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Abstract
We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a
set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set
of intervals in which no interval is properly contained in another.

For proper interval graphs, we design a linear space data structure which supports distance
queries (computing the distance between two query vertices) and vertex insertion or deletion in
O(lg n) worst-case time, where n is the number of vertices currently in G. Under incremental
(insertion only) or decremental (deletion only) settings, we design linear space data structures
that support distance queries in O(lg n) worst-case time and vertex insertion or deletion in O(lg n)
amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic
settings, we design a data structure that represents an interval graph G in O(n) words of space
to support distance queries in O(n lg n/S(n)) worst-case time and vertex insertion or deletion in
O(S(n) + lg n) worst-case time, where n is the number of vertices currently in G and S(n) is an
arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). This implies an O(n)-word solution
with O(

√
n lg n)-time support for both distance queries and updates. All four data structures can

answer shortest path queries by reporting the vertices in the shortest path between two query vertices
in O(lg n) worst-case time per vertex.

We also study the hardness of supporting distance queries under updates over an intersection
graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the
problem of computing the diameter of a dynamic connected interval graph.
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1 Introduction

The computation of the shortest path and the distance between a pair of vertices in a graph
are fundamental problems in graph algorithms. The shortest path between two vertices x

and y in an unweighted graph is the path with the fewest number of edges with x and y as
endpoints, and the distance between x and y is the number of edges in this path.
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18:2 Distance Queries over Dynamic Interval Graphs

The study of these problems has many applications including contextual searching [27],
social network analysis [28] and molecular topology indices [29].

To support online queries, shortest path oracles and distance oracles have been designed.
They are constructed by preprocessing the given n-vertex graph G, such that, given a pair
of vertices x and y of G, the shortest path query, which asks for the list of vertices on the
shortest path between x and y, or the distance query, which asks for the distance between x

and y, can be answered efficiently. A naive solution is to precompute information between
all pairs of vertices, but the space cost is quadratic. As this space cost is believed to be
necessary for fast distance queries, to improve space efficiency, much work has been done to
design approximate distance oracles [24, 1]. For example, given a pair of vertices x and y at
distance d, the O(n5/3)-word distance oracles of Pǎtraşcu and Roditty [24] can compute in
constant time an approximate distance in [d, 2d + 1].

These distance oracles often use O(n1+Ω(1)) space, so for modern applications processing
large graphs, they tend not to fit in main memory. Therefore, a trend in the design of
distance oracles is to take advantage of the structural properties of various classes of graphs
to design more space-efficient solutions. The classes of graphs considered include both
sparse graphs such as planar graphs [21, 20] and potentially dense graphs such as interval
graphs [17, 18] and chordal graphs [25, 23]. Among them, interval graphs are intersection
graphs of a set of intervals on the real line and have applications in operations research [5]
and bioinformatics [30].

The recent result of He et al. [18] is a succinct representation of interval graphs that
occupies n lg n + (5 + ϵ)n + o(n) bits of space (which is n + o(n) words) for any constant
positive ϵ and answers distance queries in constant time. It can also answer shortest path
queries using time linear in the length of the path. In addition, they show how to represent
a proper interval graph, which are interval graphs with no interval properly contained in
another, in 2n + o(n) bits to provide the same query support.

One reason why the above work on interval graphs is interesting is that, to achieve linear
space, it is not possible to store the edges explicitly; unlike planar graphs, the number of
edges in an interval graph can possibly be quadratic. Instead, researchers focus on designing
data structures over the intervals represented by the graph. Thus, this provides answers
to the question of whether one can get more efficient solutions to graph problems when
graphs are provided implicitly. In other words, this is an instance in which graphs cannot be
written down explicitly, and you want data structures that use linear or near linear space or
algorithms that work in linear or near linear time, without explicitly constructing all edges.
Other instances include the work of Alman et al. [3] on geometric graphs and that of Munro
and Sinnamon [22] on distributive lattices.

Previous work on distance oracles for interval graphs focused on static graphs, while
distance oracles for dynamic general graphs require Ω(n2) update time [14, 26]. Previous
results on dynamic interval graph data structures, worked under the update model of inserting
and deleting individual edges, with update times Θ(n) [13]. Hence, in this paper, we design
data structures that support distance and shortest path queries over dynamic interval and
proper interval graphs, under the model of updating the graph by the insertion and deletion
of an interval, along with all the corresponding edges. By working on these problems, we
hope to provide some answers to the following question: “What graphs allow more efficient
solutions to dynamic graph problems when the graphs are provided implicitly?”

Previous Work. To solve the all-pairs shortest paths problem over interval graphs, Chen et.
al [11] built an O(n)-word structure that answers distance queries in O(1) times. Further
work by Acan et. al [2] in reducing the space yielded n lg n + (3 + ε)n + o(n) (for constant
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ε > 0) bits of space data structure for shortest paths, and further improvements of He et
al. [18] gave a n lg n + (5 + ε)n + o(n) bits of space data structure that also allows distance
queries in O(1) time. In the same work, Acan et al. [2] showed how to use 2n + o(n) bits of
space to support shortest path queries in proper interval graphs in O(1) time per vertex on
the path, and He et al.[18] showed how to support distance queries in the same 2n + o(n)
bits of space, in O(1) time 1.

In a slightly different model of distance labeling, the data structure is distributed among
the vertices, and we compute the distance between two vertices from only their labels. The
best known result is a 5 lg n-bit label of Gavoille and Paul [17] (so a total space of 5n lg n

bits), which computes the distance in O(1) time.
Interval graphs are a subset of circular arc graphs, which are intersection graphs of arcs

on a circle. The results on interval graphs can be extended to circular arc graphs by unrolling
the circular arc graph (twice) and reducing it to an interval graph instance on twice the
number of vertices. Interval graphs are also a subset of chordal graphs, which are intersection
graphs of subtrees in a tree. For chordal graphs, we have the approximate distance oracle
of Singh et. al [25] which uses O(n) words of space and computes in O(1) time a distance
between [d, 2d + 8] where d is the true distance. This was improved by Munro and Wu [23]
to compute a distance between [d, d + 1] using n + o(n) words. Munro and Wu also gave an
exact oracle using n2/4 + o(n2) bits of space with query time O(nf(n)) for any f(n) ∈ ω(1).

Another way of generalizing interval graphs is to define intersection graphs of line segments
or boxes in two or higher dimensions. Chan and Skrepetosz [9] solved the all-pairs shortest
path problem over several classes of geometric intersection graphs, including intersection
graphs of axis-aligned line segments, arbitrary line segments or axis-aligned boxes. Researchers
have also designed distance oracles for intersection graphs over unit disks [16, 10].

Our Results. We consider interval graphs given as a set of intervals with edges represented
implicitly by the intersections between these intervals. An update is performed by adding
a vertex represented by an interval, and this implies the insertions of all its incident edges
implicitly, or by deleting vertices represented by an interval which implies the removal of all
its incident edges. This is natural in our setting as our edges are implicit in this intersection
model, and adding or deleting arbitrary edges may give us a graph outside of our graph class.

Under this model, we design a data structure in Section 3 that represents a proper interval
graph G in O(n) words, where n is the number of vertices currently in G, to answer distance
queries and to support vertex insertion or deletion in O(lg n) worst-case time. The shortest
path query can also be answered in O(lg n) worst-case time per vertex on the path.

For general interval graphs, we first consider the incremental case, in which we start from
an empty graph and insert n vertices one by one, and the decremental case, in which we
start from an n-vertex graph and perform n vertex deletions.

Queries can be made at any time during these update sequences. For these settings,
we design in Section 4 an O(n)-word representation that supports distance queries in
O(lg n) worst-case time, and vertex insertions (in the incremental case) or deletions (in the
decremental case) in O(lg n) amortized time. The shortest path query can be answered in
O(lg n) worst-case time per vertex on the path.

1 Although their data structure uses 3n + o(n) bits if the graph is not connected, this is due to using n
additional bits to determine if vertices belong to the same component. A O(

√
n) additional bit solution

to detect components can be found using the equivalence class data structure of El-Zein et al [15].
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18:4 Distance Queries over Dynamic Interval Graphs

Under fully dynamic settings in which we can mix insertions and deletions, we further
design in Section 5 a data structure that represents a general interval graph G in O(n) words
of space to answer distance queries in O(n lg n/S(n)) worst-case time and to support the
insertion or deletion of a vertex into or from G in O(S(n) + lg n) worst-case times, where
n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies
S(n) = Ω(1) and S(n) = O(n). It also answers a shortest path query in O(lg n) worst-case
time per vertex on the path. Thus, setting S(n) =

√
n lg n yields an O(n)-word solution with

O(
√

n lg n)-time support for both distance queries and updates. These solutions are the first
that support distance and shortest path queries over dynamic interval and proper interval
graphs efficiently.

In addition, we also study in Section 6 the hardness of the problem of supporting distance
queries under updates in an intersection graph of 3D axis-aligned line segments, which
generalizes our problem to 3D. We reduce the online Boolean Matrix vector multiplication
(OMv) problem [19] to it. Thus, for any constant ε > 0, the distance query and update times
over such a graph cannot be O(n1/2−ε) simultaneously, unless the OMv conjecture [19] is false.
This implies conditional lower bounds for more general graphs such as intersection graphs of
3D axis-aligned boxes and intersection graphs of arbitrary line segments in 3D [9, 7, 12, 8].

Due to space constraints, some details are omitted.

2 Definitions and Preliminaries

2.1 Definitions
Let G = (V, E) denote a graph with vertex set V and edge set E, and we consider unweighted
graphs only. We use n = |V | and m = |E| to refer to the number of vertices and edges,
respectively. As is standard, we assume the word-RAM model with Θ(lg n)-size words.

An intersection graph is formed from a finite family of non-empty sets. We associate
each vertex with a set, and two vertices are adjacent if and only if the corresponding sets
intersect. Then, an interval graph is an intersection graph of a set of intervals on the real
line, while a proper interval graph is an interval graph where we may associate each vertex
with an interval so that no interval is completely covered by another.

The representing interval of a vertex v of an interval graph is denoted by Iv = [lv, rv].
We use I to refer to the current interval set of the graph, and we say that I is an interval
representation of G. I may change when the graph is dynamic. We define the following
operators over an interval graph G:

insert(v): adds to G a vertex v given by the interval Iv.
delete(v): deletes from G a vertex v given the interval Iv.
dist(u, v): returns the distance between two vertices in G.

2.2 Static Data Structure for Distances in Interval Graphs
Here we will review some previous results for the static case [18, 2], which we will build upon.

For each interval v, we define the parent relationship parent(v) as the vertex u such that

u = arg min {lw | rw ≥ lv} (1)

▶ Definition 1. Let G be an interval graph, with a fixed interval representation. The distance
tree T (G) is defined under the parent relationship parent(v). For every vertex v, we order
the children of v in order of the left end point of the vertices. That is, if u, w are two children
of v with lu < lw, then u is to the left of w.
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If G is disconnected, then we have a forest instead, with one tree per vertex v where
parent(v) = v. Furthermore, in the context of a vertex v, the distance tree T (G) of a
disconnected graph G refers to the tree in the forest that contains v.
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Figure 1 An Interval Graph (middle) with Interval Representation (left), and distance tree
constructed (right).

For a tree T and a node v, the quantity posX
T (v) denotes the index of v in the X traversal of

T , where X could be level, pre, post indicating a breadth-first traversal, preorder traversal
and postorder traversal, respectively. We will omit the subscript when the tree being referred
to is clear. Then we have

▶ Lemma 2 (Lemma 7 of [18]). Let G be a proper interval graph with distance tree T (G)
and vertices u, v. poslevel(u) < poslevel(v) if and only if lu < lv. In the special case that
depth(u) = depth(v), posX(u) < posX(v) if and only if lu < lv for X = pre, post, level.

The main property of the distance tree is that it encodes distances between vertices.

▶ Lemma 3. Let G be an interval graph with distance tree T (G), and u, v be two vertices
in the same connected component of G with poslevel(u) > poslevel(v). Let the node to root
path of u be u = u1, . . . , uk = r, and i be the first index where lui

≤ rv. Then a shortest path
from u to v is u = u1, . . . , ui, v, and depth(ui) is depth(v)− 1, depth(v) or depth(v) + 1.

In the proper interval graph case, we may state it more succinctly as

▶ Lemma 4. Let G be a proper interval graph with distance tree T (G) and u, v be two vertices
in the same connected component of G with poslevel(u) > poslevel(v). Then dist(u, v) =
depth(u)− depth(v) + 1 (pospost(u) > pospost(v)), where the last term evaluates to 1 if the
expression inside the brackets is true and 0 otherwise.

3 Fully Dynamic Proper Interval Graphs

As proper interval graphs are a special class of interval graphs, we naturally modify the
insert(v) operation. If the interval [l, r] inserted is incompatible with the proper interval
graph - that is it either covers or is covered by another interval, we abort the operation.

Our dynamic solution modifies the distance tree of He et al. [18] so that it is more easily
maintainable. The distance tree T (G) (Definition 1) in general has an unbounded degree,
which makes updates difficult. To alleviate this, we will apply the well-known isomorphism
between ordinal trees and binary trees to ensure that the tree is binary. To preserve depths,
sibling edges in the binary tree will have a weight 0, while parent edges in the binary tree
will have a weight 1.

More formally, let T be an ordinal tree on n nodes. Define the weighted binary tree TB

also on n nodes as follows: For each vertex v in TB , the left child of v is its left sibling in T ,
the right child of v is its rightmost child in T . Left child edges have a weight 0, right child
edges have a weight 1. Using this convention, whenever we add a vertex as the left child of
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18:6 Distance Queries over Dynamic Interval Graphs

another vertex, it is implicit that we also set the weight of that edge to 0, similarly for right
child edges. This transformation preserves post-order traversal. Furthermore, when we talk
about node depth or path length in TB , we refer to weighted node depth or weighted path
length, respectively. Hence, any path length in T (G) is invariant under this transformation.

Thus Lemma 4 still holds under this transformation. Furthermore, we will use poslevel(u)
to refer to the level-order position of u in T (G) before the transformation as the level-
order position no longer has any meaning after the transformation. As concepts are more
easily stated on T (G), we will mainly use it for stating relationships between vertices, but
straightforwardly translate the operations on TB(G) which we will maintain.

Under this transformation, we also immediately have the analogous notion of ancestors.
For a vertex v, the node u = ancT (v, d) is the ancestor of v at depth d in T . The node u

in TB is the closest ancestor of v at depth d (as the edges may have 0 weights, there are
multiple ancestors at each depth). We will store the tree TB(G) as a top tree [4], which
allows us to make dynamic changes along with useful path queries in O(lg n) time.

▶ Lemma 5 (Top Tree [4]). Let T be a forest. A top tree data structure on T occupies
O(n) words of space and supports the following operations in O(lg n) time: link(u, v), where
u and v are in different trees, links these trees by adding the edge (u, v) to T ; cut(e),
removes the edge e from T ; update_weight(e, w), update the weight of the edge e to w;
weighted_distance(u, v), returns the weight of the path between u and v; anc(u, v, d),
returns the first node on the path from u to v at distance d from u.

For a proper interval graph G, with intervals I, we will maintain the following: 1)A
top tree of TB(G). For each component, we store a variable indicating the root r of that
component. 2)A mapping between the vertices v of G and the interval Iv = [lv, rv]. 3) A
mapping from the end points of intervals to the vertex itself. Note that no two intervals can
share left end points nor right end points in a proper interval graph, but the left end point of
one interval can be the right end point of another. 4) The left end points of all the intervals.
5) The right end points of all the intervals. For the last 4 items, we will use a red-black
tree, so that searches can be done in O(lg n) time. For the last 2 items, this also allows us
to support successor and predecessor queries, denoted by predL/succL, on the set of left
endpoints and predR/succR on the set of right endpoints. The total space is O(n) words.

Now we translate the distance calculation from T (G) into our data structure essentially
by translating the comparison between poslevel to a comparison between interval endpoints.

▶ Lemma 6. The data structures in this section can compute dist(u, v) in O(lg n) time
given two vertices, u, v of G.

Proof. In the case that depth(u) = depth(v), we retrieve the endpoints. Assume without
loss of generality that lu > lv. Since pospost(u) > pospost(v)⇔ poslevel(u) > poslevel(v)⇔
lu > lv, by lemma 4 we have that dist(u, v) = 1.

Now suppose that depth(u) > depth(v). By the property of a breadth-first traversal,
we also have poslevel(u) > poslevel(v). Using the top tree, we find w = anc(u, depth(v))
in O(lg n) time. Then pospost(u) > pospost(v) ⇔ pospost(w) > pospost(v) ⇔ lw > lv, so a
comparison between lw and lv is sufficient to apply lemma 4. ◀

Now we consider the maintaining of the distance tree T (G) (conceptually) and TB(G)
(concretely) under updates. To do so, we first characterize the parent relationship in TB(G).
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▶ Lemma 7. Let G be a proper interval graph with distance tree TB(G). Let v be a vertex.
If v is not a root of one of the components, then parentTB(G)(v) is

arg min ({lw | lw ≥ lv} ∪ {rw | rw ≥ lv}) (2)

If two vertices u, w have endpoints such that ru = lw, break ties in the above quantity by
treating lw < ru. Furthermore, let v′ be the vertex such that lv′ = predL(lv). Then v is the
root of its component if and only if v′ is not adjacent to v.

Proof. First suppose that v′ is adjacent to v. Then, since lv′ < lv, we have rv′ ≥ lv, and
hence, v′ is a candidate in the parent (in T (G)) relationship of v. Therefore, v would have
a parent in T (G) and thus would not be the root. Conversely, let p denote the parent of v

in T (G). If v′ ̸= p, we have lp < lv′ < lv ≤ rp < rv′ . The first and third inequality comes
from p being the parent of v, while the others come from the fact that G is a proper interval
graph. Thus v′ is adjacent to v.

Now suppose that v is not the root of its component. By the construction of TB(G), v’s
parent in TB(G) is either its right sibling or, if it has no right sibling, its parent in T (G).
Let u = arg min{lw | lw ≥ lv} ∪ {rw | rw ≥ lv}. Suppose that u is obtained from the first set
which consists of left end points. Then as there are no right end points between lv and lu,
they have the same parent in T (G). Since lu = succL(lv), u must be the immediate right
sibling of v. If u is obtained from the second set which consists of right end points, then as
G is a proper interval graph, u = arg min{lw | rw ≥ lv}, so u is the parent of v in T (G). We
note that v is the rightmost child of u in T (G). This can be seen as there are no vertices v′

with lv ≤ lv′ ≤ ru which any right sibling of v must have. ◀

To support updates, we will first consider insertions. Let w be the vertex with interval
Iw = [l, r] be our insertion candidate. We will accomplish this in two steps: first, check
that w contains or is contained by some interval in G. If so, we stop immediately. Then,
determine the links of TB(G) that need to be updated. For step 1, we only need to check the
containment between the two immediate predecessor and successor of w.

▶ Lemma 8. Let G be a proper interval graph with intervals I. Let w = [l, r] such that l ̸= lv
is2 not the left end point of any interval Iv ∈ I. Let v be the vertex such that lv = predL(l)
and u be the vertex such that lu = succL(l).

Then w is contained in some interval Iv′ if and only if w is contained in Iv, and w

contains some interval Iu′ if and only if w contains Iu.

Proof. By assumption, lv ̸= lw ̸= lu. As v is the predecessor of w, lv′ ≤ lv. If w is
contained in Iv′ , then lv′ ≤ lv < lw < rw ≤ rv′ < rv, so w is also contained in Iv.
Conversely, we choose v′ = v. Now suppose that w contains some interval Iu′ . Then we have
lw < lu ≤ lu′ ≤ ru < ru′ < rw, so w contains u. ◀

We will now assume that G ∪ {w} is a proper interval graph.

▶ Lemma 9. O(1) links need to be updated to transform TB(G) to TB(G ∪ {w}).

Proof. By Lemma 7 for a vertex v, the parent in TB(G) is given by equation 2. By adding
lw and rw, we may need to add an edge between w and parentTB(G∪{w})(w), and we also
add links whenever w is the result of equation 2. Furthermore, as roots do not have parents,
if w becomes the new root of some component, the old root would need to relink as well.

2 If l = lv, then one of w and v contain the other, and we can easily handle this case by aborting.
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18:8 Distance Queries over Dynamic Interval Graphs

Thus by the analysis above, at most 4 links need to be updated. We note that to compute
the new parent of any node, equation 2 can be calculated using succL(lv) and succR(lv),
then taking the minimum of the result.

To be complete, we will explicitly state the vertices that need to be relinked. If w is
the new root of some component, then the old root is lr = succL(lw) if r is adjacent to w.
Otherwise, w is in a component by itself. In the case that r is adjacent to w, r will need to
recalculate its parent link. If w is not the new root of some component, then we calculate
the parent of w. The two children of w are the vertices whose left end points immediately
precede lw and rw. Let u, v be the vertices such that lu = predL(lw) and lv = predL(rw).
We may need to relink u and v as they may now be children of w. ◀

▶ Lemma 10. The insert operation has time complexity O(lg n).

Proof of Lemma 10. insert first checks that w is consistent with the other intervals in
O(lg n) time. The transformation from TB(G) to TB(G ∪ {w}) requires the relinking of O(1)
links, which takes O(lg n) time. Adding w to the maps between vertices and end points and
adding the end points of w to the trees require O(lg n) time. Thus in total, insert requires
O(lg n) time. ◀

The delete operation is in essence the reverse of insert. Details for it and the following
query, used in Section 4, are omitted. Given two vertices u, v (represented by intervals) not
in G, compute dist(u, v) in G ∪ {u, v} without requiring G ∪ {u, v} to be a proper interval
graph. The main idea is that if lu < ru < lv, then dist(u, v) depends only on ru and lv.
Thus we compute two vertices u′, v′ with ru = ru′ , lv = lv′ so that G ∪ {u′, v′} is a proper
interval graph, and the distance can be computed by replacing u, v with u′, v′. Thus we have:

▶ Theorem 11. A proper interval graph G can be represented in O(n) words of space, where
n is the number of vertices currently in G, to support insert, delete, dist in O(lg n) time,
and shortest_path in O(lg n) time per vertex on the path. Furthermore, dist supports
arguments not in the graph G: for intervals x = [lx, rx], y = [ly, ry] not necessarily in G,
distG∪{x,y}(x, y) is supported in O(lg n) time.

4 Dynamic Interval Graphs in Incremental and Decremental Settings

In this section, we will study dynamic interval graphs in the incremental and decremental
settings; Some details are omitted.

We do this by observing that any interval that is contained in some other interval can
be removed without changing the length of the shortest paths. By maintaining the set
of remaining intervals, which we will say are exposed, we reduce the problem to the fully
dynamic proper case. In the incremental setting, once an interval becomes contained by
another interval (that is, no longer exposed), it will remain so for the remaining operations;
in the decremental setting, once an interval is no longer contained by another interval (that
is, becomes exposed), it will remain so until it is deleted. Hence, the total number of updates
to the proper interval graph data structure will be O(n). The two main theorems for this
section are:

▶ Theorem 12 (Incremental). There is a data structure that maintains an interval graph G

in O(n) words of space, where n is the total number of vertices to be inserted into G, and
supports dist in O(lg n) worst-case time and insert in O(lg n) amortized time.
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▶ Theorem 13 (Decremental). There is a data structure that starts with a given n-vertex
interval graph G and uses O(n) words to support dist in O(lg n) worst-case time and delete
in O(lg n) amortized time.

As we briefly explained, these will be solved (in an amortized fashion) by reducing to
the problem on dynamic proper interval graphs. Formally, for an interval graph G with
intervals I, we say that an interval x ∈ I is exposed if it is not contained by another interval
of I, and we let Iexposed(G) denote the set of all exposed interval of G. By the association
between vertices and intervals, we will use the terms interval and vertex interchangeably.
We note that by definition, the subgraph of G consisting of exposed vertices forms a proper
interval graph. Let x, y ∈ Iexposed(G) be two exposed vertices, and by symmetry suppose
that lx < ly. As x, y belong to a proper interval graph, we also have rx < ry. We will use
x < y to denote that lx < ly for two exposed vertices, and < defines a strict total order on
the exposed vertices of the interval graph G (i.e. < simply makes a comparison on the left
endpoints of the given vertices, which must be unique). The following lemma allows us to
reduce the distance query on interval graphs to the proper interval graph on the exposed
vertices only.

▶ Lemma 14. Given an interval graph G with fixed interval representation I, its exposed
intervals Iexposed(G) form a proper interval graph H with the following properties:

Any interval x is contained by an interval of G iff x is contained by an interval of H.
For any two vertices x, y ∈ G, distG(x, y) = distH∪{x,y}(x, y).

Intuitively, we only need exposed intervals because, by definition of parent (equation 1),
all parent intervals are exposed. Thus, Lemma 14 implies that, to support dist on interval
graphs, it suffices to maintain an instance of fully dynamic proper interval graphs using
Theorem 11, on the exposed vertices of G. Thus it remains to determine and maintain
exposed vertices. To do so, in addition to using an instance of the fully dynamic proper
interval graph structure, we will also store the exposed intervals in an auxiliary data structure:

▶ Lemma 15. There exists a data structure using O(n) words where n is the number of
intervals current in the data structure, that can store the exposed intervals and support the
following operations given an interval x in O(lg n) time: 1) determine whether x is contained
by some interval currently in the data structure. 2) report all intervals that are contained by
x and delete all of them, in O(k lg n) time, where k is the number of deleted intervals. 3)
If x does not contain and is not contained by any interval currently in the data structure,
insert it. 4) If x is in the data structure, return its predecessor or successor with respect to
<, or report that it doesn’t exist.

We can use a red-black tree to store the exposed intervals using the left end points as the
keys and the right end points as the values. This is sufficient to support the operations in
Lemma 15. We now sketch our support for dynamic interval graphs under only insertions.

Proof Sketch of Theorem 12. We maintain the fully dynamic proper interval graph struc-
ture of Theorem 11 on the graph H whose vertices are the exposed intervals of G. We also
maintain the binary search tree, TH in Lemma 15 on the same intervals. Upon the insertion
of an interval, if it is contained in some other interval, then we do nothing. If the new interval
is exposed, then any interval it contains will no longer be exposed and must be deleted. As
the deletion of intervals from the proper interval graph structure uses O(lg n) time and any
exposed interval can only be deleted once, the total time over n insertions is O(n lg n). ◀
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4.1 Data Structure for Decremental Interval Graphs
In this subsection, we consider the decremental case, where the updates are the deletion of
intervals. First, we investigate how the set of exposed intervals change after a deletion.

▶ Lemma 16. Let G be a proper interval graph, and G′ = G− x for some vertex x ∈ G. If
x is not exposed in G, then, Iexposed(G) = Iexposed(G′).

If x is exposed in G, then Iexposed(G) \ {x} ⊆ Iexposed(G′), and, for all y ∈ Iexposed(G′) \
Iexposed(G), y ⊆ x. Furthermore, Iexposed(G′) = (Iexposed(G) \ {x})∪̇{y ∈ Iexposed(G′) :
x− < y < x+} (∪̇ denotes a disjoint union), where x− and x+ are respectively the predecessor
and the successor of x in Iexposed(G) (if either x− or x+ does not exist, then that constraint
is omitted). That is, the newly added elements of Iexposed(G′) are between x− and x+.

In plain words, the lemma states that any new exposed intervals must fall between the
predecessor and successor of the removed exposed interval.

We will now assume that the deleted vertex x is exposed, as there is nothing to be done
if not. We wish to find set {y ∈ Iexposed(G′) : x− < y < x+}. To do so, we will iteratively
find these newly exposed intervals from the smallest to the largest.

▶ Lemma 17. Consider a set of intervals S, and let x ∈ S be an exposed interval. Let x′ ∈ S

be the interval with minimum lx′ (ties broken by largest rx′) such that rx′ > rx. Then, x′ is
exposed, and there does not exist any exposed interval z ∈ S such that x < z < x′. If no such
x′ exists, then there is no exposed interval w ∈ S such that x < w.

Next we give a data structure which applies the criteria given in Lemma 17.

▶ Lemma 18. There is an O(n)-word data structure that can maintain a set of intervals
(initially a given set, and not necessarily exposed) and support the following operations
1. Delete an interval in O(lg n) time;
2. Given any two exposed intervals x and y where x < y, report all exposed intervals z such

that x < z < y in O((k + 1) lg n) time, where k is the number of returned intervals. We
also allow x = −∞ and/or y =∞, in which case the constraint involving them is omitted.

The structure is an augmented red-black tree storing all intervals, where the keys are
the right endpoints of intervals (ties are broken by largest left end points of intervals), and
to support the second operation, at each node, we store the minimum left endpoint of all
the intervals in the subtree. Finally, we give a sketch of the data structure for supporting
delete.

Proof sketch of Theorem 13. We build the data structures for the incremental case and
also maintain TG, the binary search tree in Lemma 18 on all the intervals of G. If the vertex
x to be deleted is not exposed, then nothing needs to be done. If it is, then we find its
predecessor and successor in Iexposed(G) using TH , delete it, and find all the newly exposed
vertices using Lemma 17 and TG, and add them into the proper interval graph. As every
interval can become exposed at most once, it is added into the proper interval graph at most
once (and deleted at most once). Hence, over n deletes, the total run time is O(n lg n). ◀

5 Fully Dynamic Interval Graphs

The main goal of this section is to prove the following result:
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▶ Theorem 19. An interval graph G can be represented in O(n) words to support dist in
O(n lg n/S(n)) time, shortest_path in O(lg n) time per vertex on the path, and insert
and delete in O(S(n)+lg n) time, where n is the number of vertices currently in G and S(n)
is an arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). Setting S(n) =

√
n lg n

yields an O(n)-word solution with O(
√

n lg n)-time support for dist, insert and delete.

To prove this result, we first design a data structure to compute parent under updates. We
decompose distance queries so that the structures can be more easily updated in Sections 5.1
and 5.2. Finally, we show how to update these in Section 5.3.

We define the jump of i as moving from the current vertex i to its parent(i) (as in
Lemma 3) 3. Then we can interpret Lemma 3 to a series of jumps from u to ui, then to v.
First, we give a data structure computing jump. By definition of parent (equation 1), the
parent of a vertex i is the vertex j = arg minrj≥li

lj . To compute this, we store all intervals
in a red-black tree with their right endpoints as keys. At each node, we store both the
minimal left endpoint among all intervals stored in the subtree rooted at that node and a
pointer to the node containing that interval. We call this the global interval tree, and it uses
O(n) words. Given an interval i, to find j, we search for li to obtain a path (i.e. the nodes
encountered on the standard binary search algorithm) and a set of subtrees (i.e. the subtrees
rooted at right children of any node on the path, given that path continues towards the
left child) containing the intervals v with rv ≥ li. For each we calculate the maximal left
endpoint contained in the node (for those on the path) or the subtree and take the minimum.
As the tree is balanced, this takes O(lg n) time. This tree can also be updated upon interval
insertion or deletion in O(lg n) time. This simple structure is also a dynamic shortest path
oracle for interval graphs.

5.1 Distance Computation
In this section, we will give an algorithm to compute the distance between two vertices x

and y that is compatible with updates. The main idea is to break the interval graph into
blocks of size S(n). If we take the naive approach of calculating a shortest path, then the
time complexity to compute the distance between two vertices x and y will depend on the
distance itself. To combat this, we will decompose the path into subpaths each residing
entirely within one of the blocks, and compute them quickly.

We sort the n given intervals by left endpoints, fix S(n) and then divide the vertices
(consecutively) into Θ( n

S(n) ) blocks, with each block containing O(S(n)) vertices (intervals).
From left to right, we number blocks incrementally by B1, B2, . . .. For vertex i we say that
the jump i→ parent(i) is an in-block jump if both i and parent(i) belong to the same block,
and it is an out-of-block jump otherwise.

Figure 2 Depicting the parent relationship where the intervals are coloured to depict the
decomposition into blocks of size 3.

3 Though jump(i) = parent(i), it flows more naturally when we describe it as an action, as it is a verb.
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▶ Example 20. Consider figure 2. We see that any jump from the vertices represented by
the red intervals are in-block jump, while jumps from all other vertices are out-of-block
jumps. In particular, for any other vertex, since the jump is out-of-block, their parent in the
distance tree of their block Ti (to be constructed in Section 5.2) would be different than their
parent over all. However, for the red vertices these two parent relationships would coincide.

For any shortest path x = p1, . . . pk, y where pi+1 = parent(pi), we can decompose it
into a sequence of in-block jumps followed by an out-of-block jump - and repeat. To compute
the path length, we will compute the length of each of the in-block sequences and count the
out-of-block jumps using

compressed9in9block9jump(x, optional: y): Return the last vertex t such that all jumps
between x, . . . , t are all in-block jumps, together with the distance between x and t. If
y is given, also returns the distance between x and y or report that there is no path
between them in the block.
jump(x): given a vertex x, return its (global) parent.

Thus given two vertices x and y (with ly < lx so that the block of x comes no earlier
than the block of y) to the distance problem, we propose algorithm 1.

Algorithm 1 Compressed computation of the distance between vertices x and y.

1: p, dist← x, 0
2: while p and y are not in the same block do
3: q, d(p, q)← compressed9in9block9jump(p)
4: if q is adjacent to y then
5: return dist + d(p, q) + 1
6: p, dist← parent(q), dist + d(p, q) + 1
7: if p = q (i.e. q = parent(q)) then
8: return unreachable
9: if p is adjacent to y then

10: return dist + 1
11: q, d(p, q), d(p, y)← compressed9in9block9jump(p, y)
12: if ly < lq then
13: if parent(q) is adjacent to y then
14: return dist + d(p, q) + 1
15: else
16: return unreachable
17: return dist + d(p, y)

To show that this algorithm is correct, first we note that the blocks we visit is (weakly)
monotonic. That is, at each jump, the block number never increases. Hence after each cycle
of compressed9in9block9jump and jump the block number always decreases. This can be
seen as by definition, for any x, parent(x) has a smaller left endpoint, and as our blocks are
obtained by sorting the left endpoints, it cannot be in a larger numbered block.

Proof. (Correctness of Algorithm 1) Let s1 > s2 > s3 . . . be the sequence of block num-
bers in our jump sequence. Let pi be the first vertex in our path of block si and qi =
compressed9in9block9jump(pi) be the last vertex of block si. Let t be the block number
of y. We have two cases: If si > t > si+1 for some i, then either qi is adjacent to y or pi+1
is necessarily adjacent to y, the first we check on line 4, the second on line 9. The edge
case here is if si > t for all i, then at the end qi would have no parent (which we defined
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as parent(qi) = qi) as it is the end of its component, at which point we return that it is
unreachable (on line 7-8). If t = si for some i, then once we hit pi, the while loop ends and
we compute the remaining distance within the block. If qi, y are in the same block with
lqi ≤ ly, then the distance computation between pi and y use only in-block jumps and thus is
correct (line 17). Otherwise, if lqi

> ly, then we have the same situation as above. If it has a
parent, then the parent must be adjacent to y (line 13-14). If it does not, then y cannot be
reached (line 16). ◀

Given this, the time complexity of the distance algorithm is upper bounded by the
time complexity of compressed9in9block9jump and parent multiplied by O( n

S(n) ), as each
operation is called at most O( n

S(n) ) (the number of blocks) times.

5.2 Data Structures for Analyzing Jumps in Block
Now, we will discuss how to implement the compressed9in9block9jump subroutine after
some preprocessing of each block. For each block Bi, we construct the distance tree, Ti

(which may be a forest) of the interval graph Gi induced by the intervals in Bi. We
precompute the depth, depth(Ti, x), of each node x in Ti and also preprocess Ti using the
approach of Bender and Farach-Colton [6] to provide constant-time support for the level
ancestor operator, anc(Ti, x, d), which, given a node x in Ti, returns the ancestor of x at
depth d of Ti. The preprocessing time is O(|Bi|), and Ti uses O(|Bi|) words of space after
preprocessing. By Lemma 3, depth and anc are sufficient to compute in constant time the
distance, dist(Gi, x, y), of two vertices x and y in Gi or determine that there is no path
between them (i.e. when the two vertices belong to different trees in the forest). We will
also store all the intervals of Bi using the left endpoint as keys in a red-black tree.

We propose the following compressed9in9block9jump algorithm (Algorithm 2).

Algorithm 2 compressed9in9block9jump(x, optional: y).

1: if y exists then
2: return dist(Gi, x, y) and also perform the below steps
3: Compute Llimit(i)
4: Compute vlimit(i)
5: if Llimit(i) ≥ x then
6: return x, 0 as x jumps out of block already
7: Apply Lemma 3 to obtain z (ui in Lemma 3) the last node before vlimit(i) on the path

between x and vlimit(i) - or unreachable if a path cannot be found (i.e. they are in
different subtrees).

8: if Line 7 is unreachable then
9: return anc(Ti, x, 0), depth(x)

10: if lz ≤ Llimit then
11: return z, depthTi

(x)− depthTi
(z)

12: else
13: return parentTi

(z), depthTi
(x)− depthTi

(z) + 1

Define Llimit(i) = max{rw | lw < min{lv | v ∈ Bi}} and, if Llimit(i) < min{lv | v ∈ Bi}, we
set it as −∞ for convenience. This has the property that, for any v ∈ Bi with lv < Llimit(i),
jump(v) is out-of-block as w (the interval achieving the maximum value in the definition
of Llimit(i)) is a candidate for parent(v) and is out-of-block. Conversely, jump(v) for any
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v with lv > Llimit(i) is in-block since any out of block jump from v would move Llimit(i)
to its right. Let vlimit(i) = arg max{v∈Bi|lv<Llimit(i)} lv be the last out-of-block jump vertex,
computed by searching for Llimit(i) over the left endpoints of the intervals in the block.

We may compute Llimit(i) by descending the global interval tree. First search for the
value min{lv | v ∈ Bi} to obtain a path and a set of subtrees as right children of nodes
on the path - these are all the intervals with right endpoint greater than min{lv | v ∈ Bi}.
For each subtree and node on the path (in reverse in-order: starting with the subtree/node
containing the interval with the largest right endpoint), we check if the minimal left endpoint
in the subtree (or the left endpoint of the interval for a node on the path) is less than
min{lv | v ∈ Bi}. If not, then we move on to the next subtree or node on the path. If so we
return this interval for a node, and for a subtree we traverse it: for any node, if the right
children’s minimal left endpoint is less than min{lv | v ∈ Bi}, we move to it. Otherwise, we
check the current node’s interval and return it if its left endpoint is less than min{lv | v ∈ Bi}.
If not, we move to the left child. If at the end, none of the subtrees nor nodes have a left
endpoint smaller than min{lv | v ∈ Bi}, we return −∞.

To find the first vertex with an out-of-block jump we compute Llimit(i) and vlimit(i).
Then we apply dist(vlimit(i), x) as in Lemma 3. Since vlimit(i) is the boundary between the
in-block jumps and out-of-block jumps, The penultimate vertex on the path to vlimit(i) (i.e.
ui in Lemma 3) will also be on the boundary between being in-block and out-of-block (i.e.
either it is the first out-of-block jump or it is the last in-block jump, and we check which by
its relative order with vlimit(i)).

Correctness of compressed9in9block9jump. For computing the distance between x and
y in the block, we call dist(Gi, x, y) directly, which has been analyzed in Lemma 3 as a
constant time operation with the constant-time support for depth and anc in Ti.

Furthermore, we want the number of jumps before we reach past vlimit(i). If x and
vlimit(i) are in different trees in the forest Ti, then either x jumps out of block already, or
we cannot reach vlimit(i) via in-block jumps starting from x and the sequence of jumps ends
at the root of the tree containing x. If they are in the same tree, we compute the path from
x to vlimit(i) and find the penultimate node on the path xd (i.e. ui in Lemma 3). If xd

jumps out of block, then xd−1 cannot, since otherwise it would also be adjacent to vlimit(i).
Similarly, if xd does not jump out of block, then, as parent(xd) ≤ vlimit(i) (vlimit(i) is a
candidate for the parent of xd), parent(xd) must jump out of block. ◀

The query time of compressed9in9block9jump is O(lg n) since, all steps taken, such
as the computation of Llimit(i) and parent, are O(lg n) time. As the time complexity of
the distance algorithm is the time complexity of compressed9in9block9jump and parent
multiplied by O( n

S(n) ), Algorithm 1 uses O(n lg n/S(n)) time to answer a distance query.

5.3 Maintaining Data Structure under Update Operations
Update operations include vertex (interval) insertions and deletions. For any update, we
have to maintain the following structures:
1. The global data structure of parent computation (i.e. the global interval tree).
2. The local parent structure of each block (i.e Ti for each block Bi).
3. The block structure of the whole graph.

As discussed the global interval tree can be maintained in O(lg n) time for each update.
This part is independent of the block structure. As the structure for each local block only
uses the intervals of that block, for each update, we need only update the structures for the
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block containing the inserted or deleted interval. Since the update will change the interval
set of this block, we rebuild the local structures in O(S(n)) time. Thus overall each update
has complexity O(S(n) + lg n).

Note that we assume the block size stays O(S(n)) for the previous analysis. However, the
block size will change whenever an update occurs in it. In the worst case, all updates would
occur in the same block, and thus we must be able to maintain our block sizes to be Θ(S(n)).
Moreover, the total number of intervals n will also change, and thus S(n) will also change.
The efficiency may not be guaranteed if the total number of intervals no longer correlates
with our block size. Therefore, we use two processes, Split and Rebuild, to maintain block
sizes of Θ(S(n)). In general, Split happens whenever a block’s size is too large, which might
degenerate the complexity of compressed9in9block9jump. A Rebuild will occur after a
certain number of updates in order to control the number of blocks and ensure that the block
size corresponds to the current S(n) value.

Split: The key part of the analysis is that we assume the block size is O(S(n)) all the time.
The Split process is for maintaining this property. After any insert, if the size of the block
containing the new vertex is 2S(n), we will split the block into two blocks, and each block
has S(n) intervals sorted by left endpoints. As we need to rebuild two blocks of size S(n),
the time needed is O(S(n)). Finally, we note that since every block begins with S(n) vertices
and has S(n) vertices after a split, at least S(n) inserts must occur in a block to split it.

Rebuild: This process denotes a complete rebuilding of the whole block structures, including
block dividing and all local preprocessing of blocks. Since the cost of building the structure
for each block is linear, the total cost is O(n). The motivation of this operation comes from
two causes. Firstly, when the number of blocks increases greatly, the compressed distance
computing, which is dominated by the number of blocks, will degenerate. Secondly, denoting
the number of intervals in the last Rebuild as n′, if n′ differs greatly from n, S(n) may also
be different enough from S(n′), so that our complexity will not be O(n lg n/S(n)) per query
or O(S(n) + lg n) per update (corresponding to the current S(n)). Therefore, we trigger a
Rebuild after every n′

2 updates. After all n′

2 updates, the current number of intervals n stays
within [ n′

2 , 3n′

2 ], and at most n′

2S(n′) blocks are created or destroyed. To see this, to destroy
a block requires S(n) deletions and to add a block also needs S(n) insertions to trigger a
Split. Thus the number of blocks remains Θ( n′

S(n′) ) = Θ( n
S(n) ). Since S(n) is a function

that satisfies S(n) = O(n), the complexity of all these n′ updates and queries in between
stays the same corresponding to the previous S(n′).

To deamortize, whenever we Rebuild, we create a new structure over the next n
4 = Θ(n′)

updates containing the contents of the original structure (using the new S(n) as our block
size) and the n

4 updates. While we rebuild, we also perform the updates in the old structure
and answer queries using the old structure. Thus for each of the next n

4 updates, we incur an
extra O(S(n′)) time per update. Upon the completion of the rebuild, we switch to using the
newly created structure. Lastly, we summarize every part and prove the main theorem here.

Proof of Theorem 19. For an interval graph G that the number of vertices is currently n,
in our algorithm, we only maintain a global structure to maintain parents and do local
preprocessing for answering depth and anc in each block. The parent data structure takes
O(n) space. The preprocessing of each of the Θ( n

S(n) ) blocks occupies O(T ) words (T denotes
the number of intervals in this block). The aggregation gives O(n) space in total. Since
S(n) = O(n), the interval graph is therefore represented in O(n) words of space. Distance

ISAAC 2023



18:16 Distance Queries over Dynamic Interval Graphs

queries takes O(n lg n/S(n)) time. For any update, we showed in Section 5.3, that it takes
O(S(n) + lg n) time. Moreover, the extra Split and Rebuild processes only guarantee the
cost is not degenerated and does not affect the complexity per operation. Hence, we have
our proof for the main theorem. ◀

6 A Lower Bound for Axis-Aligned Line Segments in 3D

In this section, we show that the problem of supporting distance queries over dynamic
intersection graphs of 3D axis-aligned line segments is conditionally hard by reducing from
the online matrix-vector multiplication problem.

▶ Definition 21 (Online Boolean Matrix Vector Multiplication (OMv)). Let M be a n × n

boolean matrix, and let v1, . . . , vn be a set of n × 1 vectors. We must compute and output
Mvi for each i before receiving the next vector.

The corresponding hardness conjecture is by Henzinger et al. [19]. For any constant ε > 0,
there is no O(n3−ε)-time algorithm that solves OMv with error probability at most 1/3.

▶ Theorem 22. If updates and distance queries over an intersection graph of 3D axis-aligned
line segments can be respectively supported in O(Q(n)) and O(T (n)) time, then OMv can be
solved in O(n2(T (n) + Q(n))) time. Thus, for any constant ε > 0, T (n) and Q(n) can not
both be O(n1−ε), unless the OMv conjecture is false. Here n is the length of the vectors. If n̂

is the number of vertices of the graph, then T (n̂) and Q(n̂) cannot both be O(n̂1/2−ε).

Proof. For each i ∈ [1, n], define a line segment Xi between end points (0, i, 0) and (2n, i, 0),
and a segment Yi between (i, 0, 1) and (i, 2n, 1). For each entry Mi,j = 1 , we create a line
segment Zj,i between (j, i, 0) and (j, i, 1). We will refer to the 3 types of line segments as
type X, type Y and type Z segments. Furthermore, we add the line segment Xn+1 whose
end points are (0, n + 1, 0) and (2n, n + 1, 0) to represent the incoming vector. When given a
vector vi, we add the following type Z segments. For each entry vi(j) = 1, we add a type Z

segment Zj,n+1 with end points (j, n + 1, 0) and (j, n + 1, 1). By construction, both type X

and type Y segments are only adjacent to type Z segments, and each type Z segment Zi,j is
only adjacent to two other segments Xj and Yi.

We now claim that Mvi(j) = 1 if and only if dist(Xj , Xn+1) = 4. First suppose
that dist(Xj , Xn+1) = 4. Then by construction, there exists an index w such that the
path is Xj , Zw,j , Yw, Zw,n+1, Xn+1. This implies that M(j, w) = 1 and vi(w) = 1, and
thus Mvi(j) = 1. Conversely, suppose that Mvi(j) = 1. Then there exists an index w

such that M(j, w) = vi(w) = 1. Thus Xj , Zw,j , Yw, Zw,n+1, Xn+1 is a path of length 4, so
dist(Xj , Xn+1) ≤ 4. To see that it cannot be strictly less than 4, we note that, since each
type Z segment is adjacent to a single type X segment and a single type Y segment, we may
view it as a subdivision of an edge between its two incident segments. Since segments of
types X (and Y ) are never adjacent to segments of the same type, if we contract vertices
representing type Z segments, we are left with a bipartite graph. If distG(Xj , Xn+1) < 4,
it must be 2 (by the subdivision of edges), but it cannot be 2 as that implies two type X

segments are adjacent.
Thus, the computation of a single Mvi operation is reduced to O(n) insertions and

deletions of segments of type Z, and n distance queries. Over all n operations, this incurs
O(n2) updates and O(n2) queries. Therefore, O(n2T (n) + n2Q(n)) cannot be O(n3−ε) for
any constant ε > 0 unless the OMv conjecture is false. Finally, we note that by construction,
the number of vertices in the graph is at most n̂ = O(n2) and the theorem follows. ◀



J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:17

References
1 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes with

affine stretch. In David Peleg, editor, Distributed Computing – 25th International Symposium,
DISC 2011, Rome, Italy, September 20-22, 2011. Proceedings, volume 6950 of Lecture Notes
in Computer Science, pages 404–415. Springer, 2011. doi:10.1007/978-3-642-24100-0_39.

2 Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct
encodings for families of interval graphs. Algorithmica, 83(3):776–794, 2021. doi:10.1007/
s00453-020-00710-w.

3 Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for
linear algebra on geometric graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 541–552. IEEE, 2020. doi:10.1109/FOCS46700.2020.00057.

4 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully-dynamic trees with top trees. ACM Transactions on Algorithms, 1,
December 2003. doi:10.1145/1103963.1103966.

5 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified
approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,
2001. doi:10.1145/502102.502107.

6 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

7 Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection graphs. In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages
21:1–21:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.21.

8 Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection
graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 1777–1805. SIAM, 2023. doi:10.1137/1.9781611977554.ch68.

9 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/jocg.v10i1a2.

10 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom., 10(2):3–20, 2019. doi:10.20382/jocg.v10i2a2.

11 Danny Z. Chen, D. T. Lee, R. Sridhar, and Chandra N. Sekharan. Solving the all-pair
shortest path query problem on interval and circular-arc graphs. Networks, 31(4):249–258,
1998. doi:10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO;2-D.

12 Jonathan B. Conroy and Csaba D. Tóth. Hop-spanners for geometric intersection graphs. In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages
30:1–30:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.30.

13 Christophe Crespelle. Fully dynamic representations of interval graphs. Theoretical Computer
Science, 759:14–49, 2019. doi:10.1016/j.tcs.2019.01.007.

14 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

15 Hicham El-Zein, Moshe Lewenstein, J Ian Munro, Venkatesh Raman, and Timothy M Chan.
On the succinct representation of equivalence classes. Algorithmica, 78:1020–1040, 2017.

16 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.

17 Cyril Gavoille and Christophe Paul. Optimal distance labeling for interval graphs and related
graph families. SIAM J. Discret. Math., 22(3):1239–1258, 2008. doi:10.1137/050635006.

ISAAC 2023

https://doi.org/10.1007/978-3-642-24100-0_39
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1109/FOCS46700.2020.00057
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1145/502102.502107
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.1137/1.9781611977554.ch68
https://doi.org/10.20382/jocg.v10i1a2
https://doi.org/10.20382/jocg.v10i2a2
https://doi.org/10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO;2-D
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://doi.org/10.1016/j.tcs.2019.01.007
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1137/050635006


18:18 Distance Queries over Dynamic Interval Graphs

18 Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Distance oracles for
interval graphs via breadth-first rank/select in succinct trees. In Yixin Cao, Siu-Wing Cheng,
and Minming Li, editors, 31st International Symposium on Algorithms and Computation,
ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181
of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.25.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, STOC ’15,
pages 21–30, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2746539.2746609.

20 Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 363–374. IEEE, 2021. doi:10.1109/FOCS52979.2021.00044.

21 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10–13, 2021, pages 2517–2537. SIAM, 2021. doi:
10.1137/1.9781611976465.149.

22 J. Ian Munro and Corwin Sinnamon. Time and space efficient representations of distributive
lattices. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 550–567. SIAM, 2018. doi:10.1137/1.9781611975031.36.

23 J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In Wen-Lian Hsu,
Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms
and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of
LIPIcs, pages 67:1–67:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
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