
A Framework for Succinct Labeled Ordinal
Trees over Large Alphabets⋆

Meng He1, J. Ian Munro2, and Gelin Zhou2

1 Faculty of Computer Science, Dalhousie University, Canada.
mhe@cs.dal.ca

2 David R. Cheriton School of Computer Science, University of Waterloo, Canada.
{imunro, g5zhou}@uwaterloo.ca

Abstract. We consider succinct representations of labeled ordinal trees
that support a rich set of operations. Our new representations support a
much broader collection of operations than previous work [10, 8, 1]. In our
approach, labels of nodes are stored in a preorder label sequence, which
can be compressed using any succinct index for strings that supports
rankα and selectα operations. In other words, we present a framework
for succinct representations of labeled ordinal trees that allows alphabets
to be large. This answers an open problem presented by Geary et al. [10].
We further extend our work and present the first succinct representation
of dynamic labeled ordinal trees that supports several label-based oper-
ations including finding the level ancestor with a given label.

1 Introduction

We address the issue of succinct representations of ordinal (or ordered) trees
with satellite data over a large alphabet. Much of this is motivated by the needs
of large text-dominated databases that store and manipulate XML documents,
which can be essentially modeled as ordinal trees in which each node is assigned
a tag drawn from a tag set.

Our representations support a much broader collection of operations than
previous work [10, 8, 1], particularly those operations that aim at XML-style doc-
ument retrieval, such as queries written in the XML path language (XPath). Our
data structures are succinct, occupying space close to the information-theoretic
lower bound, which are essential to systems and applications that deal with very
large data sets.

Our approach is based on “tree extraction”, that is, constructing subtrees
consisting of nodes with appropriate labels (and their parents). The basic idea
of tree extraction was introduced by He et al. [14, 15], where it was used to an-
swer queries that are generalizations of geometric queries such as range counting
from planar point sets to trees. Here we follow a different approach for a com-
pletely different class of operations that originate from text databases. Most of
these operations are not required in [14, 15]. In our data structures, an input

⋆ This work was supported by NSERC and the Canada Research Chairs Program.

tree is split according to labels of nodes, such that we can maintain structural
information and labels jointly in a space-efficiently way. Previous solutions to
the same problem are all based on different ideas [10, 8, 1].

In this paper, we consider the operations listed in Table 1, in which DFUDS
denotes depth-first unary degree sequence order as defined by Benoit et al. [3].
We list only the labeled versions of these operations. The unlabeled versions
simply include all nodes. In other words, the support for unlabeled versions can
be reduced to the support for labeled versions by setting the alphabet size to 1.
For simplicity, we refer to the labeled versions of operations as α-operations. We
call a node that has label α an α-node (hence α-children, α-ancestor, etc). In
addition, we define the α-rank of node x in a list to be the number of α-nodes
to the left of x in the list.

Operation Description

depthα(x) α-depth of x, i.e., number of α-nodes from x to the root
parentα(x) closest α-ancestor of x
level ancα(x, i) α-ancestor y of x satisfying depthα(x)− depthα(y) = i
degα(x) number of α-children of x
child rankα(x) α-rank of x in the list of children of parent(x)
child selectα(x, i) i-th α-child of x
nbdescα(x) number of α-nodes in the subtree rooted at x
pre rankα(x)/pre selectα(i) α-rank of x in preorder/i-th α-node in preorder
post rankα(x)/post selectα(i) α-rank of x in postorder/i-th α-node in postorder

heightα(x) α-height of x, i.e., maximum number of α-nodes from x to
its leaf descendant

LCAα(x, y) lowest common α-ancestor of nodes x and y
dfuds rankα(x)/dfuds selectα(i) α-rank of x in DFUDS order/i-th α-node in DFUDS order
leaf lmostα(x)/leaf rmostα(x) leftmost/rightmost α-leaf in the subtree rooted at x
leaf rankα(x) number of α-leaves to the left of x in preorder
leaf selectα(i) i-th α-leaf in preorder
nbleafα(x) number of α-leaves in the subtree rooted at node x

insertα(x) insert an α-node x as an internal node or a leaf
delete(x) delete non-root node x

Table 1. Operations considered in this paper. Here we give only the definitions of the
labeled versions of operations.

Geary et al. [10] presented data structures to support in constant time the
first group of α-operations in Table 1 and their unlabeled versions. The overall
space cost of their data structures is n(lg σ+2)+O(nσ lg lg lg n

lg lg n) bits, which is much

more than the information-theoretic lower bound of n(lg σ+2)−O(lgn) bits when
σ = Ω(lg lg n). Ferragina et al. [8] and Barbay et al. [1] designed data structures
for labeled trees that use space close to the information-theoretic lower bound,
but supporting a more restricted set of α-operations. Ferragina et al.’s [8] xbw-
based representation supports only child selectα(x, i) and degα(x)

1, while
Barbay et al.’s [1] data structure supports only pre rankα(x), pre selectα(i)
and nbdescα(x). These results are for static labeled trees; to the best of our
knowledge, there is no succinct data structure for dynamic labeled ordinal trees
with efficient query and update time.

1 It also supports SubPathSearch queries, which return the number of nodes whose
upward paths start with a given query string.

Our results for static and dynamic labeled ordinal trees are summarized in
Theorems 1 to 3. First, as a preliminary result, we improve the succinct repre-
sentation of labeled ordinal trees of Geary et al. [10]. As shown in Theorem 1, the
improved representation supports more operations while occupying less space,
where PLST is the preorder label sequence of T , and Hk is the k-th order empir-
ical entropy [16], which is bounded above by lg σ. However, this data structure
is succinct only if the size of alphabet is very small, i.e., σ = o(lg lg n).

deepestα and min depthα are auxiliary α-operations used in Section 3:
deepestα(i, j) returns a node (there could be a tie) with preorder rank in [i, j]
that has the maximum α-depth, and min depthα(i, j) returns an α-node with
preorder rank in [i, j] that has the minimum depth (i.e., is closest to the root).

Theorem 1. Let T be a static ordinal tree on n nodes, each having a label drawn
from an alphabet of size σ = o(lg lg n). Under the word RAM with word size w =
Ω(lgn), for any k = o(logσ n), there exists a data structure that encodes T using

n(Hk(PLST) + 2) + O(n(k lg σ+lg lg n)
logσ n) + O(nσ lg lg lg n

lg lg n) bits of space, supporting

the first two groups of α-operations in Table 1 and their unlabeled versions, plus
two additional α-operations deepestα and min depthα, in constant time.

Theorem 2 is the main result in this paper. To achieve this result, we present
a framework for succinct representations of labeled ordinal trees, in which an
α-operation is reduced to a constant number of well-supported operations on
simpler data structures such as bit vectors, preorder label sequences, and un-
labeled and 0/1-labeled ordinal trees, where a 0/1-labeled ordinal tree is an
ordinal tree over the alphabet {0, 1}. This creative reduction allows us to deal
with large alphabets, and to compress labels of nodes into entropy bounds. Thus
our framework answers an open problem proposed by Geary et al. [10].

Theorem 2. Let T be a static ordinal tree on n nodes, each having a label drawn
from an alphabet Σ of size σ. Under the word RAM with word size w = Ω(lgn),

(a) for σ = O(polylog(n)), T can be encoded using n(H0(PLST) + 9) + o(n)
bits of space to support the first two groups of α-operations in Table 1 in
constant time;

(b) for general Σ, T can be encoded using nH0(PLST) + O(n) bits of space to
support the first two groups of α-operations in Table 1 in O(lg lg σ) time;

(c) for general Σ and k = o(logσ n), T can be encoded using nHk(PLST) +
lg σ · o(n)+O(n lg σ

lg lg lg σ) bits to support the first two groups of α-operations in

Table 1 in O(lg lg σ(lg lg lg σ)2) time.

In addition, these data structures support the unlabeled versions of these α-
operations in constant time.

Theorem 3 further extends our work to the dynamic case. Here we only list
the result with the fastest query time. One can make use of the dynamic strings
in [12, 17] when worst-case update time is desired.

Theorem 3. Let T be a dynamic ordinal tree on n nodes, each having a la-
bel drawn from an alphabet Σ of size σ. Under the word RAM with word size

w = Ω(lg n), T can be represented using n(H0(PLST)+5)+O(n(1+H0(PLST))
lg1−ϵ n

+

σ(lg σ + lg1+ϵ n)) bits of space, for any constant 0 < ϵ < 1, such that depthα,
parentα, nbdescα, LCAα, pre rankα, pre selectα, post rankα, post selectα,

and the leaf α-operations can be supported in O(lgn
lg lg n) time, level ancα can be

supported in O(lgn) time, and insertα and delete can be supported in O(lg n
lg lg n)

amortized time.

This rest of this paper is organized as follows. In Section 2 we review the
data structures and the techniques used in this paper. In Section 3 we describe
the construction of our data structures for static trees over large alphabets, i.e.,
the proof of Theorem 2. In Section 4, we sketch our data structures for dynamic
trees, i.e., the proof of Theorem 3. Due to space limitations, we omit the proof
of Theorem 1.

2 Preliminaries

2.1 Bit Vectors, Strings and the Related Operations

In this subsection, we review bit vectors, strings, and the operations performed
on them. Bit vector plays a central role in many succinct data structures. For a
bit vector B[1..n], rank0(i) and rank1(i) return the numbers of 0-bits and 1-bits
in B[1..i], respectively. select0(i) and select1(i) return the positions of the
i-th 0-bit and the i-th 1-bit in B, respectively. Bit vectors can be generalized to
strings, in which characters are drawn from an alphabet Σ of size σ. For a string
S[1..n] and α ∈ Σ, rankα(i) returns the number of α’s in S[1..i], and selectα(i)
returns the position of the i-th α. Another operation studied by researchers is
the random access to any substring of length O(logσ n).

2.2 Tree Extraction

Tree extraction [14, 15], based on the deletion operation of tree edit distance [4],
is a technique used to decompose a tree by deleting nodes, moving their children
into their positions in the sibling order. A crucial fact is that the ancestor-
descendant and preorder/postorder relationships between the remaining nodes
are preserved. To support the α-operations related to children, we develop a new
space-efficient approach based on tree extraction that is very different from the
strategy used in [14, 15], so that the parent-child relationship is preserved.

Let V (T) be the set of nodes in T . For any set X ⊆ V (T) that contains the
root of T , we denote by TX the ordinal tree obtained by deleting all the nodes
that are not in X from T , where the nodes are deleted in level order. TX is
called the X-extraction of T . It is easy to see that there is a natural one-to-one
correspondence between the nodes in X and the nodes in TX . Lemma 1 captures
an essential property of tree extraction. The proof is omitted here.

Lemma 1. For any two sets of nodes X,X ′ ⊆ V (T), the nodes in X ∩X ′ have
the same relative positions in the preorder and the postorder traversal sequences
of TX and TX′ .

3 Static Trees over Large Alphabets : Theorem 2

For each possible subscript α ∈ Σ, we could support the first two groups of
operations in Table 1 by relabeling T into a 0/1-labeled tree and indexing the
relabeled tree, where a node is relabeled 1 if and only if it is an α-node in T .
However, we would have to store σ trees that have nσ nodes in total if we simply
apply this idea for each α ∈ Σ, which we could not afford.

Instead of storing all the n nodes for each α ∈ Σ, we store only the nodes that
are closely relevant to α, i.e., the α-nodes and their parents, and the ancestor-
descendant relationship between these nodes. We apply tree extraction to sum-
marize the information, where the tree constructed for label α is denoted by Tα.

For α ∈ Σ, we create a new root rα, and make the original root of T be the
only child of rα. The structure of Tα is obtained by computing the Xα-extraction
of the augmented tree rooted at rα, where Xα is the union of rα, the α-nodes
in T , and the parents of the α-nodes. The natural one-to-one mapping between
the nodes in Xα and Tα determines the labels of the nodes in Tα. The root of
Tα is always labeled 0. A non-root node in Tα is labeled 1 if its corresponding
node in T is an α-node, and 0 otherwise. Thus, the number of 1-nodes in Tα is
equal to the number of α-nodes in T . Let nα denote both values.

To clarify notation, the nodes in T are denoted by lowercase letters, while
the nodes in Tα are denoted by lowercase letters plus prime symbols. To illus-
trate the one-to-one mapping, we denote by x′ a node in Tα if and only if its
corresponding node in T is denoted by x. The root of Tα, which corresponds to
rα, is denoted by r′α. We show how to convert the corresponding nodes in T and
Tα using the preorder label sequence of T in Subsection 3.2.

Since the structure of Tα is different from T , we need also store the structure
of T and the labels of the nodes in T so that we can perform conversions between
the nodes in T and Tα. In addition, to support the leaf α-operations, we store
for each α ∈ Σ a bit vector Lα[1..nα] in which the i-th bit is one if and only if
the i-th 1-node in preorder of Tα corresponds to a leaf in T .

Following this approach, our succinct representation consists of four compo-
nents: (a) the structure of T ; (b) PLST , the preorder label sequence of T ; (c)
a 0/1-labeled tree Tα for each α ∈ Σ; (d) and a bit vector Lα for each α ∈ Σ.
The unlabeled versions of the first two groups of operations in Table 1 are di-
rectly supported by the data structure that maintains the structure of T . For
α-operations, our basic idea is to reduce an α-operation to a constant number of
well-supported operations on T , PLST , Tα’s, and Lα’s, for which we summarize
the previous work in Subsection 3.5. In the following subsections, we describe our
algorithms in terms of T , PLST , Tα’s and Lα’s. For each operation, we specify
the component on which it performs as the first parameter. If such a component
is not specified in context, then this operation is performed on T .

3.1 pre rankα, pre selectα and nbdescα

By the definitions, we have pre rankα(x) = rankα(PLST , pre rank(x)) and
pre selectα(i) = pre select(selectα(PLST , i)). We make use of them to

find the α-predecessor and the α-successor of node x, which are defined to be
the last α-node preceding x and the first α-node succeeding x in preorder (both
can be x itself).

We support nbdescα(x) in the same way as [1]. The descendants of x form
a consecutive substring in PLST , which starts at index pre rank(x) and ends
at index pre rank(x) + nbdesc(x)− 1. We can compute the number of α-nodes
lying in this range using rankα on PLST . Providing that x has an α-descendant,
we can further compute the first and the last α-descendant of node x in pre-
order, which are the α-successor of x and the α-predecessor of the node that has
preorder rank pre rank(x) + nbdesc(x)− 1, respectively. Let these α-nodes be
u and v. For simplicity, we call [u, v] the α-boundary of the subtree rooted at x.

3.2 Conversion between the nodes in T and Tα

The conversion between node x in T and the corresponding node x′ in Tα

plays an important role in supporting α-operations. If x is an α-node, then
x′ must exist in Tα. By Lemma 1, the conversion can be done using x′ =
pre select1(Tα, rankα(PLST , x)), and x = pre selectα(pre rank1(Tα, x

′)).
The other case in which x is not an α-node is more complex, since the node

in Tα that corresponds to x may or may not exist. By the definition of Tα, x
must have an α-child if x′ exists in Tα. In addition, every α-child of x in T must
appear as a 1-child of x′ in Tα. Using this, we can compute x from x′: We first
find the first 1-child of x′, say y′ = child select1(Tα, x

′, 1), and compute node
y in T that corresponds to y′ using the equation in the first paragraph. Then x
must be the parent of y in T .

Algorithm 1: Compute x′ when x is not an α-node

1 if x has no α-descendant then return NULL;
2 [u, v]← the α-boundary of the subtree rooted at x;
3 if x ̸= LCA(u, v) then
4 y ← the child of x that is an ancestor of LCA(u, v);
5 if y is an α-node then return parent(Tα, y

′);
6 else return NULL;

7 else
8 w′ = LCA(Tα, u

′, v′);
9 if w′ corresponds to x then return w′;

10 else return NULL;

Algorithm 1 shows how to compute x′ from x when x is not an α-node, and
it returns NULL if no such x′ exists. We first verify whether x has at least one
α-descendant in line 1 using nbdescα. x

′ does not exist in Tα if x has no α-
descendant. Otherwise, we compute the α-boundary, [u, v], of the subtree rooted
at x in line 2. We have two cases, depending on whether x is the lowest common
ancestor of u and v. If x ̸= LCA(u, v), then x must have a child y that is a
common ancestor of u and v. All α-descendants of x must also be descendants
of y, or an α-descendant of x may precede u or succeed v in preorder. Thus,

we need only check if y is an α-node, as shown in lines 5 and 6. Now suppose
x = LCA(u, v). We claim that x′ must be the lowest common ancestor of u′ and
v′ if x′ exists in Tα. Thus, we need only compute w′ = LCA(Tα, u

′, v′) in line 8,
and verify if w′ corresponds to x in lines 9 and 10.

3.3 parentα, level ancα, LCAα and depthα

We first show how to compute parentα(x) in Algorithm 2. The case in which x
is an α-node is solved in lines 2 to 3. We simply compute y′ = parent1(Tα, x

′)
and return y. Suppose x is not an α-node. We compute u, the α-predecessor of x
in preorder, in line 4. We claim that x has no α-parent if x has no α-predecessor
in preorder, since the ancestors of x precede x in preorder. If such u exists, we
take a look at v = LCA(u, x) in line 6. We further claim that there is no α-
node on the path between v and x (excluding v), because u would not be the
α-predecessor if such an α-node exists. In addition, we know that v has at least
one α-descendant because of the existence of u. We return v if v is an α-node.
Otherwise, we compute the first α-descendant, w, of v. It is clear that there is
no α-node on the path between w and v (excluding w). Thus, the α-parent of
w, being computed in line 9, must be the α-parent of both v and x.

Algorithm 2: parentα(x)

1 if x is an α-node then
2 y′ ← parent1(Tα, x

′);
3 return y;

4 u← the α-predecessor of x in preorder of T ;
5 if x has no α-predecessor then return NULL;
6 v ← LCA(u, x);
7 if v is an α-node then return v;
8 w ← the first α-descendant of v in preorder ;
9 y′ ← parent1(Tα, w

′);
10 return y;

Then we make use of parentα(x) to support level ancα(x, i): We first com-
pute y = parentα(x), where y must be an α-node or NULL. We return y if
y = NULL or i = 1. Otherwise, we compute z′ = level anc1(Tα, y

′, i − 1) and
return z.

LCAα and depthα can also be easily supported using parentα. LCAα(x, y) is
equal to LCA(x, y) if the lowest common ancestor of x and y is an α-node; oth-
erwise it is equal to parentα(LCA(x, y)). To compute depthα(x), let y = x if x
is an α-node, or y = parentα(x) if x is not. It is then clear that depthα(x) =
depthα(y) = depth1(Tα, y

′), since each α-ancestor of y in T corresponds to a
1-ancestor of y′ in Tα.

3.4 child rankα, child selectα and degα

We can support child selectα(x, i) and degα(x) using the techniques shown
in Subsection 3.2. We first try to find x′, the node in Tα that corresponds to

x. If such x′ does not exist, then x must have no α-child. Thus, we return
NULL for child selectα(x, i) and return 0 for degα(x). Otherwise, we compute
y′ = child select1(Tα, x

′, i) and return y for child selectα(x, i), as well as
return deg1(Tα, x

′) for degα(x).

Algorithm 3: child rankα(x)

1 if x is an α-node then return child rank1(Tα, x
′);

2 u← parent(x);
3 if u has no α-child then return 0 ;
4 v ← the α-predecessor of x in preorder ;
5 if x has no α-predecessor or pre rank(v) ≤ pre rank(u) then return 0 ;
6 compute u′ and v′, the nodes in Tα that correspond to u and v;
7 w′ ← the child of u′ that is an ancestor of v′;
8 return child rank1(Tα, w

′);

The algorithm to support child rankα(x) is shown as Algorithm 3. The case
in which x is an α-node is easy to handle, as shown in line 1. We consider only
the case in which the label of x is not α. In lines 2 to 3, we compute node u
that is the parent of x, and verify if u has an α-child using degα. We return 0 if
u has no α-child. Otherwise, we compute the α-predecessor, v, of x in preorder.
If such v does not exist, or v is not a proper descendant of u, then x has no
α-sibling preceding it and we can return 0, since an sibling preceding x occurs
before x in preorder. Suppose v exists as a proper descendant of u. We can find
u′ and v′, the nodes in Tα that correspond to u and v, since both u and v are
α-nodes. In addition, we find the child, w′, of u′ that is an ancestor of v′. We
claim that each α-child of u in T that precedes x corresponds to a 1-child of u′

in Tα that precedes w′. Otherwise, v would not be the α-predecessor. Finally,
we return child rank1(Tα, w

′) as the answer.

3.5 Completing the Proof of Theorem 2

Due to space limitations, the support for the other static α-operations is omitted
here. In the current state, we have σ 0/1-labeled trees and σ bit vectors. To
reduce redundancy, we merge Tα’s into a single tree T , and merge Lα’s into a
single bit vector L. We list the characters in Σ as α1, · · · , ασ. Initially, T contains
a root node R only, on which the label is 0. Then, for i = 1 to σ, we append r′αi

,
the root of Tαi , to the list of children of R. Let nα be the number of α-nodes in
T . For α ∈ Σ, Tα has at most 2nα + 1 nodes, since each α-node adds a 1-node
and at most one 0-node into Tα. In addition, the Tα that corresponds to the
label of the root of T has at most 2nα nodes, since the root does not add an
0-node to Tα. Hence, T has at most 2n+σ nodes in total. By the construction of
T , the preorder/postorder traversal sequence of Tα occurs as a substring in the
preorder/postorder traversal sequence of T . Also, the DFUDS traversal sequence
of Tα with r′α removed occurs as a substring in the DFUDS traversal sequence of
T .

In addition, we append Lαi to L, which is initially empty, for i = 1 to σ. The

length of L is clearly n. It is not hard to verify that the reductions described in
early subsections can still be performed on the merged tree T and the merged
bit vector L. The following lemma generalizes the discussion.

Lemma 2. Let T be an ordinal tree on n nodes, each having a label drawn from
an alphabet Σ of size σ. Suppose that there exist

– a data structure D1 that represents a unlabeled ordinal tree on n nodes using
S1(n) bits and supports the unlabeled versions of the first two groups of α-
operations in Table 1;

– a data structure D2 that represents a string S using S2(S) bits and supports
rankα and selectα for α ∈ Σ;

– a data structure D3 that represents a 0/1-labeled ordinal tree on n nodes
using S3(n) bits and supports the first two groups of α-operations in Table 1
and their unlabeled versions, plus two additional α-operations deepestα and
min depthα;

– and a data structure D4 that represents a bit vector of length n using S4(n)
bits and supports rankα and selectα for α ∈ {0, 1}.

Then there exists a data structure that encodes T using S1(n) + S2(PLST) +
S3(2n+ σ) + S4(n) bits of space, supporting the first two groups of α-operations
in Table 1 and their unlabeled versions using a constant number of operations
mentioned above on D1, D2, D3 and D4.

Proof. The unlabeled versions are supported by D1 directly. The reductions for
the α-operations are shown in Subsections 3.1 to 3.4, and more details are omit-
ted due to space limitations. Here we consider the space cost only. We maintain
the structure of T , PLST , T , and L using D1, D2, D3, and D4, respectively. The
overall space cost is S1(n) + S2(PLST) + S3(2n+ σ) + S4(n) bits. ⊓⊔

With the following three lemmas the proof of Theorem 2 follows.

Lemma 3 ([9, 11, 2]). Let S be a string of length n over an alphabet of size σ.
Under the word RAM with word size w = Ω(lgn),

(a) for σ = O(polylog(n)), S can be represented using nH0(S) + o(n) bits of
space to support rankα and selectα in O(1) time;

(b) for general Σ, S can be represented using nH0(S) + O(n) bits of space to
support rankα and selectα in O(lg lg σ) time;

(c) for any k = o(logσ n), S can be represented using nHk(S) + lg σ · o(n) +
O(n lg σ

lg lg lg σ) bits to support rankα and selectα in O(lg lg σ(lg lg lg σ)2) time.

Lemma 4 ([5]). A bit vector of length n can be represented in n + o(n) bits to
support rankα and selectα in constant time, for α ∈ {0, 1}.

Lemma 5 ([13, 6, 7, 17]). Let T be an ordinal tree on n nodes. T can be rep-
resented using 2n + o(n) bits such that the unlabeled versions of the first two
groups of α-operations in Table 1 can be supported in constant time.

Proof (Theorem 2). Applying Lemma 5, one of Lemma 3 (a,b,c), Theorem 1,
and Lemma 4 for D1, D2, D3, and D4, respectively, we obtain the conclusion. ⊓⊔

4 Dynamic Trees that Support Level-Ancestor
Operations : Theorem 3

Our succinct representation of dynamic trees also consists of four components:
the structure of T , PLST , Tα’s and Lα’s. The construction of Tα is different in
this scenario in order to facilitate update operations. For each α ∈ Σ, we still
add a new root rα to T , and compute the Xα-extraction of the augmented tree
rooted at rα. However, Xα contains rα and the α-nodes in T only, and we do
not assign labels to the nodes in Tα. Finally, we still merge Tα’s into a single
tree T , and merge Lα’s into a single bit vector L. T has exactly n+σ+1 nodes.
We omit the details of supporting operations due to space constraints.

References

1. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. Theor. Comput. Sci.
387(3), 284–297 (2007)

2. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337(1-3), 217–239 (2005)

5. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended ab-
stract). In: SODA. pp. 383–391 (1996)

6. Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of
trees. In: SWAT. pp. 173–184 (2008)

7. Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In:
ICALP (1). pp. 451–462 (2009)

8. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and in-
dexing labeled trees, with applications. J. ACM 57(1) (2009)

9. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

10. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

11. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: SODA. pp. 368–373 (2006)

12. He, M., Munro, J.I.: Succinct representations of dynamic strings. In: SPIRE. pp.
334–346 (2010)

13. He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on tree covering. In:
ICALP. pp. 509–520 (2007)

14. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: ISAAC. pp.
140–149 (2011)

15. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: ESA.
pp. 575–586 (2012)

16. Manzini, G.: An analysis of the burrows-wheeler transform. J. ACM 48(3), 407–430
(2001)

17. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA. pp. 134–149
(2010)

