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Abstract. Botnets represent one of the most significant threats against
cyber security. They employ different techniques, topologies and commu-
nication protocols in different stages of their lifecycle. Hence, identifying
botnets have become very challenging specifically given that they can
upgrade their methodology at any time. In this work, we investigate
four different botnet detection approaches based on the technique used
and type of data employed. Two of them are public rule based systems
(BotHunter and Snort) and the other two are data mining based tech-
niques with different feature extraction methods (packet payload based
and traffic flow based). The performance of these systems range from 0%
to 100% on the five publicly available botnet data sets employed in this
work. We discuss the evaluation results for these different systems, their
features and the models learned by the data mining based techniques.
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1 Introduction

A network of compromised hosts (aka bots) that are remotely controlled by a
master (aka botmaster) is called a botnet. These infected bots perform various
malicious tasks such as spreading spam, conducting Distributed Denial of Service
(DDOS) attacks or identity thefts to name a few. Hence, with the high reported
infection rate, the vast range of illegal activities and powerful comebacks, botnets
are one of the main threats against the cyber security.

Given that botnets use automatic update mechanisms, automatic pattern dis-
covery could potentially enable security systems to adapt to such changes in the
botnet evolution. The clustering and classification techniques that are used for
traffic analysis require the network traffic to be represented in a meaningful way
to enable pattern recognition. Thus, an important component for such systems
is extracting the features (attributes) from the network traffic. These features
can be extracted per packet (or in some cases specific packets) or per flow! basis.

! Flow is defined as a logical equivalent for a call or a connection in association with
a user specified group of elements [13]. The most common way to identify a traffic
flow is to use a combination of five properties (aka 5-tuple) from the packet header,
namely source/destination IP addresses and port numbers as well as the protocol.
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Network packets include two main parts: (i) Packet header, which includes the
control information of the protocols used on the network, and (ii) Packet payload,
which includes the application information used on the network. The per-packet
analysis can use any of these two parts while per-flow analysis only utilize net-
work packet headers. Hence, in this work, we evaluate both: Packet payload
based and Flow based approaches. Since recent botnets tend to use encryption
to hide their information and methodology from the detection systems, clearly
the flow-based detection systems have advantage over the packet-based systems
given that they can be applied to encrypted traffic (where the payload is opaque).
However, we aim to understand how much could be gained (loss) in terms of per-
formance when a system employs payload analysis (flow analysis). To this end,
we employ not only data mining techniques but also publicly available intru-
sion/botnet detection systems to measure performance for both the payload and
the traffic flow analysis.

In this case, we evaluate Snort and BotHunter as the rule based detection sys-
tems. Snort is a popular intrusion detection and prevention system (IDS/IPS).
It is open source and therefore its rule set can be customized easily. BotHunter,
which is another publicly available system, utilizes the Snort sensors and cus-
tomizes Snort rule set to specifically detect botnets. In summary, in this work, we
have evaluated Snort, BotHunter, a data mining based packet header/payload
analysis system and a data mining based traffic flow analysis system as the four
different approaches for botnet detection. In the case of data mining based ap-
proaches, we have employed four different machine learning algorithms, namely
C4.5 decision trees, Support Vector Machines (SVM), K- Nearest Neighbour
(KNN) and Bayesian Networks, for analyzing (i) traffic flows only and (ii) all
the packets including the payload. Last but not the least, we have evaluated all
of the approaches on five different publicly available botnet data sets coming
from different resources to evaluate how well these different approaches could
generalize.

The rest of the paper is structured as follows: Related works on botnet traffic
analysis are summarized in section 2. The evaluated approaches and the method-
ology are discussed in Section 3. Evaluation and results are provided in section 4.
Finally, conclusions are drawn and the future work is discussed in section 5.

2 Background and Related Work

Unlike first botnets that had a list of exploits to launch on targets where all
the commands were set at the time of infection, today a typical advanced bot
uses five stages to create and maintain a botnet [10]. The first stage is the
initial infection stage. In this stage, attacker infects the victim using several
exploitation techniques to find its existing vulnerabilities. In the second stage,
secondary injection, the shell-code is executed on the infected victim to fetch
the image of the bot binary. Bot binary then installs itself on the victim. At
this time, the infected machine is completely converted into a bot. The next
stage is the connection stage. In this stage, the bot binary establishes the C&C
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channel to be used by the bot master. Once the connection is established then the
malicious C&C stage, the fourth stage, starts. This is when the master sends the
commands to the botnet, short for bot network. Finally, when the master needs
to update the bots for one reason or another, the update and the maintenance
stage starts.

Since botnets have employed different protocols, topologies and techniques
to implement the stages of their lifecycle while avoiding detection, naturally an
arms race has started between the botnets and the detection systems. Thus,
detection methods can be categorized based on the data being analyzed and the
approach employed. From the data perspective, while some techniques focus on
malware source/binary analysis, others use host and/or network based data. On
the other hand, rule (signature) based traffic analysis and anomaly detection are
some of the highly employed data analysis approaches. For the rule based as well
as anomaly based approaches, the rules or anomalies can be obtained via data
analysis performed by a human expert or can be automatically generated via a
support system using data mining algorithms to assist the human expert.

Gu et al. [8] developed a system called BotHunter, which correlates Snort
IDS alerts to detect botnets. The correlation process is based on the fact that all
botnets share a common set of actions as a part of their lifecycle. This technique
works the best when an infected bot has passed all the phases of its lifecycle when
being monitored by BotHunter. Payload analysis is a part of the detection pro-
cedure in this system. Wurzinger et al. proposed an approach to detect botnets
based on the correlation of commands and responses in the monitored network
traces [18]. To identify traffic responses, they located the corresponding com-
mands in the preceding traffic. Then, using these command and response pairs,
the detection model was built focusing on IRC, HTTP and P2P botnets. Traffic
features such as the number of non-ASCII bytes in the payload were analyzed
to characterize bot behavior. Perdisci et al. proposed a network-level malware
clustering system focusing on HTTP-based malwares [12]. The similarity met-
rics among HTTP traffic traces were defined and used to develop the malware
clustering system where the clusters resulted in the signatures. Specifically, to
decrease the computational cost and obtain high quality clusters, multi-level
clustering was employed. Celik et al. proposed a flow-based botnet C&C activ-
ity detection system using only headers of traffic packets [7]. They investigated
the effect of calibration of time-based flow features. They employed techniques
such as C4.5, Naive-Bayes and logistic regression. Wang et al. proposed a fuzzy
pattern recognition approach to detect HTTP and IRC botnets’ behavioral pat-
terns [16]. It is known that botnets query several domain names in a given period
of time to identify their C&C server, and then form a TCP connection with the
C&C server. So, Wang analyzed the features of DNS queries (such as the num-
ber of failed DNS responses) and TCP flows to detect malicious domain names
and IP addresses. Zhao et al. investigated a botnet detection system based on
flow intervals [20]. Flow features of traffic packets were utilized with several ML
algorithms focusing on P2P botnets such as Waledac.



124 F. Haddadi et al.

In our previous work, we proposed a flow based botnet detection system [10].
We evaluated five different feature sets extracted by open source flow exporters
(Maji, YAF, Softflowd, Netmate and Tranalyzer) and investigated the effect of
those flow features in botnet detection. Since botnets employ various protocols
as their communication carrier, we also investigated the effect of protocol filters.
In this work, we will follow on the results of these evaluations.

3 Methodology

As discussed in section 2, network traffic has been analyzed in various ways to de-
tect botnets. However, the differences between these methods are not only based
on the analysis method or technique used but also are based on the specific parts
of the network traffic traces being analyzed and moreover the features extracted.
Some systems/approaches [8,18] require both the payload and the header sec-
tion of the packets to extract the necessary features while others [7,20,10] only
need the header of the packets. Between these two categories, the systems that
can detect botnet communication only based on the packet header do have priv-
ilege over the other category given that they can be employed on encrypted
traffic where the packet payload is opaque. The importance of such systems can
be better understood knowing that the most recent aggressive botnets employ
encryption to better hide themselves and their information from the detection
systems. As discussed earlier, to explore the effectiveness of such systems, we aim
to evaluate and analyze the following systems for botnet detection: (i) Packet
payload based system; (ii) Flow based system; (iii) Snort intrusion detection
system and (iv) BotHunter botnet detection system.

3.1 Systems Employed

Packet Payload Based System: Some of the works in the literature proposed
specific packet analysis methods to detect botnet behaviour [9,16]. These systems
have focused on specific packets and features from the header and/or payload
sections of these packets to identify the type of malware they are interested in.
For example, Haddadi et al. [9] extracted the domain name from the DNS packets
to detect automatically generated malicious domain names while Mohaisen et
al. [11] introduced a set of features focusing on the Zeus botnet. We employ
the features introduced by Mohaisen et al. in our evaluations for packet payload
based system. Table 1 presents the selected features for this approach.

Since some of the data mining techniques employed in this work can only be
applied to numeric features, string to numeric feature conversions are performed
and the quartile object sizes are calculated for each of the data sets. Detailed
information of the features can be found in [11]. Once the features are extracted
from each data set, four classifiers (C4.5, SVM, KNN, Bayesian Networks) are
used for botnet detection.
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Table 1. Packet-based approach— network features

Feature set
Port Source and destination port numbers
Connections TCP, UDP, RAW
Request type GET, HEAD, POST
Response type Response code 200-599
Object Size  Categorised quartiles (1-4)
DNS MX, NS, A records, PTR, SOA, CNAME

Flow Based System: Among the approaches that use the information of packet
headers only, flow based feature extraction methods are highly employed in the
recent literature [7][10][16]. In such approaches, communication packets are ag-
gregated into flows and then statistics are calculated. Given that botnets employ
encryption techniques to avoid the detection systems that analyze the communi-
cation information embedded in the packet payload, flow based approaches can
be very effective since they use only network packet headers. Hence, we develop
a flow based botnet detection system based on the results obtained from our pre-
vious work [10]. The critical phase of such a system is the flow exporting. Our
previous work on the effect of such exporters reported Tranalyzer as the best
performing flow exporter among the five tools (Maji, YAF, Softflowd, Tranalyzer
and Netmate) that we have evaluated under multiple scenarios. Hence, in this
work, we employ Tranalyzer to export the flows. After extracting the flow fea-
tures, the aforementioned classifiers are employed to detect the botnet behaviour
as an early warning system. It should be noted here that we employ all of the
features exported by Tranalyzer as inputs to the data mining techniques except
the IP addresses, port numbers and any non-numeric features. The reasons be-
hind this are two folds: IP addresses can be spoofed whereas port numbers can
be assigned dynamically. Thus, employing such features may decrease the gen-
eralization abilities of the detection system for unseen behaviours. On the other
hand, the presentation of non-numeric features may introduce other biases to
the detection system so it is left to the future work to introduce such features.

Tranalyzer: Flow exporters summarize network traffic utilizing the network
packet headers only. These tools collect packet information with common char-
acteristics such as IP addresses and port numbers, aggregate them into flows and
then calculate some statistics such as the number of packets per flow etc. Tran-
alyzer is a light weight uni-directional flow exporter that employs an extended
version of NetFlow feature set. This tool exports both the binary and the ASCII
formats and therefore, does not require any collector. This makes it very easy
to use. Tranalyzer supports 93 flow features that can be categorized into Time,
Inter-arrival, Packets&Bytes and Flags groups. More detailed information on the
tool and its feature set can be found in [4,10].

Snort Intrusion Detection System: Snort is an intrusion detection and pre-
vention system that analyzes packet payload as well as packet header data to detect
any evidence of harmful actions that match predefined signatures (rule sets) [1].
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Some of these pre-defined rules/signatures take advantage of payload information
while the others require only the header features to be analyzed. Snort has been
supported by two rule sets: VRT (Vulnerability Research Team), which is the of-
ficial rule set for Snort, and ET (Emerging Threat), which is published by emerg-
ingthreats.com. In our evaluations, we used the VRT rule set. We discuss this in
more detail in section 4.3. These two main rule sets have come with many rules that
aim to cover all possible network conditions. Hence, users should carefully enable
the rules that fit their network conditions and alert priority settings and disable
the others. Since 1998, Snort has been known and used in network security area
given that it is a cross-platform open source IDS/IPS that can be modified to fit
the network security challenges and needs as shown by the BotHunter research.

BotHunter botnet Detection System: Gu et al. introduced BotHunter as
a botnet detection system and made it publicly available. This tool uses the
combination of Snort and a clustering approach to detect botnet infections.
BotHunter is based on the idea of all botnet infection processes are similar and
can be illustrated by a lifecycle model explained in section 2. Hence, it uses a
modified version of Snort with its plugins to detect specific bot actions of the
lifecycle and then correlates the Snort alerts to detect the botnets’ behaviour
and infected machines. The developers have modified and selected the botnet
related Snort rules, developed many additional rules and inserted the IP address
checking to Snort rules to make BotHunter’s Snort sensors work more efficiently.
The initial version of BotHunter used two plugins: SLADE and SCADE, which
are designed for the anomalous traffic pattern and payload detection. Recently,
these plugins are replaced by three new plugins: (i) bADNS for malicious DNS
analysis, (ii) bhSD for scanning detection; and (iii) Con-P2P for Conficker-C P2P
detection and ethernet tracking. All new plugins use existing information like
DNS lists, IP lists, port lists and so on to detect malicious (botnet) behaviour.
It should be noted here that to be able to detect new botnets, BotHunter relies
on Snort signature updates of new malicious behaviours where the signatures
use header and payload information.

3.2 Data Mining Techniques Employed

As discussed in section 3, the first two systems evaluated employ various data
mining techniques for botnet detection. These include: C4.5 decision tree, SVM,
KNN and Bayesian Networks. These are the four well-known machine learning
algorithms that are widely used in the literature for network traffic classification
[11,16,20,10].

(4.5 is an extension to ID3 algorithm that aims to find the small decision trees
(using pruning) and then convert the trained tree into an if-then rule set. The
algorithm employs a normalized information gain criterion to select attributes
from a given set of attributes to determine the splitting point of the decision
tree. SVM is a binary learning algorithm that can easily be extended to K-class
classification by constructing & two-class (binary) classifiers. The goal of this
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classification algorithm is to build an N- dimensional hyperplane that optimally
separates the samples of data into classes with maximal margin. KNN stores the
training samples and uses Euclidean distance to compute the distance of the test
instances from the K nearest neighbour of n-dimensional training feature space.
The classifier then assigns a class label to the test instance using a majority
voting mechanism. Bayesian Networks are graphical representations for proba-
bilistic relationships among the variables given a set of discrete features. The
learning process aims to find a Bayesian Network structure that describes the
training data in the best possible way. Detailed descriptions of all the algorithms
can be found in [5].

3.3 Traffic Employed

All four aforementioned systems require botnet traffic data while the first two
systems (Packet payload based and Flow based) also require legitimate traffic
given that they employ classification algorithms. In this work, several Zeus bot-
net traffic captures available at NETRESEC [3] and Snort? [2] web sites are
employed. Hereafter, we refer to these two data sets as Zeus (Snort) and Zeus
(NETRESEC). Moreover, since many researchers in the literature [18,12,16] em-
ployed generated botnet traffic in a sandbox environment using the public botnet
binaries and toolkits, we also did the same using a public Zeus toolkit version
1.2.7.19. This toolkit is also analyzed and employed in [6]. We set up 12 Zeus
bots (infected machines with Zeus botnet) and two C&C servers (one Windows
server and one Linux server) in the test bed. Hereafter, we will refer to this
data set as Zeus-2 (NIMS)3. Since the aforementioned three data sets are purely
malicious and the systems based on various data mining techniques require legit-
imate traffic for training purposes, we employed a data set? representing normal
behaviour used in [10].

Furthermore, University of Victoria also made a data set publicly available
in 2013 [14]. This data set has combined two separate data sets of botnet mali-
cious traffic from the French chapter of honeynet project on Strom and Waledac
botnets. This combination represents the malicious side of the data set. On the
other hand, their legitimate traffic is represented by two data sets: one data set
from the Traffic Lab at Ericsson Research in Hungary and another data set from
the Lawrence Berkeley National Laboratory (LBNL) in USA. Hereafter, we will
refer to this data set as ISOT-UVic. This data set not only introduces different
botnet traffic for our experiments but also introduces different normal traffic
than the above.

Finally, CAIDA organization has also captured and made publicly available
a Conficker botnet data set [15]. This three day captured traffic is collected by
the CAIDA UCSD network telescope when the Conficker botnet was active. The
first and the second day covers the Conficker-A botnet infection while during the

2 «“Sample 17 Zeus traffic file is used in this work.
3 These data sets can be found at
http://web.cs.dal.ca/~haddadi/data-analysis.htm
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third day Conficker-A and B were active. This data set has been anonymized, the
payload has been removed from the packets and the CAIDA network addresses
have been masked (destination TP addresses). A more detailed description of
the CAIDA Conficker data set can be found in [15]. We included this data set
in our evaluations, since it provides different botnet traffic for our evaluations.
Hereafter, we will refer to this data set as the Conficker (CAIDA).

4 Evaluations and Results

As discussed earlier, our goal in this work is to evaluate different botnet detection
systems where each uses specific parts of the traffic. To achieve this, we chose
four different detection systems which are highly employed in academia and in-
dustry. These four systems are: packet payload based, flow based, BotHunter and
Snort. For evaluation purposes, we have employed five different traffic traces for
the botnets: Zeus (Snort), Zeus (NETRESEC), Zeus-2 (NIMS), ISOT-UVic and
Conficker (CAIDA); and three different traffic traces for the legitimate traffic:
Alexa, Ericsson and LNBL. Last but not the least, we have employed four differ-
ent data mining techniques, namely C4.5, SVM, KNN and Bayesian Networks,
for both the packet payload and the flow based systems.

4.1 Data Sets

Snort web site [2] officially has provided a description of the sample files and
also has given information to use as the groundtruth for the data set. On the
other hand, we analyzed the employed protocols, domain names and the commu-
nication patterns of Zeus (NETRESEC) traffic and compared them against the
published characteristics of Zeus botnet to extract the malicious IP addresses.
Regarding the Zeus-2 (NIMS) data set, since we set up the data generation en-
vironment in the laboratory, we had all the necessary information of the servers
and the infected machines in this data set. Moreover, the information about the
IP address mapping and the scenarios which were used to combine all four traffic
traces from the ISOT-UVic data set can be found at [14]. Last but not the least,
since UCSD telescope carries no legitimate traffic and given that there are other
malicious background traffic than the Conficker infections in their captures, we
used the information provided by CAIDA as the groundtruth for this data set.

For the data mining based systems, uniform sampling was used to create
balanced (in terms of malicious vs non-malicious traffic) data sets for training
purposes. For Conficker (CAIDA) data set specifically, we ensured that the train-
ing data set included data samples of each day so that behavioural examples of
every version of Conficker traffic is represented in the data set. Having said this,
there are no training samples (zero) for the Conficker (CAIDA) data set for the
packet payload based approach. That is because this approach requires informa-
tion from the packet payload while such information is not provided by CAIDA
in this data set. It should be noted here that the traffic files that are used in the
sampling process for the first two systems, are also employed for BotHunter and
Snort. This provides consistency for our evaluations.
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4.2 Performance Metrics

In traffic classification, two metrics are typically used in order to quantify the
performance of the classifiers: Detection Rate (DR) and False Positive Rate
(FPR). DR reflects the number of the correctly classified specific botnet samples
in a given data set using DR = . PTE, ~ Where TP (True Positive) is the number
of botnet traffic samples that are classified correctly, and FN (False Negative)
is the number of botnet samples that are classified incorrectly (as legitimate
samples). On the other hand, FPR shows the number of legitimate samples that
are classified incorrectly as the botnet samples using FF/PR = . Pﬂi ~y Where TN
(True Negative) is the number of legitimate traffic samples that are classified
correctly.

4.3 Results

Packet Payload Based and Flow Based Systems: We employed the four
data mining techniques (classifiers) using an open source tool called Weka [17]
for the packet payload based and flow based systems. Our previous study on
flow based botnet detection systems showed that C4.5 and Bayesian Networks
are the best performed classifiers compared to Artificial Neural Networks, SVM
and Naive Bayes [10]. Moreover, in this work, we added KNN to our evaluations
since it was reported to give high performance in [11,19]. To evaluate these
classifiers on the aforementioned data sets, we run them on each dataset using
10-fold cross-validation to further avoid any dataset biases that might affect the
results. Table 2 and Table 3 shows the classification performances of these two
systems on the five data sets. Considering the DR and FPR of the classifiers,
C4.5 seems to be the best performing classifier that resulted in the detection
rate of up to 100% for all five data sets. This classifier’s output is in the form
of rules that makes it easier to be used by a human expert to understand what
this technique models on a given data set. For the packet payload based system,
the size of the decision tree output is 5 for ISOT-UVic dataset and 7 for all
other datasets. On the other hand, the size of the decision tree is 9, 21, 25, 7
and 525 for the Zeus (Snort), Zeus (NETRESEC), Zeus-2 (NIMS), Conficker
(CAIDA) and ISOT-UVic, respectively, for the traffic flow based system. The
results indicate that the flow based system solutions are bigger in size, even
though the difference is not much in 4 of the 5 data sets. However, for the ISOT-
UVic dataset, the complexity difference is significant. This can be caused by the
fact that ISOT-UVic dataset is a combination of multiple botnet and legitimate
datasets.

BotHunter: This tool provides Snort installation with a customized malware
rule set from ET (Emerging Threats rule set and DNS/IP blacklist). Running
BotHunter with a traffic pcap file (Batch mode) creates two types of results:
BotHunter’s Snort alerts (used as input for BotHunter correlator), and bot pro-
files. Moreover, to run BotHunter on any data set, the user needs to specify the
trusted network or the monitored network. Indeed, such a requirement necessi-
tates the users to have information about the data set or the monitored network
(if using BotHunter in live mode).
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Table 2. Classification results of the packet payload based system

Botnet Legitimate
TPR FPR TNR FNR
Zeus (Snort) 100% 100% 0% 100% 0%
Zeus (NETRESEC) 100% 100% 0% 100% 0%
C4.5 Zeus-2 (NIMS)  99.44% 98.9% 0% 100% 1.1%
Conficker (CAIDA) - - - - -
ISOT-UVic 99.77% 99.7% 0.1% 99.9% 0.3%
Zeus (Snort) 100% 100% 0% 100% 0%
Zeus (NETRESEC) 100% 100% 0% 100% 0%
KNN Zeus-2 (NIMS)  100% 100% 0% 100% 0%
Conficker (CAIDA) - - - - -
ISOT-UVic 99.72% 99.7% 0.3% 99.7% 0.3%
Zeus (Snort)  99.52% 99% 0% 100% 1.0%
Zeus (NETRESEC) 100% 100% 0% 100% 0%
SVM Zeus-2 (NIMS)  99.72% 99.4% 0% 100% 0.6%
Conficker (CAIDA) - - - - -
ISOT-UVic 99.79% 99.7% 0.1% 99.9% 0.3%
Zeus (Snort) 100% 100% 0% 100% 0%
Zeus (NETRESEC) 100% 100% 0% 100% 0%
Bayesian Networks Zeus-2 (NIMS) 93.82% 98.9% 11.2% 88.8% 1.1%
Conficker (CAIDA) - - - - -
ISOT-UVic 99.79% 99.7% 0.1% 99.9% 0.3%

Data Set DR

Table 4 shows the results of BotHunter on the five data sets. The “# infected
hosts” column in the table shows the number of infected machines with the bot
program. The “# remote hosts” shows the malicious remote machines that the
infected hosts communicate with in the captured data sets. Although finding the
infected host in the network is important, it is only one phase of the detection.
However, finding the source of the attacks or at least the remote hosts that are
utilized by the C&C server is another important phase of detection. Hence, in
this work, we also analyzed the remote host information. These remote machines
can be the malicious C&C servers or new targets of the botnet that the infected
machine aims to infect. BotHunter correlates the Snort alerts (shown in the
second column) and finally generates the bot profiles revealing the malicious
hosts. In the cells of the Table 4 where two numbers are separated by ”/”,
the first number is the count of TP addresses detected and the second number
is the total number of IP addresses in that category. In each cell, the DR for
each category is included. However, the overall detection rate of the BotHunter
including the infected hosts and the remote hosts is shown in Table 6.

In short, based on the performance of BotHunter presented in Tables 4 and
6, we make the following observations: (1) No alert or bot profile was raised
for Conficker (CAIDA) data set. That is because the payload part of the traffic
was not provided by CAIDA. Given that BotHunter and its Snort sensors use
payload of the traffic (packets) for detecting the botnets, they could not perform
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Table 3. Classification results for the traffic flow based system

Botnet Legitimate
Data Set DR TPR FPR TNR FNR
Zeus (Snort) 98.9% 97.2% 1.4% 98.6% 2.8%
Zeus (NETRESEC) 98.25% 98.5% 2% 98% 1.5%
C4.5 Zeus-2 (NIMS)  99.67% 99.8% 0.5% 99.5% 0.2%
Conficker (CAIDA) 99.95% 100% 0.1% 99.9% 0%
ISOT-UVic 99.9% 99.9% 0.1% 99.9% 0.1%
Zeus (Snort) 98.6% 99.3% 2.1% 97.9% 0.7%
Zeus (NETRESEC) 96.75% 97.0% 3.5% 96.5% 3.0%
KNN Zeus-2 (NIMS)  99.74% 99.8% 0.3% 99.7% 0.2%
Conficker (CAIDA) 99.95% 99.9% 0% 100% 0.1%
ISOT-UVic 99.91% 99.8% 0% 100% 0.2%
Zeus (Snort) 99.3% 100% 1.4% 98.6% 0%
Zeus (NETRESEC) 91.01% 89.3% 7.3% 92.8% 10.7%
SVM Zeus-2 (NIMS)  99.90% 99.6% 1.8% 98.2% 0.4%
Conficker (CAIDA) 99.89% 99.9% 0.1% 99.9% 0.1%
ISOT-UVic 99.82% 99.8% 0.2% 99.8% 0.2%
Zeus (Snort)  97.21% 100% 5.6% 94.4% 0%
Zeus (NETRESEC) 83.89% 76.8% 9.0% 91.0% 23.2%
Bayesian Networks Zeus-2 (NIMS) 99.61% 99.6% 0.4% 99.6% 0.4%
Conficker (CAIDA) 98.47% 99.9% 3.0% 97.0% 0.1%
ISOT-UVic 99.86% 99.9% 0.2% 99.8% 0.1%

well on this data set. (2) BotHunter could successfully detect all the infected
machines and remote hosts of the Zeus-2 (NIMS) data set. That is because
payload is provided and all the phases of the botnet lifecycle are present in this
data set. (3) Although Snort did create serious alarms on Zeus (Snort) (such
as “E4[rb] TROJAN Zeus POST Request to CnC”), BotHunter did not report
any bot profile. This could be because a combination of different types of alerts
(representing different phases of lifecycle) is required by BotHunter to form a
bot profile. (4) For ISOT-UVic data set, BotHunter could successfully detect
four infected hosts out of five known ones. However, from almost 15000 remote
hosts with which these infected machines communicate, only 40 of them were
identified in the generated bot profiles. Again, we think that this was because
BotHunter: (i) requires all the phases of the botnet lifecycle for all the machines;
and (ii) depends on Snort sensor rule set.

Snort: To run Snort, the first thing required is to set the rule set that will be
used. Two main rule sets for Snort are VRT and ET. In our evaluations, we used
the VRT rule set because it is the official rule set of Snort that gets updated
frequently. Furthermore,the other rule set, ET, is the one used by BotHunter in
our evaluations. In our analysis of Snort, we found that many rules of the VRT
rule set are disabled and specifically all pre-processor and shared-object rules
are disabled by default. Based on the information Snort has provided on botnet
detection, we enabled all of the rules such as (sid= 16460 and 11192) that are
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Table 4. BotHunter detailed detection results
Data Set Snort alerts # infected hosts # remote hosts

Zeus (Snort) 26 0/1 (0%) 0/14 (0%))
Zeus (NETRESEC) 23 1/1 (100%) 7/11 (63.6%)
Zeus-2 (NIMS) 486 12/12 (100%) 2/2 (100%)
Conficker (CAIDA) 0 0 (0%) 0 (0%)
ISOT-UVic 831 4/5 (80%)  40/15000 (0.3%)

Table 5. Snort detailed detection results

Data Set Snort alerts # infected hosts # remote hosts

Zeus (Snort) 11 1/1 (100%) 7/14 (50%)
Zeus (NETRESEC) 58 1/1 (100%) 7/11 (63.6%)
Zeus-2 (NIMS) 401 12/12 (100%) 2/2(100%)
Conficker (CAIDA) 7244 6457/360191 (1.8%) 430/80380 (0.5%)
ISOT-UVic 102755 2/5 (40%)  2326/15000 (15.5%)

Table 6. BotHunter and Snort overall performances

Data Set DR TPR FNR

Zeus (Snort) 0% 0% 0%

Zeus (NETRESEC) 66.6% 66.6% 0%

BotHunter Zeus-2 (NIMS) 100% 100% 0%

Conficker (CAIDA) 0% 0% 0%

ISOT-UVic 2.9% 2.9% 0%

Zeus (Snort)  53.3% 53.3% 0%

Zeus (NETRESEC) 66.6% 66.6% 0%

Snort Zeus-2 (NIMS)  100% 100% 0%

Conficker (CAIDA) 1.6% 1.6% 0%
ISOT-UVic  15.5% 15.5% 0%(6,/23140)

related to Zeus botnet. Tables 5 and 6 show the performance of Snort on our five
data sets. For big data sets that contain considerable number of malicious traffic,
Snort raises a lot of alerts. This makes it complicated to process the results (such
as for Conficker CAIDA and ISOT-UVic data sets shown in Table 5). Thus, in
this work, any alert with high priority that was raised on botnet IP addresses
(such as alerts indicating “Win.Trojan.Zeus”) is considered as TP, and any such
alert triggered on legitimate IP addresses is considered as FP.

Table 7 shows detailed information on the type of rules that Snort and BotH-
unter employed for all of the five data sets. The “Header+payload based” col-
umn shows the rules that require both the header and the payload of the packet
traces whereas the “Header based” rules are the ones that use only the packet
header information. The first number in each category shows the number of
rules triggered and the second number in parenthesis shows the number of alerts
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Table 7. The number and the type of Snort and BotHunter Rules

Snort BotHunter
Data Set Header Header-+payload Header Header+payload
based based based
Zeus (Snort) 2 (9) 1(2) 0 (0) 2 (26)
Zeus (NETRESEC) 3 (38) 8 (20) 0 (0) 4 (23)
Zeus-2 (NIMS) 2 (202) 1 (199) 0 (0) 4 (486)
Conficker (CAIDA) 1 (7244) 0 (0) 0 (0) 0 (0)
ISOT-UVic 3 (102755) 0 (0) 0 (0) 9 (831)

generated in that category. As indicated in the table, BotHunter only used the
Snort rules (ET) that are based on both the header and the payload information
while Snort utilized more of the header based rules from the VRT rule set. In
the “Header+payload” category the “MALWARE-CNC” type rules and in the
“Header” category the “CONTENT-LENGTH” type rules are frequently used
by Snort. On the other hand, BotHunter employed the “E4[rb] ” and “E4[rb]”
type rules more frequently. The results also shows that when almost all phases
of communication are available in the data set (as for the Zeus-2 (NIMS)), the
number of alerts being triggered is increased as well as the DR.

Finally, it should be noted that all the tools and the data sets are publically
available and the experiments can be repeated to be compared against other
approaches.

4.4 Discussion and Highlights

The main advantage of the first two systems based on data mining (packet pay-
load based and flow based) is the ability to automatically discover patterns in big
traffic data sets. This also provides the capability of detecting malicious commu-
nications at any stage of the botnet lifecycle without focusing on one side of the
network (as BotHunter does). The performances of these two systems indicate
that both feature extraction techniques can be used to build botnet detection
models with high performances. However, given that the packet payload based
approach requires the payload information of the packets for analysis and this
information may not be available due to encryption or simply not captured, we
believe that the flow based detection system is the winner among the two. As
demonstrated in our evaluations, the performance of the flow based system is
higher or similar to the results reported in the literature (with detection rate of
up to 100%, up to 79%, 88% and 99% in [8], [12], [18] and [20], respectively.
On the other hand, BotHunter focuses on finding the Snort alerts correspond-
ing to the botnet lifecycle and correlating them to create a bot profile. Our
evaluations show that it cannot detect the botnet related malicious communica-
tions on the network if it cannot find the necessary phases of the botnet lifecycle
in the traffic. However, BotHunter seems to be successful when a specific network
is under constant monitoring and the goal is to detect the infected machines of
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a trusted network. Constant monitoring helps the Snort sensors to detect all the
phases of a botnet lifecycle. Having said this, it uses the pre-defined customized
Snort rule set so it cannot correlate different behaviours if they are not detected
by Snort.

Unlike BotHunter, Snort does not just focus on detecting the infected hosts
based on tracing the existence of the botnet lifecycle. Instead, it monitors all
the network communications (the default HOME NET is“any”) and flags any
suspicious communication that matches its pre-defined rules if using the VRT
rule set. The performance of Snort depends on the quality of the rules. Since
Snort is a well-known IDS/IPS, its rule set gets updated frequently. This makes
it one of the more popular detection systems available today. However, as we
observed in our evaluations, it generates a lot of alerts.

5 Conclusions

In this work, four botnet detection systems are investigated. Each one of these
uses specific features from network traffic with different levels of human involve-
ment. The first system is a packet payload based system, which employs classi-
fiers using the features extracted from the header and the payload of a packet.
The second system is a traffic flow based system where features are extracted
on a per flow basis instead of packets. Since the features used by this system
are extracted from only the header section of the packets, this approach can
be applied to encrypted traffic as well. In addition to these two systems, Snort
and BotHunter are also evaluated as publicly available botnet detection systems.
These two systems represent rule based detection systems where both the packet
headers and the packet payloads are analyzed. The evaluation of all four systems
on five public data sets show that the first two systems performed better than
the last two systems with detection rates approaching up to 100% on some of
the data sets. Comparing the payload based and flow based systems, neither of
them significantly out-performed the other and they both achieve very similar
detection performances (highest when C4.5 was used in both cases). Having said
this, the packet payload based system results in much lower false positive rates.
This makes it very desirable on all data sets except the ones that do not have
any payload. In those cases, this system cannot perform at all. However, the flow
based system can still perform. This gives the flow based method an important
advantage.
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