 
querying these domains leave abnormal footprints in the 
network DNS traffic. Therefore, these anomalies can be 
employed to detect the botnets that use this method. 

Previously, Stateful-SBB was presented by the authors to 
differentiate malicious automatically generated domain names 
from legitimate ones. The proposed system was proved to be 
efficient in case of accuracy while having the vantage of not 
requiring any pre-defined feature set (no a priori knowledge). 
In this work, a pruned version of Stateful-SBB is proposed that 
reduces the solution complexity by 83%. The Stateful-SBB and 
Pruned Stateful-SBB were then evaluated on a larger data set 
of malicious algorithmically generated domain names as well 
as Alexa Legitimate domains and compared against SSK and 
SSK-LP (SSK with Lambda pruning) which can also use string 
format input. The results indicate that Stateful-SBB performs 
comparable to SSK and SSK-LP based on classwise detection 
rate, called Score. On the other hand, it is shown that the 
Pruned Stateful-SBB is more effective in terms of solution 
complexity. In other words, Pruned Stateful-SBB has a very 
competitive detection capability with less rules. This in return 
speeds up the real-time detection process. Further analysis was 
done on the Stateful-SBB point Pareto-fronts and their 
equivalent, SSKs' support vectors. The results show that more 
that 50% of highly used point Pareto-fronts of SBB were also 
used in SSK and SSK-LP. The analysis of the common points 
also reveals some textual features of the botnet and Alexa 
(non-botnet) domain names. Future work will include more 
detailed textual analysis of the botnets' domain names. 
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Fig. 4.   Stateful-SBB most frequent critical points 
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