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ABSTRACT
Botnets are known as one of the main destructive threats
that have been active since 2003 in various forms. The abil-
ity to upgrade the structure and algorithms on the fly is part
of what causes botnets to survive for more than a decade.
Hence, one of the main concerns in designing a botnet de-
tection system is how long such a system can be effective
and useful considering the evolution of a given botnet. Fur-
thermore, the data representation and the feature extraction
components have always been an important issue in order
to design a robust detection system. In this work, we em-
ploy machine learning algorithms (genetic programming and
decision trees) to explore two questions: (i) How can the
representation of non-numeric features effect the detection
system’s performance? and (ii) How long can a machine
learning based detection system can perform effectively? To
this end, we gathered seven Zeus botnet data sets over a
period of four years and analyzed three different data rep-
resentation techniques to be able to explore aforementioned
questions.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software

Keywords
Security; botnet detection; machine learning; data represen-
tation; robustness.

1. INTRODUCTION
A collection of compromised hosts that are under the re-

mote control of a master (aka botmaster) is referred to as a
botnet. The infected hosts get involved in malicious tasks
without even being aware of such activities like Distributed
Denial-of-Service (DDoS) attacks and identity thefts. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain

c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768435

general, botnets have two different topologies: Centralized
and De-centralized (such as Peer-2-Peer (P2P)). In these
topologies, a botmaster uses the Command and Commu-
nication (C&C) servers in order to communicate with the
infected hosts. Moreover, in a P2P configuration, each node
could play the master or the client role. Therefore, there
is no specifically assigned C&C server in the P2P botnet
topologies.

It is believed that until 2003, the Internet Relay Chat
(IRC) protocol was the most common botnet communica-
tion protocol using the centralized topology [20]. However,
to defeat the detection systems, botnets have started to use
more ubiquitous protocols such as HyperText Transfer Pro-
tocol (HTTP) as well as de-centralized topologies such as
P2P and other techniques such as fluxing and encryption.
For instance, Conficker and Zeus botnets migrate from the
HTTP-based communication to HTTP-based P2P commu-
nication over their evolution. To this end, identifying the
botnets and detecting them have become very challenging.
Thus, active continuous botnet monitoring and detection
mechanisms are required. Such mechanisms could poten-
tially enable us to learn the new patterns and adapt to the
changes in the botnet evolution. For this purpose, many
existing botnet detection approaches use machine learning
(ML) techniques to analyze the network traffic behaviour.
In such approaches, data representation is one of the first
key phases where the network traffic data should be repre-
sented to the ML algorithms in a meaningful manner. The
represented features in the existing approaches have been ex-
tracted from either the packet payloads and/or the packet
headers. However, since botnets have started using encryp-
tion, the monitoring and detection systems that utilize only
the packet headers information have the advantage over the
systems that use the packet payload information (as this
information is opaque when encrypted).

In this paper, we explore ML-based botnet detection sys-
tems that only use packet header information. For this
purpose, C4.5 [6] as the decision tree algorithm and the
Symbiotic Bid-Based Genetic Programming (SBB) [18] as
the genetic programming algorithm are utilized. To sum-
marize the network traffic and to extract the required fea-
tures (attributes), a traffic flow exporter, called Tranalyzer,
is employed which employs network packet headers to ex-
tract the features. This exporter has shown to be very ef-
fective in extracting useful botnet traffic features [16]. The
ML approach adopted in this work is utilized to explore two
main research questions. The first question studied is: How
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can the non-numeric feature representation be effective in
terms of performance, given that most of the known ML
algorithms use numeric features? To answer this question,
experiments are performed on TCP flags, which are known
to be used by malwares [17]. This attribute has also shown
to be used for some of the botnets in ways that were not in-
tended for legitimate use [13]. To this end, we analyzed three
representations- numerical, nominal and binary- specifically
for the TCP flags. The second question studied is: How
effective can a botnet detection system perform facing up-
graded botnet behaviours, considering the fact that botnets
upgrade their methodology over time? In our evaluations,
we gathered seven Zeus botnet traffic data sets over a period
of four years to understand how the performance (effective-
ness) of a detection system changes (if at all) over time.

The rest of the paper is structured as follows: Section 2
summarizes the background and the related work on bot-
net detection. Our methodology is discussed in Section 3.
Results are presented in Section 4. Finally, conclusions are
drawn and future work is discussed in Section 5.

2. BACKGROUND AND RELATED WORK
Unlike first botnets that had a list of exploits to launch on

targets where all the commands were set at the time of infec-
tion, today a typical advanced bot uses five stages to create
and maintain a botnet. The first stage is the initial infection
stage. In this stage, attacker infects the victim using several
exploitation techniques to find its existing vulnerabilities.
In the second stage, secondary injection, the shell-code is
executed on the infected victim to fetch the image of the
bot binary. Bot binary then installs itself on the victim. At
this time, the infected machine is completely converted into
a bot. The next stage is the connection stage. In this stage,
the bot binary establishes the C&C channel to be used by
the bot master. Once the connection is established then the
malicious C&C stage, the fourth stage, starts. This is when
the master sends the commands to the botnet, short for bot
network. Finally, when the master needs to update the bots
for one reason or another, the update and the maintenance
stage starts.

Botnets have employed different protocols, topologies and
techniques to implement the stages of their lifecycle and
therefore, different techniques are proposed for the detec-
tion purposes. Gu et al. proposed and developed a botnet
detection framework called BotMiner[12]. This framework
is based on the group behavior analysis [12]. BotMiner uses
a clustering approach to find similar C&C communication
behaviors, which form clusters, and then employs Snort to
find the type of activity in the detected clusters. Their re-
sults showed that BotMiner could detect botnets with de-
tection rates between 75% and 100% on different types of
botnets. Celik et al. proposed a flow-based botnet C&C
activity detection system using only headers of traffic pack-
ets [10]. They investigated the effect of calibration of time-
based flow features. They employed techniques such as C4.5,
Naive-Bayes and logistic regression. Wang et al. proposed
a fuzzy pattern recognition approach to detect HTTP and
IRC botnets’ behavioral patterns [23]. It is known that bot-
nets query several domain names in a given period of time
to identify their C&C server, and then form a TCP connec-
tion with the C&C server. Therefore, Wang analyzed the
features of DNS queries (such as the number of failed DNS
responses) and TCP flows to detect malicious domain names

and IP addresses. Beigi et al. investigated the effectiveness
of flow-based feature sets employed in previous botnet detec-
tion studies and evaluated their relative effectiveness using
their feature selection algorithm [7]. Their results indicated
that the Byte-based group of features had less effect while
the packet-based group had the highest impact.

There are several studies on flow-based botnet detection
systems where each proposed their own set of features [22,
10]. Moreover, some studies have analyzed the feature se-
lection algorithms to extract the most effective feature sets
[7]. Such feature selection processes can cause the models
to be focused on specific type(s) of botnet(s) which may not
be very effective for other types. Hence, using a ML algo-
rithm that has the ability to perform attribute selection as
an implicit property of constructing the classifier may be a
better way to approach feature selection while utilizing all
the possible extracted flow features. C4.5 can be named as
one of the algorithms with such ability and that is one of
the reasons behind selecting this classifier in this work. On
the other hand, to the best of our knowledge, no work has
studied the effect of feature representation and how robust
a detection model can be over time for the aforementioned
botnets.

3. METHODOLOGY
As discussed earlier, we employed two ML algorithms:

C4.5 decision tree and the symbolic bid-based (SBB) frame-
work for evolving teams of programs to detect botnet be-
haviour. Both of these learning algorithms generate solu-
tions (models) that are in human readable format and there-
fore enable the analysis of the learned models.

Traffic features are extracted as flows using the Tranalyzer
flow exporter [4]. Flow is defined as a logical equivalent for
a call or a connection in association with a user specified
group of elements [21]. The most common way to identify
a traffic flow is to use a combination of five properties (aka
5-tuple) from the packet header, namely source/destination
IP addresses and port numbers as well as the protocol. In
this case, the features are derived from packet header infor-
mation only. Hence, they can be employed for encrypted
traffic or other conditions where the payload information is
not accessible. Most of the known ML algorithms only ac-
cept attribute sets with numeric types. Therefore, almost
all of the classification works in the literature employ specif-
ically numeric flow features. Flow exporters however, have
non-numeric representation for some of the features. In this
category for instance, all of the eight TCP flags (which have
binary values) are usually combined and presented as a hex-
adecimal TCP flag feature by the flow exporters. On the
other hand, implementations of the classifiers usually (like
the implementations in Weka) interpret this feature (Hex-
adecimal type) as a string or nominal value. Therefore, it is
usually removed from the feature set. Having said this, TCP
flags were shown to be used by malwares in ways that were
not intended for legitimate use. In our previous work [13],
we showed that TCP flags are employed by Torpig botnet for
communication but not by the Conficker botnet. Therefore,
in this paper, we first investigate the effect of three different
TCP flag representations (i.e numerical, nominal and bi-
nary representations). In the numerical representation, we
converted the hexadecimal TCP flag value into a numeri-
cal (integer) value whereas in the binary representation, the
hexadecimal value is broken down into eight separate flag
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values in binary format. These flags are Congestion Win-
dow Reduced (CWR), ECN-Echo (ECE), Urgent (URG),
Acknowledgement (ACK), Push (PSH), Reset (RST), Syn-
chronize (SYN) and Finish (FIN) flags. Finally, in the nom-
inal representation, a set of hexadecimal flag values, utilized
in a data set, is prepared and used as a nominal set of pos-
sible values for the TCP flag feature. Weka decision tree
implementation accepts the nominal as a type for the fea-
tures. Having a feature with the nominal type, the first
string value is assigned index 0. This means that internally,
this specific string value is stored as a 0 in the data set
for the training/testing purposes. We used the same index-
based interpretation for the features of this type in SBB.

Based on the fifth phase of the botnet lifecycle, botnets
upgrade their methodology to defeat the detection systems.
Hence, designing a botnet detection system that can cope
with such changes is challenging. On one hand, using ML
based detection systems for this purpose has the advantage
of being able to re-train on the new botnet setting with mi-
nor human expert involvement. On the other hand, it is
important to know how effective an older trained classifier
can perform facing the same botnet with the new setting
or behaviour. Therefore, in the second set of experiments,
we investigate the performance of the two ML-based bot-
net detection systems over a period of time. To this end,
seven Zeus botnet data sets are collected that are gener-
ated/captured over a period of four years.

3.1 Learning algorithms

3.1.1 C4.5
C4.5 is a decision tree algorithm which is an extension to

the earlier ID3 algorithm developed by Quinlan [6]. This
non-parametric supervised learning method aims to find the
small decision trees (using pruning) and then generate an
if-then rule set based of the trained tree which can be used
for classification.

Applying the Information Entropy concept, C4.5 construc-
ts the decision trees based on a training data set. Each
record of the set has the same structure consisting of a num-
ber of attributes where one of them represents the class of
the record. The algorithm employs a normalized informa-
tion gain criterion to select attributes from a given set of
attributes to determine the splitting point. In other words,
the feature with the highest information gain value is chosen
as the splitting point.

Let pi be the probability that an arbitrary sample in data
set D belongs to class Ci:

pi =
|Ci,D|
|D| (1)

Then, the amount of information (entropy) required to
classify an instance in D, where m is the number of unique
instances of the data set:

Entropy(D) = −
m∑
i=1

pi log2 pi (2)

Expected information needed to classify the objects of the
data set D in all v sub-trees (after using attribute A to split
D into v partitions) is:

EntropyAD = −
v∑

j=1

|Dj |
D
× Entropy(Dj) (3)

and finally, information gained by branching on attribute
A is:

Gain(A) = Entropy(D)− EntropyA(D) (4)

A decision node is created based on the selected splitting
node with the highest information gain. The same procedure
recursively applies to the corresponding sub-lists obtained
by the splitting process until all of the data samples associ-
ated to the leaf nodes are of the same class or the classifier
runs out of training samples. More detailed information on
C4.5 learning algorithm can be found in [6].

3.1.2 SBB
The Symbiotic Bid-Based (SBB) algorithm is a form of

linear genetic programming with a co-evolutionary architec-
ture [18] which co-evolves three populations: A point pop-
ulation, a team population and a learner population, Fig.
1. The learner population represents a set of symbionts
(learners), which associate a GP-bidding behaviour with an
action. The team population comprises a set of learners
and finally the point population denotes a subset of training
data exemplars. Although all of the teams’ learner pro-
grams are executed while evaluating a team on the points,
only the learner with the highest bid suggest its action.
The bidding procedure employs linear GP. To standardize
the bid values between zero and one, the sigmoid function
f(y) = (1+exp(−y))−1 is applied to the real valued program
output y.

In SBB, the point and the team population interaction
follows a Pareto-based Competitive co-evolution. In this
concept, if an individual is not dominated by any other in-
dividual, it is set to be a part of Pareto-front. This relation
is used by SBB training algorithm to determine the points
and the teams, which survive to the next generation. At
each generation, Pgap new points are generated by sam-
pling the training data and Mgap new teams are generated
through variation operators (add, delete, swap and mutate)
applied to the existing teams, while learners in both par-
ent teams are copied into the offspring. Following the fit-
ness evaluation of all teams against all points, PsizePgap
points and MsizeMgap teams are opted to appear in the
next generation using a Pareto-based selection mechanism.
Pareto competitive co-evolution ranks the teams’ perfor-
mances, the Pareto non-dominated teams with the highest
ranks are selected. Likewise, the non-dominated points are
also preserved. Meanwhile, if a point/team ranking is re-
quired in these non-dominated subsets, a form of competi-
tive fitness sharing is employed in order to bias in favour of
the points/teams that exhibit non-overlapping behaviour.
Finally, all the generated teams in the learning procedure
are evaluated on the training data set and the one with the
best performance is selected as the final solution. The so-
lution team is a combination of a set of learners with their
corresponding GP instructions. In our evaluations, the max-
imum program size is set to 48. Thus, each learner in the
solution can have maximum 48 instructions including the
non-effective code, called introns. Given that introns were
found to count for between 60% to 90% of instructions in
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Figure 1: SBB team-based mechanism [18]

a linear GP [9], we employ intron removal to reduce the
complexity of SBB [14]. A more detailed explanation of the
algorithm can be found in [18].

3.2 Data set collection and Feature set extrac-
tion

There are various botnets that employ HTTP protocol as
their communication protocol such as Zeus. These botnets
can either have a P2P HTTP-based structure or a simple
centralized/de-centralized structure. Zeus is a well-known
botnet, which was taken down in 2012, but made a big
came back with a new variant in 2013 [5]. This botnet has
been collecting banking data by using man-in-the-browser
keystroke logging and form grabbing but can be configured
for any type of identity theft attack. The earlier version
of this botnet is reported to have a simple de-centralized
structure while the latest version was reported as a P2P-
based de-centralized botnet. In this work, we have collected
seven different Zeus botnet data sets. The Zeus-1 (NIMS)
data set is generated based on accessing the Zeus botnet
C&C server domain names (using an HTTP-based commu-
nication). This data set is analyzed and compared against
other Zeus botnet data sets in [15]. Since many works in the
literature employed generated botnet traffic in a sandbox
environment using the public botnet binaries and toolkits,
we also run a Zeus botnet toolkit version 1.2.7.19 in a con-
trolled sandbox environment and captured the traces [13] in
November 2013. This toolkit is also analyzed and employed
in [8]. We refer to this data set as Zeus-2 (NIMS). We set up
12 Zeus bots (infected machines with Zeus botnet) and two
C&C servers (one Windows server and one Linux server) in
the test bed. In June 2014, we used the same toolkit ver-
sion to collect the Zeus-3 (NIMS) traffic traces. However,
this time, we employed one windows C&C server with a dif-
ferent configuration (communication parameter settings are
different)1. Moreover, Zeus toolkit version 2.1.0.1 was used
to generate the Zeus-4 (NIMS) traffic traces in May 2014. In
this configuration, there are 12 infected bots and one C&C
server.

Moreover, there are several Zeus botnet traffic captures
publicly available. NETRESEC [3] and Snort2 [1] web sites
has posted several Zeus traffic traces captured in February

1The configuration settings and the data sets can be found
at http://web.cs.dal.ca/∼haddadi/data-analysis.htm
2“Sample 1” Zeus traffic file is used in this work.

2012 and February 2010, respectively, which are also used
in this work. Hereafter, we refer to these two data sets
as Zeus (Snort) and Zeus (NETRESEC). Last but not the
least, Czech Technical University ATG Group has captured
several botnet traces under the the malware capture facil-
ity project [11]. The CTU-Malware-Capture-Botnet-5 data
set’s probable name was announced “Zeus” back in August
2013. Hence, we also used this data set under the name of
CVUT-5 in this work. To the best of our knowledge, these
are all the publicly available Zeus botnet data sets in this
field.

Since these seven data sets are purely malicious and the
systems based on various data mining techniques require
legitimate traffic for training purposes, we also employed
Lawrence Berekeley National Laboratory (LBNL) 2005 data
set which has been widely used in the literature to represent
normal behaviour [2].

Tranalyzer was then employed to export the flow features
(i.e. data features in this work) on these seven traffic traces.
As a flow exporter, Tranalyzer aggregates the network pack-
ets into flows based on IP addresses, port numbers and the
protocol using only the packet header information. Some
statistics, such as the number of packets per flow, are then
calculated as flow features [4].

4. EVALUATION AND RESULTS
As discussed earlier, we explore (i) the effect of different

representations of the TCP flags and (ii) analyze the perfor-
mance of a trained detection model over time.

4.1 Data set specifications
Tranalyzer extracts 93 features for each flow. We em-

ployed all of the features provided by the Tranalyzer as in-
puts to our machine learning classifiers except the IP ad-
dresses and port numbers because IP addresses can be anony-
mized whereas port numbers can be assigned dynamically.
Thus, employing such features may decrease the generaliza-
tion abilities of the detection systems for unseen behaviors.
Moreover, the TCP flag is one of the non-numeric features
that we introduced using three different representation tech-
niques. In summary, without using the TCP flag as part of
the feature set, size of the feature set is 71. However, once
the numerical, the nominal and the binary TCP flag repre-
sentations are introduced, the feature set size changes to 72,
72 and 79, respectively.

After extracting the relevant feature set for each of the
experiments, a balanced data set is formed by selecting ran-
domly (uniform random selection) from the non-malicious
(Lawrence) flow data set as well as from each of the mali-
cious data sets. Table 1 shows the number of samples in
each data set.

4.2 Performance metrics
Typically, classifiers are evaluated using accuracy or clas-

sification rate as the fraction of all the correctly labeled in-
stances. However, given an unbalanced data set or a multi-
class data set, these metrics can be misleading. Therefore, a
classwise detection rate [18] is defined as DETc = TPc

FNc+TPc

where DETc is the class c detection rate and TPc and FNc
are the True-Positive and False-Negative counts for class c,
respectively. Finally, to summarize the classwise detection
rates of a classifier over all classes, the average DR criteria
is defined by [18]:
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Table 1: Number of flows in each data set employed

Data Set Legit Botnet

CVUT-5 1046254 1046254
Zeus-1 (NIMS) 43460 43460
Zeus-2 (NIMS) 1547 1547
Zeus-3 (NIMS) 40236 40236
Zeus-4 (NIMS) 10678 10678

Zeus (NETRESEC) 401 401
Zeus (Snort) 144 144

Score =
1

|C|
∑
c∈C

DETc (5)

4.2.1 Complexity
Classifier complexity can be measured by different criteria

such as memory consumption, time or the learned model by
the learning algorithms. In this work, two complexity crite-
ria are utilized: 1) Training (computation) time: This is
estimated on a common computing platform. 2) Solution
complexity: A direct comparison between solutions from
different representations is impractical since the underlying
units of measurements are different. Therefore, the tree size
for C4.5 and the program size of the solution team for SBB
are considered as our units of measurements.

4.3 Results
C4.5 classifier is run on each balanced data set using 10-

fold cross-validation to further avoid any data set biases that
might affect the results. However, SBB requires the train-
ing and testing data sets to be provided separately. Hence,
we divided the data set into two parts (training and test-
ing) based on an almost 30-70% breakdown for testing and
training, respectively. It should be noted here that the de-
fault parameters in WEKA [24] are used for C4.5 (pruned)
classifier, whereas parameters given in [19] are used for SBB
(except the iteration value which was changed to 5000 for
CVUT-5 data set due to the number of samples).

Comparing Table 2 with Tables 3, 4 and 5 on different rep-
resentations of the TCP flags, no significant difference was
observed in the C4.5 classifier results. Specifically, up to a
0.04% and 0.12% increase was shown in Score for the binary
and the numerical representation, respectively, and a 0.13%
decrease in Score was shown on the Zeus (NETRESEC) data
set with the nominal representation. As for the results of the
SBB classifier, no notable increase or decrease was observed
in terms of Score. However, the solution complexity of runs
without the TCP flag and the numerical representation were
slightly better than the others. In conclusion, we did not ob-
serve any significant performance increase/decrease in the
C4.5 and the SBB classifiers results in this case. Hence, we
believe that adding the TCP flags in any form (representa-
tions) is not beneficial in designing a Zeus botnet detection
system specifically but may result is some pre-processing
overhead in some cases.

Table 2 shows the results of C4.5 and SBB classifiers on
the data sets without the TCP flag. The results indicate that
the Score, TP and FP rates are almost the same for both
classifiers. Comparing the results over the complexity cri-
teria, the SBB’s solution complexity was less than the C4.5

for CVUT-5, Zeus-1, Zeus-3 and Zeus-4 data sets, almost
the same for Zeus (Snort) and Zeus (NETRESEC) data sets
and higher for Zeus-2 (NIMS). In general, we can conclude
that SBB performed better in terms of solution complex-
ity (obtained smaller solutions). This difference was more
noticeable for bigger data sets such as Zeus-1 (NIMS) and
CVUT-5. The lower solution complexity enables SBB to
implement the solutions more efficiently. Given that such
solutions need to operate at network flow speeds, simpler
solutions are more advantageous, because the detection sys-
tem can perform faster with less number of rules/signatures.
On the other hand, the C4.5 time complexity (for training)
was mostly lower than the SBB except for the CVUT-5 big
data set. Given that training is a one time off-line process,
our observations indicate that SBB is the winner in terms
of the complexity criteria among the two classifiers, where
they performed almost the same in terms of Score (average
detection rate) measurement.

In our second set of experiments, we investigated how ef-
fective the C4.5 and SBB trained models can perform fac-
ing newer/different versions of the same botnet behaviours.
Zeus (NETRESEC) and Zeus (Snort) are small data sets.
On the other hand, Zeus-1 (NIMS) data set is generated
based on the C&C domain name list and therefore, is a
good representative of the communication phase of the bot-
net lifecycle. Hence, we decided to use these as the test
data sets whereas use Zeus-2 (NIMS) as the training data
set. Table 6 shows the results of these experiments. As
expected, both of the classifiers could detect the legitimate
side of the data sets with high performance (TNRs of up to
100%) given that all of the data sets used the LBNL traffic
traces for this purpose. Comparing the classifiers against
the TPRs: (i) C4.5 out-performed SBB on Zeus-3 (NIMS),
Zeus-4 (NIMS), Zeus (NETRESEC) and Zeus (Snort). In
other words, the less complex solution of the C4.5 model on
the Zeus-2 (see Table 2) could better detect other versions
of the Zeus botnet. (ii) None of the classifiers performed
well when tested on the CVUT-5 data set. In the CVUT-
5 readme file, this data set’s probable name is considered
“Zeus”. The readme file also suspected that this data set may
be a P2P version of the Zeus botnet. Our experimental re-
sults confirms that CVUT-5 data set behaviour is not similar
to the C&C HTTP-based version of the Zeus botnet by any
means. Hence, it more likely represents a P2P HTTP-based
Zeus botnet behaviour, if Zeus botnet at all. (iii) The re-
sults also indicate that the Zeus botnet behaviour presented
by the Zeus-2 (NIMS) is different from the behaviour pre-
sented by the Zeus-1 (NIMS) data set. This might be caused
by the fact that Zeus-1 (NIMS) is only a representative of
one of the phases of the botnet lifecycle (C&C communi-
cation). Hence, we did another experiment with an HTTP
filter for the experiments with low performance. Given that
Zeus is an HTTP-based botnet, this filter only keeps the
core botnet communication of the data set which was proved
to increase the performance at [16]. Table 7 shows that the
trained model on the Zeus-2 (NIMS) performed much better
in Zeus-1 (NIMS) and Zeus (NETRESEC) detection but the
performance did not change for CVUT-5 data set. These re-
sults indicate that even when different samples of the Zeus
botnet do not seem to be similar (e.g. 32.73% TPR for
detecting the Zeus (NETRESEC) sample with the trained
model on Zeus-2 (NIMS) using the SBB classifier), the core
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Table 2: Classification Results– No TCP flag

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

CVUT-5 99.95% 100% 0.1% 99.9% 0% 2779.2 1185
Zeus-1 (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 39 477
Zeus-2 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.24 9
Zeus-3 (NIMS) 100% 100% 0% 100% 0% 19.72 43
Zeus-4 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.28 41

Zeus (NETRESEC) 97.5% 98% 3.0% 97.0% 2.0% 0.15 27
Zeus (Snort) 100% 100% 0% 100% 0% 0.05 3

SBB

CVUT-5 98.06% 99.89% 3.7% 96.23% 0.1% 1280.79 56
Zeus-1 (NIMS) 98.59% 97.41% 0.2% 99.79% 2.6% 205.282 36
Zeus-2 (NIMS) 100% 100% 0% 100% 0% 217.272 33
Zeus-3 (NIMS) 99.99% 99.98% 0% 100% 0.02% 261.93 24
Zeus-4 (NIMS) 99.97% 99.94% 0% 100% 0.06% 360.287 36

Zeus (NETRESEC) 99.17% 99.17% 0.8% 99.17% 0.8% 221.14 28
Zeus (Snort) 100% 100% 0% 100% 0% 157.42 4

Table 3: Classification Results– Numerical representation

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

CVUT-5 99.95% 100% 0.1% 99.9% 0% 2620.01 1199
Zeus-1 (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 26.97 399
Zeus-2 (NIMS) 99.87% 100% 0.3% 99.7% 0% 0.23 9
Zeus-3 (NIMS) 100% 100% 0% 100% 0% 12.2 43
Zeus-4 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.21 41

Zeus (NETRESEC) 97.63% 98.0% 2.7% 97.3% 2.0% 0.15 25
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 5

SBB

CVUT-5 98.66% 99.29% 1.97% 98.03% 0.71% 1047.53 23
Zeus-1 (NIMS) 98.58% 97.26% 0.1% 99.9% 2.73% 372.256 47
Zeus-2 (NIMS) 100% 100% 0% 100% 0% 229.486 26
Zeus-3 (NIMS) 99.99% 99.98% 0% 100% 0.2% 197.21 17
Zeus-4 (NIMS) 99.98% 100% 0% 99.97% 0% 327.256 67

Zeus (NETRESEC) 99.17% 98.33% 0% 100% 1.67% 378.048 74
Zeus (Snort) 100% 100% 0% 100% 0% 147.017 2

Table 4: Classification Results– Nominal representation

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

CVUT-5 100% 100% 0% 100% 0% 2876.16 1401
Zeus-1 (NIMS) 99.75% 99.7% 0.2% 99.8% 0.3% 35.33 531
Zeus-2 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.26 9
Zeus-3 (NIMS) 99.95% 99.9% 0% 100% 0.1% 16.64 21
Zeus-4 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.49 41

Zeus (NETRESEC) 97.38% 98.0% 3.2% 96.8% 2.0% 0.15 27
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 3

SBB

CVUT-5 98.52% 9.78% 2.8% 97.25% 0.2% 1558.73 43
Zeus-1 (NIMS) 98.75% 97.57% 0.06% 99.94% 2.4% 206.171 72
Zeus-2 (NIMS) 100% 100% 0% 100% 0% 220.4 13
Zeus-3 (NIMS) 99.99% 99.98% 0% 100% 0.02% 365.879 75
Zeus-4 (NIMS) 99.97% 99.94% 0% 100% 0.06% 305.7607 30

Zeus (NETRESEC) 98.75% 98.33% 0.8% 99.12% 1.7% 331.286 44
Zeus (Snort) 100% 100% 0% 100% 0% 195.313 12

botnet communication behaviours are in fact similar (e.g.
83% TPR for the Zeus (NETRESEC)).

Overall, we observed that an older version of the Zeus
botnet trained model can detect other versions of the same
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Table 5: Classification Results– Binary representation

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

CVUT-5 100% 100% 0% 100% 0% 3562.22 1239
Zeus-1 (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 29.78 411
Zeus-2 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.25 9
Zeus-3 (NIMS) 100% 100% 0% 100% 0% 15.92 45
Zeus-4 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.28 41

Zeus (NETRESEC) 97.26% 97.5% 3.0% 97.0% 2.5% 0.11 5
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 3

SBB

CVUT-5 98.46% 99.90% 2.99% 97.01% 0.01% 1231.87 60
Zeus-1 (NIMS) 98.55% 97.42% 0.32% 99.68% 2.6% 303.291 39
Zeus-2 (NIMS) 100% 100% 0% 100% 0% 198.039 25
Zeus-3 (NIMS) 99.99% 99.98% 0% 100% 0.02% 286.251 41
Zeus-4 (NIMS) 99.97% 99.94% 0% 100% 0.06% 331.573 14

Zeus (NETRESEC) 99.17% 98.33% 0% 100% 1.67% 347.745 38
Zeus (Snort) 100% 100% 0% 100% 0% 130.715 6

botnet with the same topology with up to a 100% TPR.
Having said this, filters might be useful in order to increase
the performance by focusing the analysis the core part of
the botnet communication when necessary. Not only the re-
sults showed that the trained classifiers were robust enough
to detect similar botnet behaviours, but they also showed
that the models could be very good in pointing the bold
changes of behaviour for a given botnet (i.e. showing that
the CVUT-5 does indeed have a different botnet topology
than the others).

5. CONCLUSIONS
Various forms of botnets, as a network of compromised

hosts which are remotely controlled by a botmaster, have
been active since 2003. With the ability of upgrading/ chang-
ing any phase of the lifecycle, botnets have defeated the de-
tection systems and have made come backs after being taken
down. Hence, detection systems require automatic and in-
telligent mechanisms to cope with the updates. In this work,
we employed two machine learning algorithms, namely C4.5
and SBB, to generate botnet detection models for Zeus bot-
net. Seven Zeus botnet traffic traces were collected and rep-
resented as flows to the machine learning algorithms using
the Tranalyzer flow exporter.

Our results show that both of the classifiers performed
very well with the feature sret provided by Tranalyzer and
obtained the Score (classwise detection rate) of up to 100%.
Almost in all of our experiments, SBB performed better than
C4.5 in terms of the solution complexity. This encourages
the employment of SBB as the preferred classifier to im-
prove automatic signature generation for botnet detection
systems in practice. Moreover, given that non-numeric flow
features can not be used by most of the machine learning
algorithms, hence we investigated the effect of different rep-
resentations of such flow features. To this end, TCP flag
feature is analyzed. This is a set of eight flag features that
are combined and presented as a hexadecimal feature. This
value can be interpreted as a nominal value by a classifier
such as C4.5. However, it is not usable by a classifier such
as SBB. Hence, we investigated three different representa-
tions of the TCP flag feature, namely numerical, nominal
and binary. Comparing the results of the experiments of

the three representations with the experiments that did not
employ this feature, we believe that using this feature in any
form will not affect the performance of the detection system
designed for Zeus botnet. Finally, we investigated the effec-
tiveness of a ML-based detection system when it faced newer
behaviours of the same type of a botnet. To this end, we
collected different publically available Zeus botnet data sets
and generated several data sets using publically available
toolkits/binaries representing the evolution of Zeus botnet
over a period of four years. Then, a Zeus botnet detection
model was trained on the oldest data set which has enough
samples and then tested against the other six Zeus data
sets. The results indicate that the trained model can detect
other versions of the Zeus botnet of the same topology with
the Score of up to 100%. Furthermore, we could identify the
change of topology for the P2P Zeus botnet by observing the
changes in the performance. Future work will further inves-
tigate how to leverage such behaviour changes indicated by
our classifiers.
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